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Welcome from Programme and Conference Chairs 
 
 
Welcome to the Third International Conference on Research in Air Transportation! 
 
On the behalf of the ICRAT 2008 Organization Committee, we would like to express here our deep 
gratitude to the senior and young researchers in Air Transportation for having contributed to this young 
but challenging and exciting conference.  
 
For this third edition of ICRAT, there were 77 qualified submissions by authors from 19 countries. The 
referee process resulted in 57 acceptances, for an acceptance rate of about 75%, among which 38 
submissions were selected as standard papers, and 19 as short papers, representing respectively 50% and 
25%. All selected papers, long and short, are of good quality, and we are very proud of the 
professionalism of all authors, reviewers, and of all Program Committee members. Thank you so much 
for your contributions and collaborations.  
 
This is also the second year that Tutorials and a Doctoral Symposium are included in the conference 
program. Seven tutorials on the practice Air Transport are expected to bring up the understanding of how 
things work for the young scientists. The Doctoral Symposium is expected to create a forum for young 
researchers to discuss their research approaches with senior researchers to obtain guidelines and supports. 
The program is even more exciting with the six invited keynote speakers, all senior research scientists or 
strategists in Air Transportation. We are very grateful for their presence, contributions, and support. 
 
The proceedings you are handling are the result of much hard work from many people. We would like to 
thank: 
 

- The authors and co-authors of the paper submissions. They are, of course, what makes the 
conference program great.  

- The invisible tertiary reviewers, who often supply the most expert and informed comments on 
their review, and the ICRAT’08 Scientific Program Committee. There were 40 members who 
had spent most of their free time during the referee process to review the submitted papers, and 
to return with careful comments. They are the guardians for the quality of the conference.  

- The logistic team, also known as the conference secretariat team and the Webmaster team who 
worked hard to ensure the on-line processes with the authors, to collect, compile, and edit the 
final camera-ready proceedings. 

- Telecom-Paris Tech with the support to host the website as well as for the time of Pr. Patrick 
Bellot and Loic Baud, who have worked pro-actively on the development and maintenance of the 
conference website.  

- The Local Organising committee members and volunteers, for the local arrangements, the 
printing of the proceedings, and all the logistics at the conference place. 

- The various institutions that provided the support for the paper process. The list includes the 
employers of all authors and co-authors and the employers of all reviewers and committee 
members.  

 
Thank you all again, authors and reviewers, for your contribution to ICRAT’08 that surely be exciting.  
Thanks once more to the conference secretaries: Loic Baud, Simone Rozzi, Andrea Ranieri, Stephen 
Peterson, Ronish Joyekerun and the Publication Chair John Shortle to be the bridge between the Program 
Committee, the authors, and the Local Organisers. The success of this conference will be yours!  
 
Andres Zellweger, General Chair,  
George Donohue, Conference Chair,  
Vu Duong, Program Chair. 
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PASSENGER TRIP DELAYS IN THE U.S. 
AIRLINE TRANSPORTATION SYSTEM IN 2007 

Guillermo Calderón-Meza 
PhD candidate 

Center for Air Transportation System 
and Research/GMU 
Fairfax, VA, USA 

gcaldero@gmu.edu 

Lance Sherry, PhD 
Center for Air Transportation System 

and Research/GMU 
Fairfax, VA, USA 
lsherry@gmu.edu 

George Donohue 
Center for Air Transportation System 

and Research 
/GMU

Fairfax, VA, USA 
gdonohue@gmu.ed

Abstract— The value of the air transportation system is the 
transportation of light-weight, high-value cargo, and passengers. 
Industry and government metrics for the performance of the air 
transportation focus on the performance of the flights. Previous 
research has identified the discrepancy between flight 
performance and passenger trip performance, and has developed 
algorithms for the estimation of passenger trip performance form 
publicly available data. 

 This paper describes an analysis of passenger trip 
delays for 5224 routes between 309 air ports in the U.S. air 
transportation system for 2007. The average trip delay 
experienced by passengers was 24.3 minutes for nationwide total 
of 247 Million hours. Flights delayed 15 minutes or more 
contributed 48% of the total delays, cancelled flights 43%, 
diverted flights 3%, and flights delayed less than 15 minutes 
contributed the remaining 6%. Passenger trip delays for oversold 
flights were negligible. Analysis of passenger trip delays for 
routes and airports, and the implications of these results are also 
discussed. 

Keywords- passenger trip delay; flight delay, airport delay. 

I. INTRODUCTION

The value proposition of the air transportation system is the 
rapid, safe, and cost effective transportation of high-value, 
lightweight cargo, and human passengers. This transportation 
is achieved by combining air transportation between airport 
terminals with ground transportation between origin (e.g. 
home)/destination (e.g. meeting) and the airport. The air 
component of the transportation is achieved through via single 
segment or multiple connecting segment scheduled airline 
operations.  

To leverage economies of scale, airlines schedule and 
operate a daily itinerary that networks passengers, aircraft, 
flight, and cabin crews in connecting segments throughout the 
day. Individual flights on a segment may be delayed for several 
reasons such as: (e.g. mechanical) problems, weather, or traffic 
congestion. To maintain integrity of their networks in the 
presence of individually delayed flights, airlines may choose to 
delay, divert, or cancel flights.  

When flights are delayed, the passenger trip for this 
segment is also delayed for the duration of the flight delay. 
When flights are cancelled or diverted, or passengers are 
bumped for overbooking, the passenger trip delay includes the 
duration of delay accrued waiting for the re-booked flight. All 
of these delays represent passenger trip delays. 

Previous research by Bratu & Barnhart [2005] identified the 
discrepancy between flight performance and passenger trip 
performance. Wang [2007] showed that the 2% of passengers 
experiencing cancelled flights accrued delays of approximately 
10 hours each, and that the total delays experienced by these 
passengers accounted for 40% of the total passenger trip 
delays. 

This research provides the results of analysis of the U.S. air 
transportation system in 2007. The results are summarized as 
follows: 

1. Passengers experienced a total of 247 Million hours of 
delays. The average delay was 24.3 minutes. Flights delayed 15 
minutes or more accounted for 48% of the total delays, 
cancelled flight 43%, diverted flights 3%, and flights delayed 
less than 15 minutes accounted for almost all the remaining 
6%. Passenger trip delays for overbooked passengers were less 
than 1%. 

2. For flights on the 5224 routes between 309 airports, 
50% of the routes experience an average passenger trip delay 
less than 15 minutes. 90% of the routes experience an average 
trip delay of less than 30 minutes.    

3. For flights inbound and outbound of the 309 airports, 
40% of the airports experience an average passenger trip delay 
of less than 15 minutes, 90% less than 30 minutes. Poorly 
performing airports included major hub airports as well as 
small commuter airports.    

4. Passenger trip delay exhibited similar performance on 
routes of different stage-lengths1.    

The paper is organized as follows: Section 2 provides a 
summary of previous research. Section 3 describes the 

1 Stage-length is the great-circle distance of a flight. 
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algorithm and database structure used to compute estimates of 
passenger trip delay in 2007. Section 4 describes the results of 
the analysis. Section 5, Conclusions, discusses the implications 
of these results. 

II. PREVIOUS RESEARCH

Researchers have shown that flight-based metrics, like the 
metrics reported in the Department of Transportation’s Airline 
Travel Consumer Reports (ATCR) [DOT, 2007] are a poor 
proxy for passenger experience [Wang, Schaefer, Wojik, 2003; 
Mukherjee, Ball, Subramanian, 2006; Ball et al., 2006; Bratu & 
Barnhart, 2005].  Bratu & Barnhart [2005] used proprietary 
airline data to study passenger trip times from a hub of a major 
U.S. airline. 

This study showed that that flight-based metrics are poor 
surrogates for passenger delays for hub-and-spoke airlines as 
they do not capture the effect of missed connections, and flight 
cancellations. For example, for a 10 day period in August 
2000, Bratu & Barnhart [2005] cite that 85.7% of passengers 
that are not disrupted by missed connections and cancelled 
flights arrive within one hour of their scheduled arrival time 
and experience an average delay of 16 minutes. This is roughly 
equivalent to the average flight delay of 15.4 minutes for this 
period. In contrast, the 14.3% of the passengers that are 

disrupted by missed connections or cancelled flights 
experienced an average delay of 303 minutes. 

Wang [2007], Sherry, Wang & Donohue [2006] developed 
an algorithm to estimate passenger trip delay for publicly 
available data from the Bureau of Transportation Statistics 
(http://www.bts.gov).  One part of the algorithm joins separate 
databases with secondary data to derive the parameters to 
perform the passenger trip delay analysis. The next part of the 
algorithm computes an estimate of passenger trip delay for 
each scheduled flight. Key among those parameters used in the 
algorithm is the Passenger Load Factor for a flight. This 
algorithm uses the quarterly average Passenger Load Factor for 
flights on a given route. This results in undercounting for peak 
operations, and possible overcounting for non-peak operations. 
Further this analysis accounts for flight delays and cancelled 
flights only for routes between the OEP-35 airports. 

The main results of this analysis are that passenger trip 
delays are disproportionately generated by cancelled flights. 
Passengers scheduled on cancelled flights represent 3 percent 
of total enplanements, but generated 45 percent of total 
passenger trip delay. 

On average, passengers scheduled on cancelled flights 
experienced 607 minutes delay, and passengers who missed the 

Figure 1. ER diagram of the local database 
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connections experienced 341 minutes delay in 2006. 

The analysis described in this paper improved the algorithm 
by increasing the pre-processing of data to eliminate infeasible 
data and check for referential integrity. Further improvements 
were made to the algorithm to include diverted flights, improve 
processing throughput and automating manual steps in the 
processing.  

III. DATABASE AND ALGORITHM

A. The local database 

A local relational database stores data imported from public 
databases.  The data consist of actual flight and performance 
values collected by competent institutions.  Being as massive 
as they are, the raw data contain errors.  Because of that, the 
database includes constraints to improve the quality of the 
input data.  The design of the local database is illustrated by an 
ER diagram as shown in Fig. 1; it consists of six entities and 
thirteen integrity and referential constraints.  Since the data are 
time dependent all several entities identify the tuples using year 
and month among other attributes.  Other attributes that 
identify tuples in the entities are the carrier or airline, and the 
route (composed of one origin airport and one destination 
airport). 

The Airport and Airline entities make sure that the other 
entities contain only known airports and airline codes: all of the 
other entities have foreign keys referring to Airport and 
Airline. 

The On_Time entity contains the data about each individual 
flight.  In particular, the attribute canceled, if its value is one, 
indicates that the flight was canceled (a value of one).; 
otherwise, its value is zero.  The attribute div_delay is either 0 
for not diverted flights or 360 (min) for diverted flights.  The 
attributes avaseat and avgpax are only used as temporal 
variables during the computation of Estimated Passenger Trip 
Delay, EPTD [Wang, 2007, Sherry, Wang & Donohue, 2006].  
The attribute pax_delay (min) is the cumulated EPTD for all 
the passengers of the flight.  Clearly, if canceled is 1, div_delay
must be 0, and if div_delay is not 0, then canceled must be 0.  
The attributes carrier and airline are only different when the 
actual carrier is a subsidiary of an airline. 

The T_100 entity contains the input data concerning 
performance of pairs of route and carrier for domestic flights 
only.  There are no data for individual flights.  The entity 
includes information about the total number of departures done 
for a route and a carrier in the particular month 
(departures_performed), the total number of passengers 
transported (passengers), the total number of seats including all 
the flights (seats), and the distance of the particular route (in 
miles). 

The entity Load_factors contains data derived from T_100.
For a particular route and airline, the each record contains the 
average number of unoccupied (available) seats in the flights 
(avaseat), the average number of passengers per flight 
(avgpax), and the average number seats in the plane -the size of 
the plane- (avgseat).  Clearly, the following conditions must be 
true at all times: avgseat ≥ avaseat and avgseat ≥ avgpax.

The entity PTDI contains the result of the Passenger Trip 
Delay Index (PTDI) computation.  In this case, flights are 
identified by their route, carrier, and departure time: no 
individual flights are recorded in this entity, but only averages 
of the flights that occur periodically at the given route, carrier, 
and departure time.  The entity also includes data about the 
total number of enplanements2 (enp), the average total number 
of seats available (avg_avail), the average load factor of this 
flight (avg_LD_factor), the number of scheduled flights (schfl),
the number of canceled flights (canceled_fl), the number of 
diverted flights (diverted_fl), and the average delay time in 
minutes and number of passengers delayed for each category 
(canceled, diverted, delayed, and on-time) of flight.  Finally, 
the entity also contains (though redundantly because it can be 
derived from the other attributes) the PTDI value in minutes.  
Notice that the delays can be zero, negative or positive real 
numbers.  Negative numbers indicate that the passengers were 
not delayed but they arrived early.  The number of 
enplanements must be greater than zero for the PTDI to make 
sense.  The same happens with the number of scheduled flights.  
Clearly, the condition canceled_fl + diverted_fl ≤ Schfl must be 
true at all times. 

B. Input data 

The computation of the PTDI uses data from the Bureau of 
Transportation Statistics (BTS); particularly from two 
databases that are available on-line to download. 

The first database is the T-100 for the domestic segment 
[BTS, 2006b].  This database allows the download of a whole 
year for all the carriers in the domestic (USA) segment.  The 
fields selected to download are: year, month, origin, dest, 
carrier, seats, departures performed, passengers, carrier region, 
and distance.  This experiment uses a single file containing data 
for the year 2007 from January to October3.  The file contains 
277870 records for 203 different carriers, 1142 airports4, and 
23507 routes.  The process to compute load factors for the 
flights and distance information for the routes uses these 
values.  Every record of this file must comply with the 
conditions states in Table I to enter the local database. 

TABLE I. CONDITIONS FOR EACH RECORD OF THE T_100 DATABASE

Field Condition 
Year Equal to 2007 
Month In range [1, 10] 
Origin The value must be already in the Airport table 
Dest The value must be already in the Airport table
Carrier The value must be already in the Airline table 
Seats An integer number that is greater than or equal to 

Passengers 
Departures performed A positive integer number 
Passengers A positive integer number 
Carrier region Only the value “D” (for domestic) is accepted 
Distance A positive real number 

2 An enplanement is a transported passenger. 
3 November and December were not available at the time of 
the experiment. 
4 These data include airports in Puerto Rico, and airports in 
project that are being used already. 
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A record that does not comply with all the conditions does 
not enter the local database, so that it is not used during the 
computation of the PTDIs.  A total of 134111 records actually 
entered the local database including 932 airports, 115 carriers, 
and 17493 routes.  Notice that some of the airports, carriers and 
routes are not actually referred in the On-Time database for the 
same period of time.  These extra records in T_100 have no 
effect in the final results because the algorithm does not use 
them.  The values for seats, passengers, and departures 
performed are monthly totals.  There are no data for individual 
flights; therefore, average values are used in this experiment to 
approximate the actual values.  The local database derives and 
stores the following values concerning load factors per year, 
month, route, and carrier:  

• average number of seats, avgseat = seats / departures 
performed

• average number of passengers, avgpax = passengers / 
departures performed

• average number of available seats, avaseat = (seats – 
passengers) / departures performed

Therefore, the average load factor for a year, month, route, 
and carrier is: lf = avgpax / avgseat.

The second database is the so-called Airline On-Time 
Performance [BTS, 2006a].  This database allows the 
download of individual months of a particular year for all the 
airports and carriers in the USA.  The fields selected to 
download are: flight_date, carrier, origin, dest, arr delay, crs arr 
time, dep delay, crs dep time, cancelled, diverted, fl_num, and 
tail_num.  This experiment uses ten separate files for the year 
2007, one for each month from January to October.  Table II 
summarizes the figures for each one of the files. 

TABLE II. STATISTICS FOR EACH OF THE ON-TIME INPUT FILES

Month Records Carriers Airports Routes 
January 621555 20 289 4436 
February 565602 20 288 4411 
March 639209 20 288 4396 
April 614648 20 289 4504 
May 631609 20 294 4476 
June 629280 20 298 4599 
July 648542 20 300 4569 
August 653276 20 298 4606 
September 600186 20 298 4568 
October 629990 20 292 4554 
Total entered 6233873 17 309 5224 

Notice that only 17 of the 20 carriers entered the local 
database.  It is because the records with the three missing 
carriers did not comply with the conditions stated below.  To 
enter the local database, each record must comply with the 
conditions stated in Table III. 

TABLE III. CONDITIONS FOR EACH RECORD OF THE ON-TIME DATABASE

Field Condition 
Flight date Any valid date for the year 2007 
Origin The value must be already in the Airport table 
Dest The value must be already in the Airport table
Carrier The value must be already in the Airline table 
Arrival delay Any integer number (including 0 and negative 

ones). 
Scheduled arrival time A four digit positive integer number.  The two left-

most digits represent the hour in 24 hr format.  The 
two right-most digits represent the minutes. 

Departure delay Any integer number (including 0 and negative 
ones). 

Scheduled departure 
time 

A four digit positive integer number.  The two left-
most digits represent the hour in 24 hr format.  The 
two right-most digits represent the minutes. 

Cancelled Either 0 (not cancelled) or 1 (cancelled)
Diverted Either 0 (not diverted) or 360 (6 hrs in minutes) 
Flight number Any value, but usually a three or four digit integer 

number. 
Tail number Any value.  Used only to filter invalid records. 

Each record must be unique with respect to flight date, 
origin, destination, carrier, and flight number.  If there are 
repeated records, only one of them enters the local database.  
When the repeated records show differences in other fields, the 
user decides which one to keep.  For instance, one of the 
records states that the flight was delayed and the other, that it 
was cancelled.  The cancelled flight enters the local database in 
this case.  Situations like this are not frequent: for the current 
input data only 53 records were repeated. 

C. The algorithm 

At a very high level of abstraction the algorithm to compute 
the PTDI is as follows: 

• Import the T_100 data into the local database.  This 
implies the computation of the load factor-related 
values. 

• Import the on-time data into the local database.  This 
implies the consideration of the carrier / subsidiaries 
relations.  This means that subsidiaries are changed to 
their “parent” carrier every time they appear. 

• Compute the EPTD based on the local load factor 
values and the local on-time data.  This is done flight-
by-flight, one month at a time.  Fig. 2 illustrates the 
computation process of the EPTD. 

• Compute the PTDI based on the EPTD, the delay, 
cancellation, and diversion data.   

The following formulas compute the EPTD for each 
category of passengers: 
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Where Pax(f) is the number of passenger in the flight f.
Pax(f, j) is the number of passenger from flight f, that were 
reloaded on flight j.  ArrDelay<15(f) is the arrival delay of flight 
f (in minutes) when it is less than 15 minutes (flight arrives on-
time).  ArrDelay≥15(f) is the arrival delay of flight f (in minutes) 
when it is delayed (15 minutes or more delay).  SchArr(f) is the 
scheduled arrival time of flight f.  The constant 15*60 
represents the maximum wait time (assumed) the passengers 
will tolerate before changing to another airline or transportation 
means, it equals 15 hours (in minutes).  The constant 6 * 60 is 
the estimated delay time for a diverted flight; it equals 6 hours 
(in minutes). 

At a high level of abstraction, the computation of the PTDI 
consists of eight steps: 

• Compute the passenger delay for on-time flights: those 
arriving early or up to 15 minutes after the scheduled 
arrival time5.

• Compute the passenger delay for delayed flights: those 
arriving 15 or more minutes after the scheduled arrival 
time. 

• Compute the passenger delay for canceled flights. 

• Compute the passenger delay for diverted flights. 

• Compute the number of enplanements. 

• Compute the PTDI-related load factors. 

• Eliminate null values (if any) and merge flights that 
depart less than 40 minutes after another flight of the 
same carrier on the same route. 

• Compute the PTDI.  Fig. 3 illustrates the computation 
process of the PTDI. 

The following formula computes the PTDI: 
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Where Paxon-time is the number of passenger on-time (less 
than 15 minutes delay), Paxdelayed is the number of passengers 
delayed, Paxcanceled is the number of passengers in canceled 
flights, and Paxdiverted is the number of passengers in diverted 
flights.  Notice that the summations are performed after 
grouping the flights by route (r), airline (a), and departure time 
(t).  Corresponding definitions are valid for the EPTD.  Sub or 
superscripts r,a,t indicate that the associated values correspond 
to the average EPTD for the category (on-time, delayed, 
canceled, diverted) after grouping by route, airline, and 
departure time. 

5 The convention is that flights arriving with less then 15 
minutes of delay are on-time. 

N
o

Figure 2. Algorithm to compute the EPTD 
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IV. RESULTS

The following analysis was conducted for 2007 for the 
months January through October using data derived from the 
BTS database for those months and year. The data included 
512.8M passengers on 6.2 million flights on 5224 routes 
between 309 airports. The passenger trip delay includes an 
estimate of the total number of delay hours for on-time, 
delayed, cancelled, and diverted flights. 

• Estimated total passenger trip was 247.08M hours. The 
average trip delay was 24.33 minutes. 

• Estimated total passenger trip delay for passengers on 
flights delayed more than 15 minutes 119.44 M hours. 
The average trip delay for these passengers was 56.19 
minutes. 

• Estimated total passenger trip delay for passengers on 
cancelled flights was 107.39M hours. The average trip 
delay for these passengers was 667.93 minutes. 

• Estimated total passenger trip delay for passengers on 
diverted flights was 7.77 M hours. The average trip 
delay for these passengers was 360 minutes. 

• Estimated for passenger trip delay for over-booked 
passengers was negligible. 

A. Comparison of flight delay and passenger delay 

Fig. 4 shows a graphical comparison of flight delay and 
passenger trip delay (PTD).  The y axis of the chart shows 
percentage of the total delay hours.  The categories included 
are delayed, cancelled, and diverted flights.  Flights that arrived 
early or with less than 15 minutes of delay are not included in 
the chart: they are considered on-time.  Because of these on-
time flights, the bars do not add to 100%.  In other words, the 
on-time flights can also generate delays, but they are low 
enough to consider them as negligible. 

The total delay measured using flight delay is 1.63 million 
hours as indicated in the chart.  Notice that the flight delay 
metric does not consider canceled flights because those flights 
do not incur in delays. 

On the other hand, the total delay measured using PTD is 
240.08 million hours.  This amount is very different from the 
1.63 million of the other metric.  In this case the total also 
considers the delays due to canceled flights, and not only 
diverted and delayed flights. 

The PTD metric is more detailed and faithful to the real 
situation: passengers from a canceled flight experience 
considerable delays.  In fact, the delays for passenger from 
canceled flights amount for about 43% of the total delay.  
About 48% of the total delay is due to delayed flights, and the 
rest of the delay is distributed among diverted and on-time 
flights. 

B. Comparison of routes 

Fig. 5 compares the histograms and cumulative 
distributions of the average PTDI and the maximum PTDI for 
all the routes with respect to the delay ranges (15 minutes each 

range).  Form the point of view of the average PTDI, 50% of 
the routes show on-time flights; and 90% of them show flights 
that are delayed less than 30 minutes.  In extreme situations 
(maximum PTDI) about 20% of the routes show on-time 
flights and 50% show flights delayed 30 minutes or less.  This 
distribution shows a peak not at the 0-15 minute range as the 
one for the average PTDI, but at the 30-45 minutes range.  
After the peak, the distribution descends monotonically slower 
than it the distribution of the average PTDI. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Flight delay (1.63M hours) PTD (247.08M hours)

Performance metric

P
er

ce
n

ta
g

e

Diverted Delayed Canceled

Figure 4. Comparison of flight delay and passenger delay as performance metrics 

Figure 3. Algorithm to compute the PTDI
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Comparison of route distance 

The distribution of routes is similar for each distance range 
as shown in Fig. 6.  Notice that the distance ranges are given in 

nautical miles (nm).  All the ranges show between 55 and 47 
percent of on-time routes.  Between 29 and 38 percent of the 
routes show delays of 15 to 30 minutes.  For the delay of 45 
minutes the percentages are between 8 and 12.  For the other 
distance ranges the behavior is also similar though with smaller 
percentage values.  Though the differences are not big (8% at 
most), shorter routes tend to perform better: most of the routes 
of 500 nm and less are on-time (delay smaller than 15 
minutes).  Longer routes tend to delay more often.  A 
significant part of the routes longer then 500 nm delay 30 
minutes. 

The informal comparison of the distribution of delays 
across distance ranges shows that the distribution has the same 
shape for all the distance ranges as shown in Fig. 7.  In all the 
cases most of the flights are on-time and then the number of 
delayed flights decreases with each increase in the delay range.  
But, this chart also says that for shorter routes, is less probable 
to have long delay than it is for longer routes.  For instance, the 
ratio of on-time to 30 minutes delay is about 17/10 = 1.7 for 
routes of 300 nm or less, but it is 31/24.5 = 1.2 for routes of 
500 to 1000 nm. 

C. Comparison of airports 

The next step after comparing the routes is the comparison 
of the airports.  In the case of inbound airports, Fig. 8 shows 
that most of them receive flights on-time or with 30 minutes 

delays: 40% of the airports show on-time flights, and 90% 
show delays of 30 minutes or less.  Only few airports show 
average delays of 45 minutes or longer. 

Table 4 summarizes a ranking of all the inbound airports in 
the database with respect to the average delay. 

TABLE IV. BEST AND WORST INBOUND AIRPORTS RANKED ACCORDING 
TO PTDI 

Best Worst 
Rank Airport (delay) Rank Airport (delay) 

1 Greenville, MS 202 PHL (23)
2 Hilo, HN 226 IAD (26)
3 Pocatello, ID 239 DFW (31)
22 HNL 241 EWR (31)
31 SJC 245 LGA (33)
35 HOU 248 ORD (33) 
39 OAK (10) 255 JFK (37) 
40 MDW (10) 268 Meridian Regional (95) 
59 LAS (11) 269 Rhinelander-Oneida (171) 
61 DAL (11) 
75 BWI (12) 

This ranking is based on the average PTDI for the airport.  
Rank ties are possible as shown in the table.  Airports in bold 
belong to the OEP-35.  Notice that some of the OEP-35 
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airports are ranked among the 75 best ones with respect the 
PTDI values. 

The outbound airports behave as the inbound ones with 
respect to PTDI (see Fig. 9).  About 90% the of the airports 
show delays of 30 minutes or less, and 40% show delays of 15 
minutes or less.  Again, only few airports show average delays 
of 45 minutes or more. 

Table 5 summarizes the ranking of all the outbound airports 
with respect to the average PTDI. 

TABLE V. BEST AND WORST OUTBOUND AIRPORTS RANKED ACCORDING 
TO PTDI 

Best Worst 
Rank Airport (delay) Rank Airport (delay) 

1 Bristol/Johnson, TN 194 PHL (23)
2 Pocatello, ID 214 IAD (26)
6 Greenville, MS 229 EWR (29)
25 SJC 238 DFW (31)
28 HNL 239 ORD (32)
36 OAK (9) 248 LGA (34) 
38 HOU (9) 249 JFK (35) 
42 DAL (11) 265 Rhinelander-Oneida 

(55) 
53 MDW (11) 270 Middle GA Reg 

(260) 
89 BWI (13) 
109 LAS (15)   

This ranking is based on the average PTDI for the airport.  
Rank ties are possible as shown in the table.  Airports in bold 
belong to the OEP-35.  Notice that some of the OEP-35 
airports are ranked among the 89 best ones with respect the 
PTDI values. 

D. Comparison of airlines 

Finally, Table 6 summarizes the ranking of the airlines with 
respect to the average and maximum PTDI.  Notice that in the 
case of average PTDI the difference is at most 27 minutes.  In 
the case of the maximum PTDI, the difference is at most 700 
minutes. 

This ranking is based on either the average or the maximum 
PTDI for the airport as indicated in the column headings of the 
table.  Rank ties are possible as shown in the table. 

TABLE VI. AIRLINES RANKED BY PTDI 

Average PTDI Maximum PTDI 
Rank Airline (delay) Rank Airline (delay) 

1 Hawaiin (5) 1 Alaska (50) 
2 Aloha 2 Aloha 
3 Southwest 3 Hawaiin 
4 Frontier 4 Frontier 
5 Air Tran 5 Southwest (200) 
6 Continental 6 USAirways 
7 Alaska 7 Air Tran 
8 ExpressJet (19) 8 Continental (250) 
9 United (19) 9 JetBlue 
10 SkyWest (19) 10 SkyWest 
11 USAirways 11 United 
12 Delta 12 ExpressJet 
13 Northwest 13 Northwest/Airlink (291) 
14 Northwest/Airlink 14 Mesa 
15 Mesa 15 American 
16 JetBlue 16 Delta 
17 American (32) 17 Northwest (750) 

V. CONCLUSIONS

Passenger trip delay is a critical performance metric for the 
airline transportation system. This metric assesses the 
performance of the true end-users of the system, and provides a 
measure of the true cost of delays. 

Future research is planned to: (1) extend the algorithm to 
include lost luggage and refine the overbooked passenger 
algorithm, (2) add an algorithm to adjust the load factor for 
peak and non-peak periods, (3) continue to refine the 
automation of data retrieval and processing. 
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Abstract—The on-time performance of passenger trips has 
received a great attention from government agencies in recent 
years but lacks a systematic metric to measure or trace the 
impact of flight delay to air travelers. The proposed model 
considers possible trip types of a passenger, utilizes system-wide 
flight-based performance metrics, and employs statistical 
approaches in order to develop an aggregate delay metric from 
passenger’s perspective. Its results can be used to analyze 
historical passenger schedule reliability and can also be used to 
predict passenger experience for future aviation system. 

Keywords-delay, passenger trip, performance metric, air travel 

I. INTRODUCTION

The on-time performance of flights is a key concern of 
carriers and administrative agencies of aviation worldwide. It 
can be easily quantified for the U.S. National Airspace System 
(NAS) because all flight arrival and departure information is 
well recorded and disclosed by the Federal Aviation 
Administration (FAA). For example, the FAA’s Aviation 
System Performance Metrics database (ASPM) provides 
individual flight information from all participating carriers at 
75 major U.S airports. Arrival delay of flights can thus be 
calculated by comparing scheduled and actual arrival time [10]. 
With suitable aggregation methods, delay metrics at airports or 
at the NAS-wide level can easily be constructed.  

While flight delay statistics are well-recorded and well-
publicized, they are not necessarily an accurate measure of a 
passenger’s level of satisfaction.  In particular, a passenger’s 
average trip delay can vary substantially from average flight 
delay due to trip disruptions due to cancelled flights or missed 
connections. Bratu and Barnhart [1] analyzed proprietary 
airline data and indicated that the average time penalty on 
passenger trip time due to flight cancellations and missed 
connections is 303 minutes, while the average delay for non-
disrupted passengers was only 16 minutes. However, 
acknowledging that passenger delay is also an important factor 

of system performance, it is not easily measurable from any 
publicly accessible data. Since ticket information is not 
released by airlines nor collected by the government due to 
privacy concerns, the delay of multiple-leg passenger trips can 
be traced only with great difficulty. Even through proper 
sampling and survey techniques, passenger delay can only be 
observed during the selected survey period. Considering a long 
term objective of quality assurance of air travel, it would 
appear that there exists a need for defining a passenger oriented 
metric to be used as a quantitative measure of system-wide 
flight delay impact on passenger trips. 

There is limited research that models passenger delay most 
likely because of the relative unavailability of individual 
passenger trip information. The essential challenge is to 
quantify the impact of flight delay on passenger trip disruption. 
Wang [3] treated passenger delay by its causes: delay due to 
delayed flights and due to cancelled flights. To estimate the 
passenger delay from cancelled flights, an algorithm was 
proposed that processed single-segment flight data. The 
underlying idea was to assign cancelled seats to the temporally 
closest available flights. Intuitively, this approach should work 
well in cases where only direct flights are being considered or 
under the assumption that on multi-leg passenger trips, the 
passenger always maintains the same intermediate stopping 
point.  It should also be noted that this research does not model 
the possibility of missed connections on multi-leg flights.   

The common characteristics of our paper and Wang [3] are: 
1) both develop passenger-based performance metrics, and 2) 
both quantify the impact of flight cancellations on passenger 
delays. However, while the Wang model is a detailed 
“microscopic” model that estimates delays at a flight level, our 
model is macroscopic scope, attempting to directly estimate 
overall averages. The FAA’s NAS Strategy Simulator (NSS) is 
a high-level policy analysis tool that predicts the impacts of 
future demand growth, policy changes, increasing fuel price, 
etc. [7]. Our research was specifically aimed at producing a 
performance module for the NSS.  In the NSS context, all input 
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and output data are maintained at an aggregate level and so it is 
assumed that flight-level data are not available.  Likewise, the 
required output should be NAS-wide average flight delay and 
cancellation rates rather than similar flight-specific metrics.   

This paper is organized as follows. In Section 2, the 
concepts of the proposed model are discussed, and statistical 
methods are performed to estimate the probability of missing a 
connection flight. Numerical examples are constructed to 
illustrate the model, and the trend of passenger delay since 
2000 is presented in Section 3. In Section 4, sensitivity analysis 
is conducted by analyzing the impact of key parameters on 
passenger delay. In Section 5, the potential usages and 
limitation of the proposed model are discussed. 

II. MODEL CONSTRUCTION AND ESTIMATION

Passenger delays can be “inherited” directly from delayed 
flights but also can result from cancelled flights. Further, on 
multi-leg passenger trips, long flight delays on the initial leg 
can result in missed connections and induced delays not equal 
to, or even proportional to the original flight delay.  In fact, 
cancellations and missed connections very often result in the 
most severe passenger delays.  With these effects in mind, it 
can be seen that passenger delays depend on: 

• Distribution of flight delays 

• Flight cancellation rate  

• Average load factor  

• Percentage of passengers with 2 or more flight legs in 
their itinerary  

In order to accurately address the actual delay experienced 
by passengers, models and statistical analysis are required that 
transform statistics related to these factors to passenger delay 
measures.  

A. Scenario Tree Model of Passenger Delay 

Our passenger delay model employs in a fundamental way, 
the concept of a disrupted passenger, which was introduced in 
Bratu and Barnhart [1].   A disrupted passenger is a customer 
who must use a flight other than the one on which the customer 
was originally scheduled due to a missed connection or flight 
cancellation.  Disrupted passengers incur delays not related in a 
direct way to the delays on any of the flights in their original 
itinerary. Such passengers might be able to recover quickly, 
e.g. by taking the “next” flight scheduled to the missed 
destination or might incur a very long delay, e.g. requiring an 
unplanned overnight stay.   

In order to model passenger delays, we create a scenario 
tree that represents all possible outcomes of a passenger’s trip. 
The database of Airline Origin and Destination Survey 
(DB1BMarket) contains directional market characteristics of 
each domestic itinerary of the quarterly Origin and Destination 
Survey [11]. The trip leg information of domestic markets from 
2000 to 2007 is summarized in Figure 1, indicating that on 
average over 97% of the passengers chose direct or two-leg 
flights. Thus, because of the relative infrequency of three or 

more leg trips in the U.S., we will represent itineraries as 
consisting of either one or two flight-legs.  

64.6% 63.8% 63.0% 63.3% 65.1% 66.3% 67.6% 67.9%

32.6% 33.5% 34.2% 33.9% 32.3% 31.2% 30.0% 29.7%
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Figure 1. BTS Survey Results on Passenger Trip Leg Information 

Our scenario tree is given in Figure 2. It represents the 
various events that can occur on a passenger itinerary, where 
for a 1-leg trip, the flight is denoted by f1 and for a 2-leg trip 
the first flight is f1 and the second is f2. Each leaf of the 
scenario tree represents a different outcome of a passenger trip 
and leads to a different “type” of passenger delay.  

Direct 
Trip  

Two-leg 
Trip

f1 canceled

f1 not canceled

f1 canceled

f1 not canceled Connection 
Missed

Disrupted Passenger

Passenger Delay = Flight Delay

f2 not canceled

Connection
Made

f2 canceled

Figure 2.  Scenarios Tree for a Passenger Trip 

Expected passenger delay could be computed by computing 
the expected passenger delay at each leaf node in this tree and 
the probability of reaching each leaf node.  The sum of the 
product of the leaf node probabilities times their expected 
delays would give the expected passenger delay. This would 
accurately compute expected passenger delay given the 
restriction to one and two leg trips.  This is the approach we 
take; however, we must make several approximations in order 
to estimate the various probabilities and expectations.  We 
hope that over time some of these approximations can be 
improved. 

In computing our estimate of passenger delay, we use the 
following quantities: 

• P_DIRECT: the fraction of passenger itineraries that 
are direct flights 
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• P_CANCEL: the fraction of scheduled flights that are 
canceled  

• F_DELAY: Average flight delay 

• DISRUPT: Average delay of disrupted passengers 

• P_MISS: An estimate of the probability that a 
passenger misses connecting flight (the method for 
computing this estimate is discussed in the next 
section) 

We now list all leaf nodes in the scenario tree, give our 
approximations of the expected passenger delay at that node 
and the probability of reaching that node, and discuss the 
accuracy of these approximations. 

 The various possibilities that can arise are: 

1) Direct Trip, f1 canceled:

Probability estimate: P_DIRECT*P_CANCEL

Delay estimate: DISRUPT

Discussion: The probability estimate is fairly accurate; 
however, P_CANCEL is actually a surrogate for the 
probability that a passenger is booked on a canceled flight.  To 
the extent that there is a greater propensity for airlines to cancel 
flights with fewer passengers, a more accurate estimate could 
be obtained by doing a calculation that weights flights by the 
number of passengers (or seats). In fact there is not source of 
accurate statistics on the delay of disrupted passengers so the 
value we use for DISRUPT is a very rough estimate.  Further, 
models could take into account whether a passenger is 
disrupted by a cancellation or a missed connection.  DISRUPT 
also would be impacted by changes in airline policies and flight 
characteristics, such as load factor, so these could be used in 
improving estimates. 

2) Direct Trip, f1 not canceled:

Probability estimate: P_DIRECT*(1-P_CANCEL)

Delay estimate: F_DELAY

Discussion: Subject to the caveats related to P_CANCEL 
mentioned above, both the probability estimate and the delay 
estimate should be highly accurate in this case. 

3) Two-leg Trip, f1 canceled: 

Probability estimate: (1-P_DIRECT)*P_CANCEL 

Delay estimate: DISRUPT 

Discussion: See discussion for previous two cases. 

4) Two-leg Trip, f1 not canceled, f2 canceled: 

Probability estimate: (1-P_DIRECT)*(1-P_CANCEL)* 
P_CANCEL 

Delay estimate: DISRUPT 

Discussion: See discussion for previous two cases. 

5) Two-leg Trip, f1 not canceled, f2 not canceled, 
connection made: 

Probability estimate: (1-P_DIRECT)*(1-P_CANCEL)*(1-
P_CANCEL)*(1-P_MISS) 

Delay estimate: F_DELAY 

Discussion: As will be discussed later, estimating P_MISS 
can be very challenging. Our approach is to estimate the 
probability that flight delay exceeds a certain (constant) 
threshold. Clearly the required connection time varies 
substantially by flight so in reality the required threshold itself 
is a random variable. Further, it can be the case that both f1 and 
f2 are delayed so that even with a large delay on f1 the 
connection can be made.  Assuming the connection is made the 
passenger delay equals the delay on f2 so that F_DELAY is a 
good estimate of passenger delay in this case. 

6) Two-leg Trip, f1 not canceled, f2 not canceled, 
connection missed: 

Probability estimate: (1-P_DIRECT)*(1-P_CANCEL)*(1-
P_CANCEL)*P_MISS 

Delay estimate: DISRUPT

Discussion: See discussion in previous case regarding 
P_MISS. As discussed earlier it is certainly the case that the 
expected delay experienced by a disrupted passenger could 
vary depending on whether a canceled flight or missed 
connection was involved. 

Based on this scenario tree and the preceding analysis, our 
estimate of average passenger delay, Pax_DELAY can be 
computed as:  

Pax_DELAY = 

(P_DIRECT)*(P_CANCEL)*DISRUPT + 
(P_DIRECT)*(1–P_CANCEL)*F_DELAY+ 
(1–P_DIRECT)*(P_CANCEL)*DISRUPT+ 
(1–P_DIRECT)*(1–P_CANCEL)*(P_CANCEL)*DISRUPT+ 
(1–P_DIRECT)*(1–P_CANCEL)*(1–P_CANCEL)*(1–
P_MISS)*F_DELAY+ 
(1–P_DIRECT)*(1–P_CANCEL)*(1–P_CANCEL) 
*P_MISS*DISRUPT 

B. Probability of Passenger Missing Connection 

Three of the inputs in the Pax_DELAY equation, i.e. 
F_DELAY, P_CANCEL and P_DIRECT, can be easily 
obtained from historical NAS performance statistics. For 
example, the monthly flight arrival delay and cancellation rate 
for the NAS can be calculated from ASPM individual flight 
data; the percentage of direct trips can be estimated from the 
quarterly market survey provided by the Bureau of 
Transportation Statistics, as shown in Figure 1. However, two 
inputs, i.e. DISRUPT and P_MISS, require reasonable 
approximation or further modeling efforts since they are not 
readily available in any data sources or previous research.  

In order to provide a reliable estimate of P_MISS, we 
conduct a statistical analysis on the composition of P_MISS. If 
we denote by Df, the random flight delay, then we define our 
estimate of the probability that a connection is missed because 
of a delayed flight by: 

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-915



 P_MISS = Prob { Df > Threshold } 

where Threshold = LAY – CONNECT, LAY is a nominal 
flight layover time for connecting flights, and CONNECT is an 
estimated minimum time required to connect between two 
flights. 

We assume that schedules are created so that if a flight 
arrives “on-time” then it makes its connection. Here on-time is 
defined relative to the U.S. Department of Transportation 
standard so that a flight is not classified as delayed if it is no 
more than 15 minute late.  Thus, if Df is less than or equal to 15 
minutes, then we assume the passenger makes the connection 
successfully to the second flight leg. The probability of 
passenger missing connecting flight can thus be modeled as a 
conditional probability. Specifically, the probability that the 
connection is missed “given that” the flight is delayed (more 
than 15 minutes) is represented as:  

f

f f

f

Prob { D >Threshold | Flight being Delayed}

Prob { D >Threshold  D >15 }

Prob (D >15)

P_MISS

P_DELAY

∩=

=

where P_DELAY = the probability that a flight’s delay > 15 
=

fProb (D >15) . The probability of missing a connecting flight 

can thus be represented as:  

f fP_MISS = P_DELAY  Prob {D >Threshold | D >15}×

The first term is the probability that a flight is delayed more 
than 15 minutes. The second term is a conditional probability.  
P_DELAY can be estimated directly from flight delay data for 
the purposes of computing a metric.  We also provide a way of 
estimating it using only an estimate of F_DELAY.  This was 
done in order to derive estimates for future years in the context 
of the FAA Strategy Simulator.  Our approach to estimating the 
second term for a time period, e.g. one month, will be to 
estimate the distribution:  Prob{ Df > D | Df > 15} based on 
several years of historical data.  The parameters of this 
distribution will be estimated as a function of F_DELAY and 
P_CANCEL. The value of Threshold and these flight 
performance statistics for the time period in question will be 
plugged into the distribution function to determine the estimate 
of the second term.    

C. Probability of a Flight Being Delayed 

As discussed above, P_DELAY can be computed directly 
from historical data.  However we also provide a way of 
estimating it from flight delay statistic. From the ASPM 
database [10], for each month from January 2000 to December 
2004, we computed the monthly values of F_DELAY and 
P_DELAY.  Due to the obvious non-linearity in distribution 
functions, we postulated a quadratic relationship between 
F_DELAY and P_DELAY.  A simple regression produced the 
following model with an R2 of 0.9628. 

P_DELAY = [ (-0.0206)* (F_DELAY) * (F_DELAY) + 
2.0431 * (F_DELAY) ] / 100 

D. Estimating Conditional  Distribution of Flight Delays 

In this section we describe our approach to estimating the 
conditional distribution function: Prob { Df > D | Df > 15}.  
Individual flight information stored in APSM database was 
used to compute the arrival delay of flights, which is defined as 
the difference between actual and scheduled arrival time. For 
each of month, an empirical distribution of flight delays > 15
was created.  Specifically, each flight delayed over 15 minutes 
was placed into a 15 minute bin (15-30, 30-45, etc.) based on 
its delay value. 

Empirical flight delay distributions were obtained in this 
way for each month from January 2000 to December 2004.  
These distributions were then fitted with the Bi-Weibull 
distribution.  The Bi-Weibull, which is a combination of two 
Weibull distributions, is widely used in reliability applications. 
The Bi-Weibull distribution assumes a different form based on 
its shape parameters, which are: 

• x0 :  the point at which the parameters change, and  

• (α1, β1) and (α2, β2) : the parameters of the two Weibull 
distributions.  

The parameter β2 is a function of the other parameters, so 
there are four parameters in total to be estimated.  

The fitted distributions gave 60 sets of observations of (x0,
α1, β1, α2). A regression was performed on each of these 
parameters, respectively, by using independent variables 
F_DELAY and P_CANCEL. The results from the regression 
are as follows:  

• x0 = 11.1081 + 0.014 * F_DELAY * F_DELAY + 
741.87 * P_CANCEL   (R2 = .93)

• α1 =  0.37 + 0.00083 * F_DELAY * F_DELAY + 3.2* 
P_CANCEL * P_CANCEL + 0.0032 * F_DELAY  (R2

= .87)

• β1 = 11 + 2.83 * F_DELAY + 112.12 * P_CANCEL * 
P_CANCEL  (R2 = .901)

• α2 = 0.1143 + 0.0013 * F_DELAY * F_DELAY + 0.87 
* P_CANCEL * P_CANCEL  (R2 = .82)

Thus, the distribution Prob{Df >D | Df > 15} was estimated 
as a Bi-Weibull distribution whose parameters are given as 
functions of F_DELAY and P_CANCEL. 

III. MODEL APPLICATION AND DATA ANALYSIS

The passenger delay model takes into account several major 
factors that impact passenger delay. Some model inputs are the 
results of aforementioned statistical models; some are available 
from reliable data source or analysis.  

As the market survey results on trip leg information from 
2000 to 2007 shown in Figure 1, it is observed that on average 
two-thirds of the passengers take direct flights. Hence, for 
model application purposes, we set  

P_DIRECT = 66%. 

 Disrupted passengers might be re-assigned to a later flight 
and often experience overnight stays. There are no publicly 
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available data about average delay of disrupted passengers. The 
research results of Bratu and Barnhart [1] based on a 
combination of proprietary data and simulation provide an 
estimate of 303 minutes as the average delay of disrupted 
passengers.  Hence we set 

DISRUPT = 303 minutes. 

The delay threshold of not missing a connection flight is the 
difference between the average flight layover time and 
minimum required connection time. Calculating average 
layover time experienced by a passenger requires detailed 
analysis on either passenger itinerary information or flight 
schedule along with seat information, which are not publicly 
accessible. The minimum required connection time can differ 
among individual airlines or even airports. Therefore, we take a 
conservative estimate on these two inputs based on empirical 
experience and assume that LAY = 45 minutes and CONNECT 
= 15 minutes. Thus, the delay threshold of not missing 
connecting flight is: 

Threshold = LAY – CONNECT = 30 minutes. 

We now have provided models, estimation methods or 
approximation to obtain all required inputs for our metric. We 
use a simple example summarized in Table 1 to show how the 
passenger delay metric is computed. Given that Monthly NAS 
delay is 13.62 minutes and cancellation rate is 3.08%, the 
probability of a flight being delayed as well as the parameters 
of flight delay distribution is determined. The probability of 
flight delay more than connection threshold is computed by 
using the fitted distribution. As a result, the probability of 
missing a connection flight is 0.113, and the estimated monthly 
average passenger trip delay is 35.95 minutes. The relation 
among major model components is shown in Figure 3. 

TABLE I. A NUMERICAL EXAMPLE OF PASSENGER DELAY MODEL

Variable Name Value Source 

Avg Monthly NAS 
Delay of Flights 

13.62 mins. Historical data or estimated 
from other models 

Monthly NAS 
Cancellation Rate 

3.08% Historical data or estimated 
from other models 

P_DIRECT 66% BTS DB1B Database 

DISRUPT 303 mins. Result from Bratu’s study 

Threshold  30 mins. Assumed  

P_DELAY 24% Estimated by this study 

x0 36.55 Estimated by this study 

α1 0.57 Estimated by this study 

α2 0.35 Estimated by this study 

β1 49.65 Estimated by this study 

β2 = x0*β1/(α2 – α1) 22.96 Estimated by this study 

P_MISS 0.1134 Estimated by this study 

Pax_DELAY 35.95 mins. Calculated by using scenario 
tree formula 

Probability of 
Flight Delay 
Longer than 
Threshold 

Monthly NAS 
Flight Delay 

Monthly NAS 
Cancellation Rate 

Other System-wide 
Parameters 

Probability of 
Flights Being 

Delayed 

Flight Delay 
Distribution 

Scenario Tree Formula 

EExxppeecctteedd MMoonntthhllyy
PPaasssseennggeerr DDeellaayy

Probability of 
Missing 

Connection 
Flights 

Figure 3. Application Procedures of Proposed Passenger Delay Model 

Given the application procedures in Figure 3, monthly 
passenger delay metrics from January 2000 to May 2007 are 
computed by using ASPM flight delay and cancellation data. 
Figure 4 shows the time series of monthly passenger delay 
against flight delay and cancellation rate. Most of the spikes of 
passenger delay trend are due to high cancellation rates in those 
months as more passengers are disrupted. This suggests that 
there will be large penalty for passengers in terms of delay-
minutes whenever a flight is cancelled, and also provides an 
explanation for why passenger experience varies from year to 
year as the overall cancellation rates change. 

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

20
00

01

20
00

05

20
00

09

20
01

01
20

01
05

20
01

09

20
02

01

20
02

05
20

02
09

20
03

01

20
03

05

20
03

09
20

04
01

20
04

05

20
04

09
20

05
01

20
05

05

20
05

09

20
06

01
20

06
05

20
06

09

20
07

01

20
07

05

YYYYMM

M
o

n
th

ly
 C

n
x 

R
at

e 
   

   
   

   
   

   
   

 

0

12

24

36

48

60

                      M
o

n
th

ly D
elay M

in
u

tes

Flight Cancellation Rate (%)

Avg. Flight Delay (Mins.)

Avg. Pax Delay (Mins.)

Figure 4. Time Series of Passenger Delays 

The comparisons of modeled passenger delay against 
cancellation rate and average flight delay in the NAS are 
plotted in Figures 5 and 6, respectively. It can be also seen that 
as flight delay increases the passenger delay increases in more 
than a linear fashion. This validates our claim that as flight 
delays increase, more passengers are disrupted and the impact 
on passenger delays is much worse than actual flight delays. 
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Figure 5. Monthly Passenger Delays vs. Cancellation Rates from Jan. 2000 
to May 2007 (Sept. 2001 is excluded) 
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Figure 6. Monthly Passenger Delays vs. Flight Delays from Jan. 2000 to 
May 2007 (Sept. 2001 is excluded) 

IV. SENSITIVITY ANALYSIS

As one of the modules in a high-level policy analysis tool, 
our model is designed to use flight performance statistics and 
to evaluate the passenger trip experience in response to changes 
in aviation system. The creditability of our model relies on 
proper inputs of parameters, either processed from historical 
data or calibrated from other modeling efforts. To better 
understand how passenger delays correspond to average flight 
delay, sensitivity analysis is conducted by varying the values of 
several key parameters. The parameters of our base scenario 
are summarized in Table 2.  

TABLE II. PARAMTERS OF BASE SCENARIO

Variable Name Value 

P_CANCEL 2% 

P_DIRECT 66% 

DISRUPT 300 mins. 

Threshold  35 mins. 

Figure 7 illustrates the relation between flight delay and 
passenger delay with increasing values of DISRUPT, which is 

the average delay of disrupted passengers. Certainly, 
DISRUPT is the most difficult to estimate input parameter.  
We see that P_DELAY increases with DISRUPT but that the 
sensitivity is fairly modest and the functional relationship 
between F_DELAY and P_DELAY generally retains its 
structure as DISRUPT changes. Figure 8 provides a similar 
sensitivity analysis for P_DIRECT. Note that the nonlinear 
structure of the curves in Figures 7 and 8 results from the fact 
that the probability of missing connections increases more than 
linearly with average flight delay.  
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Figure 7. Sensitivity of Increasing Average Delay of Disrupted Passengers 
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Figure 8. Sensitivity of Increasing Direct Trip Percentage 

Figure 9 shows the sensitivity of varying the flight 
connection threshold. The choice of Threshold depends on the 
settings of minimum required connection time and average 
flight layover time, which are related to airlines’ behaviors on 
schedule design and fleet management and require further 
exploration. This value is employed in determining the 
probability of missing a connection. The shorter the connection 
threshold, the greater the likelihood a flight is missed. The 
P_DELAY growth rate exhibited in Figure 9 is explained by 
the rather drastic growth rate in the probability of missing a 
connection for F_DELAY over 15 minutes as illustrated in 
Figure 10.  
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The multiplier effect of reducing Threshold on the 
probability of missing connection becomes more significant as 
flight delay increases. When system performance is getting 
worse, stringent connection times will increase the chances of 
missing connections and aggravate passenger trip delay. At 15 
minutes of flight delay, the probability of missing connections 
with Threshold=40 is about 170% of that with Threshold=100. 
At 25 minutes of flight delay, the probability of missing 
connections with Threshold=40 is more than 220% of that with 
Threshold=100.  
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Missing Connections 

V. CONCLUDING REMARKS

It is generally agreed that flight-based delay metrics are not 
good surrogates of overall passenger experience of air 
transportation system. This study addresses the need for a 
quantitative measure of NAS passenger trip delays. The main 
contribution is that a passenger-based metric is modeled by 
considering a scenario tree for a passenger trip.  This model 
allows the estimation of passenger delay based on existing 
flight-based performance metrics. A drawback of this study as 
well as other comparable research on passenger delays is that 

the results can not be validated because of the unavailability of 
comprehensive passenger trip records. 

The proposed model uses NAS-wide performance metrics, 
i.e. average flight delay and cancellations, in order to measure 
passenger delay from a strategic perspective. The inputs of the 
passenger delay metric are obtained from historical data 
analysis, statistical models, and reasonable approximation. Its 
intention is to provide an efficient but dependable estimate of 
passenger schedule reliability without much effort on analyzing 
detailed flight activities. Using models that forecast NAS-wide 
performance metrics, e.g. the flight delay models in Wieland 
[8] and Subramanian [9] and the cancellation rate model in 
Subramanian [9], the results of this research can also be used to 
predict passenger experience of future aviation system. 
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Abstract—This paper describes some methods for filtering and 
aggregating delay data from individual flights.  The purpose for 
these transformations is to make the delay data more consistent 
with the outputs from queuing models.  The transformed data 
can then be used to make much more relevant, and successful, 
comparisons against such models.  This enables better calibration 
of the models, and helps to reveal what fraction of the total delay 
in a system might be generated solely from the consideration of 
congestion resulting from competition amongst aircraft for 
scarce airspace and airport resources.  The paper describes the 
transformations in detail, and demonstrates their theoretical 
validity through examples.  Real data are modified according to 
these transformations and are then compared against a stochastic 
queuing model to show the efficacy of the technique. 

Keywords-queuing models, airport delay, delay filtering 

I. INTRODUCTION 

Queuing models, either deterministic or stochastic, are 
commonly used to predict delay statistics in the National 
Airspace System (NAS). The need for estimating delay is 
great, especially for busy airports. These models are 
particularly useful for studying future conditions that might 
include changes from the demand and capacity profiles 
expected under current operations.  In some cases, such models 
can also be used to predict the effects of important 
infrastructure or policy changes, such as the addition of a 
runway or changing separation standards. 

Queuing models are designed to estimate that component of 
delay that is incurred by aircraft as a result of competition, with 
other aircraft, for a capacitated resource, such as a portion of 
the airspace or a runway. Real delay data at a destination 
airport represent a broader collection of influences, and might 
include, among other things, upstream delays that accrued in 
previous flight legs, delays caused by late arrival of the crew, 
and delays caused by a mechanical problem with an aircraft. 

Queuing models expect, as their inputs, nominal arrival 
times of flights; i.e., those arrival times that would prevail if 
other influences did not create delays.  The differences between 
the nominal (or “desired”) arrival times and the actual arrival 
times are the statistics recorded as delays.  Real demand data, 
in the form of flight schedules, do not represent this notion 

exactly, primarily because air carriers include in their estimates 
of arrival time some expectation of delays.  When executed 
properly, this is a perfectly reasonable practice, because it 
maximizes the likelihood that the actual performance of a flight 
will match the customers’ expectations for that flight.  The 
problem, however, arises when an analyst tries to use the same 
data to populate queuing models, because their intent is to 
estimate those congestion-related delays themselves, rather 
than having them subsumed in the input data source.  In this 
paper we offer a partial solution to this problem, although it is 
our belief that the general question of determining nominal (not 
padded for expected delay) arrival times for aircraft remains 
open. 

 All of the above constitute some of the reasons that the 
process necessary to facilitate proper comparisons of the 
outputs of queuing models with real data can be quite involved.  
Some form of comparison is essential, however, because the 
queuing models require calibration.  It is also important to 
understand, once they are calibrated, that their delay 
predictions represent only a fraction of the total delay that 
might be expected when all of the other influences (which 
might be more difficult to model) are present.  This proportion 
can be estimated as part of the overall calibration process and 
that is a valuable result in and of itself. 

II. APPROACHES FOR MODIFYING DATA

The methods described in this paper for transforming 
individual flight data can be thought of as belonging to two 
classes of operations: filtering and aggregation.  In the former 
case, we are attempting to subtract from real flight delay data 
the best estimates of delay components that are not directly 
attributable to congestion in the queuing sense.  This step 
makes a direct comparison with delay data from queuing 
models much more valid. 

Because the results from queuing models are most often 
shown in aggregate terms (e.g., the average delay incurred by 
all aircraft in the system during a particular time slice), the 
second step is to aggregate the real data, filtered accordingly, in 
a manner consistent with how queuing models tend to report 
their results.  The need for this step is obvious, but its inclusion 
here is important because the paper illustrates how the 
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aggregate delay statistics available in the most common 
aviation databases are not averaged in a manner that allows for 
direct comparison with model results.  Any attempt to make 
such a comparison, therefore, without following steps such as 
those outlined in this paper, is very likely to lead to a poor 
match between model results and real data, leading to the 
possible (and likely erroneous) conclusion that the model is 
doing a bad job or that queuing delays are not a significant 
component of the overall delays incurred by aircraft. 

A. Filtering Schemes 

The basic inputs to a queuing model are demands and 
capacities.  A straightforward (although, we will argue, 
incorrect) method to use real data to feed such a model would 
be to use the collection of scheduled arrival times at an airport 
as the demand and a record of the declared airport arrival rates 
(AARs) as the capacity.  The outputs from the queuing model 
might include average delay per time period, and it might be 
tempting to compare these directly against an aggregate 
average delay statistic in a database such as the FAA Aviation 
System Performance Metrics (ASPM) database, partly because 
the name of the metric is very similar.  Again, this paper offers 
evidence that a more refined method is better for these 
purposes.   

The filtering mechanism encapsulates two basic processes, 
one for the input data for the model, and one for real delay data 
to which output data will be compared.  In the input data, rather 
than using scheduled arrival times directly, we develop a 
scheme for predicting the nominal or “best” arrival time for 
each flight being considered.  Since the queuing model only 
represents congestion effects at the single airport in question, 
data of similar scope must be used for output comparisons.  We 
take individual flight delay data from a real database and 
subtract an estimate of upstream propagated delays that would 
not be accountable for in the queuing models.  These processes  
are described in detail in Section III. 

B. Aggregation Schemes 

When looking at one of the readily available aviation 
performance databases such as ASPM, one can find aggregate 
delay statistics recorded on an hourly (or sometimes quarter 
hourly) basis.  For example, one could find a report of the 
average delay at Atlanta Hartsfield-Jackson International 
Airport (ATL) between 4 pm and 5 pm on some day.  It is not 
clear simply from the title of the field, however, what the 
domain of aggregation is.  In fact, what happens, using the 
above example, is that for all flights that landed at ATL 
between 4 pm and 5 pm, their delays (relative to schedule) 
were computed, and then these were averaged over these 
flights.  A flight scheduled to land at 3 pm but landing at 5 pm 
would be assigned two hours of delay, but both of those hours 
of delay would be aggregated in the time window 4-5 pm, 
when actually only one of them actually occurred during that 
window.  In fact, given the possibility of upstream propagated 
delays, the actual delays might have occurred considerably 
earlier in the day.  This is not a flaw in the reporting 
mechanism, however; the way that ASPM (and other) delays 
are aggregated is simply the easiest and least ambiguous way to 

record the ultimate differences between scheduled and actual 
arrival times. 

The problem comes when trying to compare such data to 
the outputs of queuing models.  In a deterministic queuing 
model, one can track the progress of individual aircraft, so it is 
possible to generate data that are consistent with this reporting 
mechanism.  It is more common with such models, however, to 
use delay accounting practices taken directly from seminal 
sources on deterministic queuing (see for example [1]), where 
delays are accounted for as they occur, rather than after flights 
have landed.  This difference can perhaps best be seen by 
graphical example; we call the mechanism used for reporting 
real data in places like ASPM “horizontal aggregation” and 
that typically used in deterministic queuing “vertical 
aggregation.” 

Importantly, stochastic queuing models (not simulations) 
frequently do not allow for the tracking of individual aircraft.  
Instead, the state space consists of the range of possibilities of 
the length of the queue at any given time, and the differential 
equations of the state dynamics govern how this queue grows 
or shrinks over time.  There is no accounting, however, for 
which particular aircraft are present at any given time.  Thus, 
the horizontal aggregation mechanism is not possible.  The 
vertical aggregation mechanism is possible, and in a stochastic 
model each possible queue length is assigned some probability 
of prevailing at any particular time, so the vertically aggregated 
delay statistic generated represents the expected value of the 
delay incurred by aircraft during that time slice. 

Fig. 1 shows an example of a cumulative demand curve 
(the upper curve, representing the number of flights that 
wanted to land by a particular time) and a cumulative supply 
curve (the lower curve, representing the actual number of 
flights that were allowed to land by a particular time, as 
constrained by the arrival capacity).  The abscissa represents 
time, while the ordinate represents flight count, and the flights 
can be considered to be sorted in order of their desired arrival 
times. 

During the time slice t1 to  t2, flights labeled f1 through f2

landed.  The total delay experienced by these flights over their 
lifetimes can be computed as the area of the horizontal band 
bounded by these two flight labels on the top and bottom, and 
by the two cumulative curves on the left and right.  After 
dividing by the number of aircraft f2 – f1, the result is the 
average delay statistic that would have been reported in a 
database like ASPM.  Because delays for individual flights are 
read from the figure as horizontal spacings between the two 
cumulative curves, we call this form of averaging delay 
“horizontal aggregation.” 

If one looks vertically at the same time slice, however, the 
band between the curves represents the total quantity of delay 
incurred by flights whose desired landing times occurred prior 
to the time slice in question, but whose actual landing times 
occur (or will occur) during or after that time slice.  In this 
case, the total number of flights represented is f3 – f1 and the 
average delay statistic can be computed as the area of the 
vertical band divided by this number of flights.  Again, this is 
the statistic traditionally (but not necessarily) drawn from 
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deterministic queuing models, and necessarily drawn from 
stochastic queuing models. 

It should be clear from the figure that the two quantities can 
be quite different.  Perhaps only a few flights are figured into 
both calculations, and even then the entirety of a flight’s delay 
experience would be horizontally aggregated while only a 
portion of the delay would be captured with vertical 
aggregation during that time slice.  Another way of thinking of 
the two methods is temporally: the horizontal aggregation 
method looks to the past, recording statistics about delays that 
have already occurred, while the vertical method looks to the 
present, by recording delays as they occur, but also to the 
future, because delays components yet to occur for those flights 
will be reported in later time slices.  It is extremely important 
to note that both methods represent the “truth”; neither is more 
or less accurate than the other.  The difference is simply in 
deciding which domain, in terms of time and flight 
identification, will be considered for aggregation and reporting 
during any particular time slice. 

Figure 1. Vertical and horizontal integration of delay 

When considering the specific flight f* shown in Fig. 1, its 
desired landing time was *

dt  and its actual landing time was *
at .

It would have contributed t2 – t1  units of delay to the vertical 
measure of aggregate average delay for that same time slice, 
and other amounts to other time slices.  In the horizontal 
scheme, however, it would only have contributed to the 
measure recorded for the time slice containing time *

at , and the 

amount of delay contribution would have been  * *
a dt t− .

III. DELAY FILTERING

Because of the economic realities of the airline industry, 
individual aircraft are scheduled to operate several flights each 
day with little time between flights.  Thus, if an aircraft suffers 
a delay early in the day, it becomes more likely that later flights 
operated by that same aircraft will also be delayed.  When 
using real delay data to calibrate a queuing model, however, 
these propagated delays must be accounted for. 

In this section, we describe an approach for identifying and 
removing these propagated delays from real delay data.  The 
resulting statistics more clearly represent the queuing delay 
imposed on the aircraft.  Additionally, we propose a technique 
to utilize this filtered data to produce a new “schedule” for each 
aircraft (and hence, for each airport).  These schedules can be 
used as a better proxy for the true demand for resources as 
input to queuing models. 

A. Procedure 

The approach taken in this work and several others (see [2], 
[3]) has been to use individual flight records to trace aircraft by 
their tail numbers as they are routed from airport to airport over 
some period of time.  These series of flights by a single aircraft 
are used to identify and remove propagated delay. 

Thus, the first step in this process is to identify series of 
related flight data.  Initially, data are grouped by tail number 
and sorted by departure day and time.  However, because some 
flight records may be unavailable in the database, it may be 
infeasible to use all records for a single tail number as a single 
series.  This phenomenon is evidenced by an arrival airport not 
matching the subsequent departure airport, indicating a missing 
flight record (e.g. caused by a “ferry” flight or data corruption).  
Data series are also considered broken if more than 24 hours 
elapse between an arrival and subsequent departures.  From 
this procedure come several series of data for each tail number 
being examined. 

Once these series of connected flights have been built, 
propagated delays must be distinguished from “new” delays.  
This process works by determining the best possible departure 
time for a flight, given the delay the previous flight 
experienced prior to its arrival.  The best departure time is 
calculated as the maximum of two quantities: the scheduled 
departure time, or the previous (delayed) arrival time plus some 
minimum turn time, as shown in (2) and (3).  The maximum of 
these two quantities is considered so as to prevent the best 
possible departure time from falling before the scheduled 
departure time.  This would unfairly penalize flights relative to 
their schedule. 

The minimum turn time is calculated in (1) as the minimum 
of the scheduled turn time and some parameter Tturn.  In this 
analysis, only domestic flights were considered.  Because these 
are generally operated by small or medium sized aircraft, the 
minimum turn time parameter Tturn was taken to be 40 minutes.  
An enhancement to be considered for future work using this 
delay filtering algorithm would be to consider variable 
minimum turn times, wherein the parameter might vary based 
upon the aircraft type, length of previous flight, airport in 
question, time of day, or some other factors. 

Once the best departure time has been calculated, the best 
arrival time must be computed.  In this work, the best arrival 
time was taken to be the sum of best departure time and the 
scheduled block time, as shown in (4).  As mentioned 
previously, this block time does not represent the minimum 
time against which a queuing model might compare, as the 
scheduling carrier implicitly accounts for delay when 
scheduling the block time.  However, estimating a true 
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minimum block time for a given flight may be a fairly complex 
endeavor, and as such, has been left for subsequent work. 

Finally, the filtered arrival delay Df,i is computed as the 
maximum of zero and the difference between the best and 
actual arrival times.  It is customary in aviation delay 
calculations to disregard negative delays, and we maintain that 
practice here, particularly because a queuing model would 
never predict negative delays. 

This algorithm is stated below for a series of flights 
1, ,i I= K , given the input data listed previous described. 

Compute minimum turn time:   

( ), , , 1min ,turn i turn sd i sa iT T t t −⎡ ⎤= −
⎣ ⎦ { }2, ,i I∀ ∈ K (1)

Compute best departure time:   

, ,bd i sd it t= 1i = (2)

( ), , , 1 ,max ,bd i sd i aa i turn it t t T−⎡ ⎤= +
⎣ ⎦ { }2, ,i I∀ ∈ K (3)

Compute best arrival time:   

, , ,ba i bd i block it t T= + { }2, ,i I∀ ∈ K (4)

Compute filtered delay:   

( ), , ,max 0,f i aa i ba iD t t= − { }2, ,i I∀ ∈ K (5)

Input data: 
tsd,i: Scheduled departure time for flight i
tsa,i: Scheduled arrival time for flight i
taa,i: Actual arrival time for flight i
Tblock,i: Scheduled block time for flight i

Once the filtered arrival delay Df,i has been computed for 
each flight, these records can be aggregated in either the 
horizontal or vertical methods previously mentioned.  If they 
are aggregated horizontally by airport and time period, they 
will be comparable to those typically reported, but they will 
necessarily be lesser in magnitude.  The case in which they are 
aggregated vertically will be discussed later. 

If the aircraft counts are aggregated by best possible arrival 
time, it is possible to create a new “schedule” which better 
reflects the true demand for operations during that time period, 
from the perspective of the queuing model.  For example, a 
queuing model being applied to ATL does not care if a flight 
had originally intended to arrive at ATL at 5 pm but due to 
delays two flight legs prior to that cannot even depart the 
airport immediately upstream of ATL until 5:30 pm.  The real 
question for the queuing model is, given this penultimate status 
update, what would be the nominal arrival time for the aircraft 
at ATL.  This data can be used as input for a delay prediction 
model to provide a better proxy for demand than the traditional 
schedule would. 

B. Numerical Example 

To illustrate the principles described above, a numerical 
example has been developed.  The aircraft under consideration 
was routed as shown in Fig. 2.  The detailed calculations for 

one flight leg are shown in Table I, while the scheduled and 
actual performance for its entire itinerary are shown in Table II. 

Figure 2. Example case routing 

This aircraft suffers a fairly significant delay of 41 minutes 
on the second flight in this series.  As a result, the best 
departure and arrival times computed for the subsequent flights 
are later than the scheduled ones.  Further, the filtered flight 
delay must then be significantly less than the delay reported by 
traditional metrics. 

To illustrate the steps of the algorithm described above, the 
calculations for the third flight leg (SFO – PHX) are presented 
here in Table I. 

TABLE I. DELAY FILTERING COMPUTATIONS SFO – PHX FLIGHT

Compute minimum turn time:   

( ), min 40, 11: 05 10 :11 40turn iT = − =⎡ ⎤⎣ ⎦

Compute best departure time:   

( ), max 11: 05, 10 : 52 40 11: 32bd it = + =⎡ ⎤⎣ ⎦

Compute best arrival time:   

, 11: 32 113 13 : 25ba it = + =

Compute filtered delay:   

( ), max 0,13 : 27 13 : 25 2f iD = − =

It is interesting to note that the schedule for each of these 
flights allowed for turns longer than the Tturn parameter of 40 
minutes.  As a result, each of the assumed turn times used to 
compute the best possible departure time was smaller than that 
which was scheduled.  It should also be noted, however, that 
the average scheduled turn time was 48.5 minutes, while the 
average performed turn time was 44.3 minutes.  Because of the 
time pressure of the delayed flight, the turns were performed 
faster than scheduled, and more closely matched the 40 minute 
parameter used in the algorithm.   
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TABLE II. DELAY FILTERING EXAMPLE DATA

Schedule Actual Best Delay 
From To 

Turn Dep. Arr. Turn Dep. Arr. Turn Dep. Arr. Reported Filtered 
DEN LAS - 7:10 7:55 - 7:05 7:56 - 7:10 7:55 1 1 
LAS SFO 0:45 8:40 10:11 0:39 8:35 10:52 0:40 8:40 10:11 41 41 
SFO PHX 0:54 11:05 12:58 0:37 11:29 13:27 0:40 11:32 13:25 29 2 
PHX ORD 0:50 13:48 19:14 0:55 14:22 19:36 0:40 14:07 19:33 22 3 
ORD LAS 0:45 19:59 21:49 0:46 20:22 22:10 0:40 20:16 22:06 21 4 

IV. VERTICAL INTEGRATION

There are many ways in which individual flight delays can 
be aggregated.  The most familiar category of metrics involves 
summing delays across flights arriving at a given airport (or set 
of airports) during a particular time period.  However, one must 
be precise when describing exactly which data are summed for 
the given time period. 

In the traditional metrics reported in the ASPM and other 
systems, delays are grouped according to the time at which 
flights arrived.  Regardless of when those delays were accrued, 
they are assigned to the period of arrival under consideration.  
The essence of the vertical integration technique, however, is to 
sum delays that are accrued during a given time period, 
regardless of when the affected flights arrive.  

A. Procedure 

The first part of this procedure is to establish at what time 
delay begins accruing on a flight.  Establishing this baseline 
allows the delay to be assigned to bins beginning at that time.  
This assumption must be carefully examined, lest delay be 
assigned to the incorrect time bins.  In this work, we assume 
that delay begins accruing when the nominal, or best possible, 
arrival time has passed, and the aircraft has not yet arrived at its 
destination.  This best possible arrival could be calculated in 
many ways, depending upon the assumptions about departure 
and flight times that were applied.  Based upon the delay 
filtering analysis presented previously, we will use the best 
possible arrival time calculated as part of that algorithm. 

The first step in calculating these delays is to divide each 
day into a series of time bins, each bounded by some numbers 
tp and tp+1.  Let L and U define the upper and lower bounds for 
the delay accrual period.  In this case, these bounds are the best 
arrival time and the actual arrival time, respectively.  Then, 
find the first bin l into which the flight i contributes delay, as 
shown in (6).  

{ }max | 0pl p L t= − ≥  (6) 

Next, find the last bin u into which the flight i contributes 
delay, as shown in (7). 

{ }max | 0pu p U t= − ≥  (7) 

Then, for each bin { }, ,p l u∈ K , apply the following four 

logical tests to determine the delay accrual Dp,i from flight i
into bin p.   

(a.) IF 1 1& & &p p pL t L t U t L U+ +≥ < < <
  THEN ,p iD U L= −
(b.) ELSE IF 1 1& &p p pL t L t U t+ +≥ < ≥
  THEN , 1p i pD t L+= −
(c.) ELSE IF 1& & &p p pU t U t L t L U+≥ < < <
  THEN ,p i pD U t= −
(d.) ELSE IF 1&p pL t U t +< ≥

  THEN ( ), 1p i p pD t t+= −
The L<U condition is applied to exclude those cases in 

which the flight arrives before its best possible arrival time.  In 
those cases, the new calculated delay would be negative.  We 
treat these cases as having accrued zero delay. 

Fig. 3 illustrates each of these logical tests, and the specific 
case of L and U that they approach.  The hatched area in the 
figure shows the delay accrual period for the flight.  Case (a.) 
applies when both L and U fall in the same time bin.  Case (b.) 
applies when L is in the current bin, but U is in any later one.  
Case (c.) applies when L is in a previous time bin, but U is in 
the current one.  Case (d.) applies when L is in an earlier time 
bin, and U is in a later one. 

(a.) 

tp tp+1L U
(b.) 

L U
…

tp tp+1

(c.) 

L U
…

tp tp+1

(d.) 

L U
… …

tp tp+1

Figure 3. Logical cases for binning delays 

B. Numerical Example 

This algorithm is illustrated here by examining a fictitious 
set of flights shown in Table III, and represented graphically in 
Fig.. 4.  Assume that the delay filtering algorithm previously 
described has been applied to a larger dataset, and that these 
flights destined for ORD were extracted.  The best departure 
and arrival times, as well as the actual arrival times, are shown.  
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The filtered delay is calculated as the difference between the 
best possible and actual arrival times. 

TABLE III. VERTICAL INTEGRATION EXAMPLE DATA

Best  
From To 

Departure Arrival 
Actual
Arrival

Filtered
Delay 

ATL ORD 12:19 1:23 1:38 15 
BWI ORD 12:11 1:26 1:32 6 
LGA ORD 12:05 1:29 1:41 12 
CLT ORD 12:03 1:00 1:21 21 
OKC ORD 12:00 1:15 1:30 15 

ATL

BWI

LGA

CLT

OKC ORD

ORD

ORD

ORD

ORD

12:00
12:15

12:30
12:45

1:00
1:15

1:30
1:45

L U

L U

L U

L U

L U

Figure 4. Vertical integration example data 

As an example, apply the various tests on the first flight 
shown above, that from ATL to ORD.  The first bin l to 
consider is the 1:15 bin, and the last bin u is the 1:30 bin.  Each 
of the logical tests is evaluated for this flight and the results 
shown in Table IV. 

TABLE IV. VERTICAL INTEGRATION COMPUTATIONS FOR ATL – ORD
FLIGHT

1:15 bin 1:30 bin 
Test 

Test Result Dp,i Test Result Dp,i

(a.) FALSE - FALSE - 
(b.) TRUE 7 FALSE - 
(c.) FALSE - TRUE 8 
(d.) FALSE - FALSE - 

Upon evaluating the logical tests for each of these flights, 
the data are summed across time bins, and the results 
summarized in Table V.  As expected, the reported delay 
differs significantly from the delay actually accrued by all 
flights in each period. 

TABLE V. VERTICAL INTEGRATION EXAMPLE SUMMARY STATISTICS

Time period Arrival Count Total Arrival Delay
Begin End Sch. Actual Reported Accrued 
1:00 1:14 1 0 0 15 
1:15 1:29 3 1 21 31 
1:30 1:44 1 4 48 22 

V. RESULTS

The delay filtering and vertical integration algorithms were 
incorporated and applied to a large test dataset to provide 
comparison data for calibrating a queuing model.  Several 
airports were considered. 

A. Delay Models 

For this work, we used a stochastic queuing model with 
non-homogeneous Poisson arrivals and Erlang services times 
(M(t)/Ek(t)/1).  This model is solved analytically using the 
DELAYS software developed at MIT (see [4], [5]).  It is 
specifically designed to estimate the delay incurred by aircraft 
on landing at an individual airport given the capacity and 
demand profiles over specific time periods.  Previous work has 
focused considerable attention on the accuracy of the 
approximation scheme used by this software.  This work will 
demonstrate that DELAYS provides a suitable queuing model 
for airport arrival operations.  

B. Input Data 

The individual flight records were obtained from the 
Bureau of Transportation Statistics (BTS). The BTS database 
includes records for certified US air carriers that account for at 
least one percent of domestic scheduled passenger revenues.   
Other sources of individual flight records could be used as 
well, but the BTS data provides excellent coverage of 
operations at most of the largest airports in the US. 

The Airport Arrival Rates used as capacities for the 
DELAYS model were drawn from the ASPM system.  The 
demands used as input for the DELAYS model were not the 
scheduled demand, but rather were summed using the best 
possible arrival time as the scheduled arrival time. 

C. Case Studies 

Data from numerous airports were examined in this work.  
The results for several are shown here, but others are available 
from the authors. 

The “Reported” category refers to the horizontally 
aggregated data typically reported.  The “Filtered” category 
shows the results of filtering out propagated delays, but 
aggregating in the traditional horizontal manner.  The 
“Filt/Vert” category shows the results of both filtering the data, 
and aggregating it by the period in which it was accrued. 
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1) Atlanta Hartsfield-Jackson International Airport (ATL) 
ATL is a very large and busy airport serving as the hub for 

several carriers.  Demand is frequently at or near capacity. 

Fig. 5 shows results for a sample month during 2004.  The 
first thing to note is that the reported delays are almost always 
higher than all other metrics.  The filtered delays fall slightly 
below the reported delay, but follow the same series of peaks 
and valleys.  Particularly at the end of the day, the gap between 
these two is large, as should be expected.  The vertically 
integrated and filtered data suggest an amount of total delay 
similar to the filtered delay, but have peaks and valleys that 
more closely follow those of the DELAYS series, which are 
nearly almost lower. 
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Figure 5. ATL: February. 2004 

Fig. 6 shows three sets of pairwise correlations, between 
the three delay quantities mentioned above, and the delays 
predicted by the DELAYS queuing model over each month in 
2004.  The correlations between the vertically integrated and 
filtered data and the DELAYS output (the gray bars) were 
uniformly higher than those for all other metrics.  The figure 
only shows results for ATL, but this conclusion held true for 
every airport examined. 
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Figure 6. ATL 2004: Monthly Correlations 

2) Detroit Metropolitan Wayne County Airport (DTW) 
The results for DTW were fairly similar to those for ATL.  

An interesting feature of the DTW results, which was present 
to a much lesser degree for ATL, is the correspondence of 
peaks and valleys in the monthly data shown in Fig. 7.  The 
peaks for the reported and filtered series correspond quite well, 
as should be expected, because they are both horizontally 
aggregated.  In addition, the peaks for the vertically integrated 
filtered data and the DELAYS model correspond quite well.  
The interesting feature here, however, is that the peaks for the 
first pair of data lag those for the second pair.  This exhibits the 
exact feature espoused earlier in the paper, which is that the 
delay model will show delay as it is accumulated, while the 
reported statistics will show it as the aircraft arrive. 
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Figure 7. DTW: December, 2004 

As was the case for ATL, the correlations between the 
vertically integrated filtered data and the DELAYS outputs are 
uniformly and significantly higher than those of any other 
metric.   This suggests that the proposed methods provide data 
that corresponds better with the DELAYS model output, and 
we would expect this same conclusion to hold for other 
queuing models. 
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VI. CONCLUSIONS

Several schemes were presented in this paper to help 
understand the relationship between operational and queuing 
model data in aviation systems.  In their native formats, the 
data have slightly different contextual meanings, and this 
makes direct comparison troublesome.  They can be rectified, 
however, by the methods discussed in the paper. 

The first method discussed for bringing the data sources 
into agreement was the application of filtering techniques.  
These are useful in removing the effects of delay propagated 
between flights using the same aircraft.  This technique 
removed some portion of this delay, and produced data that 
showed a stronger correlation with predicted results. 

The second technique shown in this paper was a different 
scheme of aggregation than is typically used for aviation delay 
data.  The methodology proposed allows for delays to be 
reported in the time bin in which they are accrued, rather than 
the time bin in which the flight arrives.  This technique, 
combined with the first, produced results that show a very 
strong correlation to the predicted delays. 

These two techniques have myriad applications in aviation 
system planning and modeling.  Both are very useful in 
calibrating and understanding delay prediction models.  In 
addition, they encourage the reader to consider the nature of the 
delay reporting mechanisms in use. 
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Abstract— The discrepancy between the demand for arrival slots 
at an airport and the available arrival slots on a given day is 
resolved by the Ground Delay Program (GDP). The current GDP 
rations the available arrival slots at the affected airport by 
scheduled arrival time of the flights with some adjustments to 
balance the equity between airlines. Current rationing rules do 
not take into account passenger flow efficiency in the rationing 
assignment tradeoff. 
 This paper examines the tradeoff between flight delays 
and passenger delays as well as airline equity and passenger 
equity in GDP slot allocation. A GDP Rationing Rule Simulator 
(GDP-RRS) is developed to calculate efficiency and equity 
metrics for all stakeholders. A comparison of alternate GDP 
rationing rules identified that passenger delays can be 
significantly decreased with a slight increase in total flight delays. 
Compared to the traditional Ration-by-Schedule, Ration-by-
Aircraft size (RBAc) decreased the total passenger delay by 10% 
with 0.4% increase in total flight delay, and Ration-by-
Passengers (RBPax) decreased total passenger delay by 22% with 
only 1.1% increase in total flight delay. The disutility of 
implementing a GDP is minimized with Ration-by-Passengers 
(RBPax) when passengers as well as airlines are considered in the 
decision. The current scheme, Ration-by-Schedule (RBS), is 
preferred only when the system solely focus on airlines.  The 
tradeoffs between airline and passenger equity, and the 
implications of these results are discussed. 

I. INTRODUCTION 

The purpose of the air transportation system is the cost-
effective, rapid, safe transportation of passengers and cargo. In 
this way the air transportation system is a significant “engine” 
of the national economy and provides a service that cannot be 
achieved by other modes of transportation (Duke and Torres, 
2005). 

Passenger and cargo demand for air transportation has 
been growing steadily over the years and is forecast to grow at 
the same rate for several decades (FAA Forecast, 2007). The 
growth of air transportation capacity to meet this demand has 
been lagging (MITRE, 2007). Denver International (DEN), 
Dallas Fort Worth (DFW) and George Bush Intercontinental 
(IAH) airports are the only new airports opened in the last 40 
years.  The capacity of these airports is helpful, but does not 
solve the current congestion problems at the nation’s busiest 
airports, such as Newark (EWR) or Chicago O’Hare (ORD). 
The most congested airports cannot expand due to land and/or 
environmental problems (Howe et.al. 2003). Further, the full 

capacity improvement benefits of Next Generation Air 
Transportation System are not expected to be operational 
before 2025.  

This imbalance between demand for flights and available 
capacity is estimated to cost passengers $3 billion to $5 billion 
a year in trip delays (Robyn, 2007). Congestion related flight 
delays are estimated to cost the financially fragile U.S. airlines 
an estimated $7.7 billion in direct operating costs in 2006 
(MITRE, 2007). These delays also have environmental and 
climate change implications as well as regional economic 
repercussions (Miller and Clarke, 2003). 

In the presence of over-scheduled arrivals at airports, 
Traffic Flow Management (TFM) initiatives are used to 
resolve the daily demand-capacity imbalance. In particular, the 
Ground Delay Program (GDP) collaborates with the airlines to 
manage the scheduled arrival flow into airports consistent with 
the airport’s arrival capacity. The current GDP rations the 
arrival slots according to the scheduled arrival time of the 
flights. This rationing scheme is adjusted to account for 
penalties suffered by long-distance (e.g. transcontinental 
flights) flights when arrival capacity increases (e.g. due to 
improving weather) and the GDP is cancelled. The rationing 
scheme is also adjusted to more equitably allocate arrival slots 
between airlines to ensure that one airline (e.g. with a hub 
operation) is not excessively penalized.  

Previous research has examined alternative rationing 
schemes to: (i) maximize throughput while preserving equity 
amongst airlines (Hoffman, 2007), (ii) improve airline fairness 
(Vossen, 2002), and (iii) improve airline efficiency by trading 
departure and arrival slots (Hall, 1999, 2002).  

This paper examines the impact of passenger flow 
efficiency during a GDP. Three alternate GDP rationing rules 
were applied to a GDP at Newark Airport. A comparison of 
the alternate GDP rationing rules identified that passenger 
delays can be significantly decreased with a slight increase in 
total flight delays. For example, compared to the traditional 
Ration-by-Schedule, Ration-by-Aircraft size (RBAc) 
decreased the total passenger delay by 10% and Ration-by-
Passengers (RBPax) decreased total passenger delay by 22%. 
The tradeoffs in airline and passenger equity, and the 
implications of these results are discussed. 

Section II provides an overview of the GDP’s and previous  
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research on GDP rationing rules. Section III describes the 
GDP Rationing Rule Simulator (GDP-RRS). Section IV 
describes the results of a case study of the alternate rationing 
rules for a GDP at Newark airport. Section V discusses the 
implications of these results and future work. 

II. BACKGROUND

A. Ground Delay Program (GDP) 

The Ground Delay Program (GDP) is a mechanism to 
decrease the rate of incoming flights to an airport when the 
arrival demand for that airport is projected to exceed the 
capacity for a certain period of time. The motivation behind 
GDP is to convert the foreseen airborne delays into cheaper 
and safer ground delays (Ball and Lulli, 2004).  

FAA first implemented GDPs in times of major-weather-
related-capacity reductions at airports after the air traffic 
controllers strike in 1981 (Donohue, Shaver and Edwards, 
2008). Since 1998, GDPs have been implemented under 
Collaborative Decision Making (CDM). CDM is a joint 
government-industry effort, which tries to achieve a safer and 
more efficient Air Traffic Management through better 
information exchange, collaboration, and common situational 
awareness. Air Traffic Control (ATC) specialists and CDM 
participating airlines use Flight Scheduled Monitor (FSM), 
developed by Metron Aviation Inc., to monitor and model 
TFM initiatives and evaluate alternative approaches. Fig.1 
shows a visualization of a demand-capacity imbalance that 
warrants a GDP similar to charts available in FSM. In the 
figure, the airport capacity drops from 100 flights to 75 flights 
per hour between hours of 17:00 and 22:00. Thus, demand is 
in excess of capacity during this time period. When GDP is 
implemented, it brings the scheduled demand to match the 
airport capacity by delaying flights on the ground. Blue bars in 
Fig.2 shows the delayed flights, which spill into the hours 
after the GDP program. 

If the ATC specialist decides a GDP is needed, there are 
three parameters to be set before issuing the program. The first 
parameter is GDP Start Time and GDP End Time. These are 
the start and the end times of the program, and they are 
determined by the scheduled demand and forecasted weather 
profile at the time of the GDP planning. If a flight is scheduled 
to arrive at the constraint airport between these times, it will 
be controlled by the GDP. The second parameter is the 
“scope” of the program. It specifies the flights departing from 
which origin airports will be controlled by the GDP. There are 
two types of scope: 1) Tier-scope identifies the airports 
included in the program by ATC centers. 2) Distance scope 
specifies a radius around the GDP airport and exempts any 
flights departing from origins outside the specified radius. The 
third parameter is the GDP Program Airport Acceptance Rate 
(PAAR). It depicts the number of aircraft that can safely land 
in an hour during GDP. 

The overall GDP process under CDM can be summarized 
as follows: ATC specialists continuously monitor the demand 
and capacity of airports. When an imbalance between demand 
and capacity exists for any reason, they model GDP using 
FSM. If time allows, they send an advisory to all airlines  

Figure 1: Demand Capacity before GDP (FSM View)

Figure 2: Demand Capacity after GDP (FSM View) 

before implementing the program. Airlines check the impact 
of this proposed GDP on their operations and may opt to 
cancel some of their flights. Then, specialists reevaluate 
whether a GDP is still needed. If it is, they run a Ration-by-
Schedule (RBS) algorithm and issue each flight its Controlled 
Time of Arrival (CTA) and Controlled Time of Departure 
(CTD). Once flight controlled times are received, airlines get a 
chance to respond by substitutions and cancellations. CTAs 
depict the arrival slots assigned to each airline, and these slots 
are now considered to be “owned” by that airline, and airlines 
can swap any two flights as it fits their business needs as long 
as both flights can depart by their new CTDs. Following the 
airline substitutions and cancellations, compression is run. 
Compression is an inter-airline slot swapping process that fills 
open slots that airlines are unable to fill through substitutions 
and cancellations. Compressions are now run automatically 
whenever an open slot is created. During the GDP, program 
parameters might need to be revised to account for changing 
conditions. GDP revisions may lead to further substitutions 
and cancellations, followed by compression. GDP ends when 
the GDP End Time is reached or the program is cancelled.  

Arrival slots in a GDP are time intervals to achieve PAAR. 
If PAAR is set at 60 aircraft per hour, the airport can safely 
land 1 aircraft every minute; therefore, there will be 60 arrival 
slots to be allocated in an hour during GDP. These slots are 
uniformly spaced in an hour. The interpretation of an arrival 
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slot during GDPs is different than that of a “regular” arrival 
slot. International Air Transport Association (IATA) 
scheduling guidelines explicitly state that flight schedules 
planned at the biannual conferences for available airport slots 
has nothing to do with adjustments to these schedules on the 
day of operation for air traffic flow management, such as 
GDPs. The two types of slot allocation are quite different and 
unrelated (IATA, 2000). The slots owned by airlines under the 
High Density rule are often interpreted as “the right to 
schedule or advertise a flight at a specific time”, which entails 
no explicit connection to a right on the day of operation 
(Vossen, 2002). Thus, allocation of arrival slots during GDPs 
can be based on different rationing rules than every day 
operations.   

In a GDP, the available arrival slots are allocated on a 
“first-scheduled, first-served” basis. This allocation scheme is 
called “Ration-by-Schedule” (RBS). In other words, arrival 
slots are allocated based on the flight’s original scheduled time 
of arrival as published in the Official Airline Guide (OAG) 
rather than reported departure time on the day of operation. 
When flights are cancelled or delayed, airlines retain their 
rights to these arrival slots and can assign flights to these slots 
based on their own business models. RBS algorithm creates 
three distinct queues; exempt flights are assigned to slots first, 
followed by previously GDP controlled flights, then non-
exempt flights. A flight can be exempt because the flight is 
active when GDP is issued or the flight is departing from an 
origin outside the scope. 

B. Trends in GDP Use 

Figure 3: Total Number of GDPs by Year (1/1/1999-12/31/2006) 

The use of GDPs has been growing over time as has the 
number of airports affected by GDPs. Fig.3 shows the growth 
in the number of GDPs per year as the growth in flight 
demand increased after 2001. 

Fig.4 shows the number of GDPs implemented on a given 
day between 2000 and 2006. On any given day, there is an 
86% probability that flights into at least one airport will 
experience a GDP. Note: the high number of GDPs per day 
(10 and above) were GDPs implemented to address airspace 
congestion due to rare national severe weather days. This use 
of the GDP is now obsolete and has been replaced by Airspace 
Flow Programs (AFP). 

Figure 4:  Histogram for Number of GDPs per Day (1/1/2000-12/31/2006) 

C. Previous Research 

Vossen (2002) examined different GDP rationing rules to 
achieve fairness among airlines. Fairness was interpreted as 
allocating delays equally among airlines. Several methods 
were used to decide how to distribute delays. The 
“Proportional Random Assignment (PRA)” scheme assigns an 
available slot to an airline with a probability that is 
proportional to the number of flights with earlier scheduled 
arrival times than the slot, following preset axioms. Results 
show that both RBS and PRA result in similar average airlines 
delays, even though their underlying philosophies are 
fundamentally different. PRA may introduce a substantial 
amount of variance in the assigned delays, which may not be 
acceptable by airlines. Vossen (2002) also examined methods 
to deal with achieving slot allocation fairness in the presence 
of flight cancellations, substitutions and GDP exemptions. 
These methods are alternatives to the compression where 
available slots are re-rationed whenever there is an open slot. 
The results indicate that Greedy Procedure (favors the airline 
with the earliest flight that can use the slot) and Compression 
result in very similar flight-slot assignments. 

Hoffman (2007) developed a rationing scheme, known as 
“Ration-by-Distance (RBD)” to maximize airport arrival flight 
throughput while preserving equity among airlines under 
changing arrival capacity (due to improving weather). RBD 
puts flights in order of their distance from the GDP airport and 
gives preference to long-haul flights. Equity among airlines is 
total amount of delay assigned to each airline. Results show 
that if RBS assignment is assumed to have the “perfect” 
equity, then RBS with distance scope has perfect equity when 
the GDP is not cancelled, since RBS calculates the slots based 
on a GDP End Time. When a GDP is cancelled early, RBD 
significantly reduces delays. Both RBD delay and equity 
savings gets better when GDP is cancelled 3 or 4 hours early.  

Hall (1999, 2002) examined “Arrival-Departure Capacity 
Allocation Method (ADCAM)”. This rationing method 
allocates both arrival and departure capacity to airlines 
according to the published schedule. Airlines can then trade 
arrivals for departures. The results show that airlines achieved 
a greater objective value with ADCAM compared to RBS, 
because it allows airlines to have better connectivity without 
using more airport capacity. However, some airlines with a 
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small number of operations can get penalized to a greater 
extent. Hall (1999, 2002) also examined “Objective-based 
Allocation Method (OBAM)”. This method assigns arrival 
slots to GDP flights by maximizing the collective value 
produced by the airlines. It uses airline objective functions to 
assign slots, but airlines cannot represent combinatorial or 
stochastic objectives directly. The motivation behind OBAM 
is to prevent airlines from scheduling flights they don’t intend 
to fly. In practice, OBAM requires airlines to pay fees for the 
slots they receive and these fees may be viewed by airlines as 
means to introduce new taxes. 

Previous research has examined the impact of GDP 
rationing rules on only airline efficiency and equity. This 
research is directed toward examining the impact of GDP rules 
on passenger flow efficiency.  

III. GDP RATIONING RULE SIMULATOR (GDP-RRS) 

GDP Rationing Rule Simulator (GDP-RRS) developed by 
Center for Air Transportation Systems Research at George 
Mason University, investigates the impact of different GDP 
rationing rules on airlines, passengers, and airports. GDP-RRS 
calculates GDP efficiency and equity metrics that result from 
GDP planning for airlines, passengers and the GDP airport. 
Fig.5 shows three main components of the model.  

First module inputs a flight schedule and airport capacity 
profile, and then determines whether a GDP is needed. This 
module captures the decision making process of an ATC 
specialist. If a GDP is needed, then the second module is 
activated.  

“GDP Slot Assignment Module” assigns slots to flights 
that are scheduled to arrive at the GDP airport during the 
program. Fig.6 shows the pseudo algorithm with nine main 
steps. Steps 1-5 result in Planned CTDs and CTAs, which are 
sent to airlines for substitution and cancellations. Steps 6-7 
show the simulated decision making for airlines in Airline 
Substitutions and Cancellations module. Steps 8-9 input 
airline updated CTDs and CTAs, and result in the main CTDs 
and CTAs that airlines are expected to comply with after the 
compression algorithm.  

1. Calculate Required Variables for Each Flight:
Scheduled Gate Time of Arrival and Scheduled Gate Time of 
Departure for each flight are inputs to the model.  Scheduled 
runway times, which are used in the GDP slot assignment, are 
calculated from these inputs assuming 10 minute taxi times. 
Estimated Time Enroute (ETE) for each flight is the difference 
between Scheduled Runway Time of Arrival (SRTA) and 
Scheduled Runway Time of Departure (SRTD). “Available 
Seats” is the average yearly number of seats for a given 
aircraft type assigned to each flight (ETMS database). “PAX” 
is the number of passengers on-board and is calculated as 
Available Seats on a flight multiplied by its load factor. Load 
factor is the average yearly monthly load factor for a given 
airline from a given origin (BTS database). For international 
origins and airlines coming from unknown origins, the default 
load factor is 100%. 

2. Find Flights in GDP: All flights going to the GDP 
airport are assigned control times. However, the delay as a  

Figure 5: GDP Rationing Rule Simulator  

result of the capacity reduction is only distributed among the 
flights that are controlled by the GDP. For a flight to be 
controlled, it needs to fulfill the below requirements: 

a. Flight’s SRTA is between GDP Start and End Time.

b. Flight is not originated from an international airport. 

c. Flight’s departure airport is in GDP scope. 

3. Create Priority Queues: Two priority queues are created 
for all flights scheduled to arrival at the airport between GDP 
Start and End Times. Exempt Flights queue has precedence 
over the remaining flights. Exempt Flights queue contains 
international flights and flights departing from airport outside 
the GDP scope.  

4. Create Slots: The number of slots available for 
distribution depends on the PAAR. Airport capacity profile is 
an input to the model. Slot size is the time in minutes between 
two available slots. The number of slots created depends on 
the number of scheduled flights. Slot times are uniformly 
distanced based on Slot Size starting from GDP Start Time. 

5. Assign Slots to Flights: The assignment of slots to 
flights is done by queue type. Exempt Flights are assigned 
their slots first based on an ordering of increasing SRTA. 
Then, non-exempt flights are assigned their slots based on an 
ordering depicted by the GDP rationing rule. For each flight, 
algorithm searches for the earliest slot which has the slot time 
equal to or later than the flight’s SRTA. When such a slot is 
found, if the flight’s SRTA is later than the slot time, the 
flight’s CTA is the same as the slot time.  If the flight’s SRTA 
is between the chosen slot time and the next slot, then the 
flight’s CTA is the same as its SRTA. CTD is back-calculated 
using CTA and ETE for the flight. These CTAs and CTDs are 
sent to Airline Substitutions and Cancellations Module.  

6. Cancel Flights: Each flight is cancelled randomly based 
on a probability distribution for a given airline from a given 
origin airport in the year that GDP is implemented.  

7. Substitute Flights: Substitution for an airline is only 
possible if that airline has cancelled a flight. If there is a 
cancellation, the slot opened can be used by a flight from the 
same airline if the new flights CTA is later than the open slot 
time or the flight can arrive at the new assigned slot. If such a 
substitution is made, the flight’s CTA and CTD are 
recalculated and its previous slot is open for another possible 
substitution. Substitution algorithm stops when there is no 
further substitutions can be made. Substitution algorithm uses 
two different strategies to simulate airline behavior. Strategy 1 
orders an airline’s all flights by increasing SRTA and gives 
earlier scheduled flights precedence for substitution. This 
strategy minimizes an airlines overall GDP flight delay. 
Strategy 2 orders an airline’s flights by decreasing PAX and 
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gives precedence to flights carrying more passengers. This 
strategy results in less overall GDP passenger delays. At the 
end of this step, passenger delays are calculated as well as 
flight delays. It is assumed that a cancelled flights passengers 
will be transferred to another flight from the same origin. 
However, due to high load factors, some passengers may not 
be accommodated. It is assumed that these passengers will 
leave the airport the next day at 6am. 

8. Run Compression: Compression tries to fill in the 
unused slots after airline substitutions and cancellations. All 
slots are sorted in order of their slot times. If an unassigned 
slot is found, algorithm checks if the delay of any non-
cancelled flight can be reduced by assigning the flight to this 
slot instead. First, flights from CDM member airlines are 
considered in the order of their ranking due to the chosen GDP 
rationing rule, followed by the remaining flights. Assignment 
is done only if the flight can make it to its new assigned slot.  
If such a flight is found, flight’s CTA and CTD are 
recalculated. If no such flight is found, then slot remains 
unassigned. Algorithm stops when all unassigned slots are 
checked. 

9. Issue CTA and CTD: The last step in the algorithm is to 
validate the slot assignments before CTDs and CTAs are 
issued. Algorithm checks if each flight is assigned to only one 
slot, if each slot is assigned to only one flight, and if each 
flight’s SRTA is equal to greater than assigned slot time. If 
there is a problem, algorithm goes back to Step-5. If not, 
Planned GDP efficiency and equity metrics are calculated. 

Steps 1-5 and Steps 8-9 are simplified versions of the 
current GDP algorithm. Differences between GDP-RRS and 
the current GDP algorithm are shown in italics in Fig.6. These 
additions are required to simulate new GDP rationing rules 
and calculate passenger-based metrics. Current GDP algorithm 
only runs Ration-by-Schedule (RBS) scheme, and only 
calculates flight-based metrics.  

IV. RESULTS 

To examine the impact of passenger flow efficiency and 
airline equity in a GDP, three alternate rationing rules are 
examined.  

1. Ration-by Schedule (RBS) allocates available slots 
among GDP flights in the order of their scheduled arrival 
times. The earlier flights are given precedence over later 
flights. If there are two flights scheduled to arrive at the same 
time, one of them is randomly selected to be the first for slot 
assignment. 

2. Ration-by-Aircraft Size (RBAc) rations available slots by 
aircraft size. RBAc creates three priority queues for three 
categories of aircraft size considered: Heavy, Large and Small. 
Flights under Heavy category are assigned their slots first, 
followed by Large and Small categories. 23% of the flights in 
the study fall under Heavy, 77% in Large, 1% in Small 
category. Heavy, Large, and Small category flights are re-
ordered by their scheduled arrival times in a given category. 
Thus, if there are two flights in the same category (Heavy-
Heavy), RBAc chooses the flight with the earlier scheduled 
arrival time for slot assignment first. If two flights are in the 

same category and are scheduled to arrive at the same time, 
one of them is picked randomly to be the first for the slot 
assignment. 

Figure 6: GDP Slot Assignment Module Pseudo Algorithm 
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3. Ration-by-Passengers (RBPax) rations available slots by 
the number of passengers carried on each flight. RBPax 
algorithm puts flights in the order of passengers on board. 
Flights carrying more passengers are given precedence over 
flights carrying fewer passengers. If there are two flights 
scheduled to arrive at the same time carrying the same number 
of passengers, RBPax chooses the flight with the earlier 
scheduled arrival time for slot assignment first. If two flights 
are in the same category and are scheduled to arrive at the 
same time, then one of them is chosen randomly to be the first 
for slot assignment.  

Substitution strategy 1 is used in this case study.

Case Study GDP at Newark Liberty Airport 

Figure 7: Flight List before GDP is Implemented 

A GDP is implemented at EWR on June 10th, 2006 starting 
at 18:00 and ending at 23:59 GMT time. Fig.7 shows the 
scheduled flights arriving at EWR during this time before any 
cancellations or substitutions. Projected Airport Arrival Rate 
(PAAR), the red line, is set at 9 flights per 15 minutes. This 
PAAR value falls in the historic range for EWR GDPs. Scope 
is chosen as all domestic airports (Tier scope: All) with 
international flights being exempt. Yellow bars in Fig.7 
represent the exempt flights.  

There are 231 flights between GDP Start and End Time, 63 
of which are international. GDP delay is split among 168 
domestic flights. There are 26 major airlines coming from 109 
different origins carrying 25,501 passengers (11,516 
international and 13,985 domestic passengers).  Among these 
origin airports, the most number of scheduled flights are from 
Chicago (ORD: 7), Atlanta (ATL: 6), Los Angeles (LAX: 6), 
and Boston (BOS: 6). It is interesting to see departure airports 
in 100 nautical miles radius from EWR (LGA, FRG, and 
BDL). Even though the number of passengers on these flights 
is not very large, the flight categories can be different. For 
example, the flight from La Guardia (LGA) is a “Small” 
carrying 8 passengers, whereas the flight from Windsor Locks, 
CT (BDL) carrying 32 passengers is a “Large”. There are 15 
cancellations, and the cancelled flights are kept the same in all 
three rationing rule simulations. 

The results of the case study are summarized in Fig.8. All 
three rationing rules result in different trade-offs for the 
system. Both RBPax (blue) and RBAc (red) trades off more 

flight delays with less passenger delays compared to the 
current rationing rule (RBS). Compared to RBS, RBAc (red) 
decreases total passenger delay by 10% (67,288 minutes less 
delay) with a 0.4% increase in total flight delay (12 minutes). 
The biggest improvement in efficiency is achieved by using 
RBPax. Moving to RBPax from RBS decreases total 
passenger delay by 22% (144,407 minutes less delay) with 
only 1.1% increase in total flight delay (31 minutes). 

Figure 8: GDP Efficiency Comparison between RBS, RBPax and RBAc 

Since all GDP rationing rules result in a trade-off, a 
decision can be reached using utility theory. Disutility of 
implementing a GDP can be calculated using different weights 
for two efficiency metrics calculated; Total flight delay and 
total passenger delay as a result of a chosen rationing rule. 
Below is the disutility calculation for RBS as an example: 

Fig.9 shows the disutility calculated for EWR case study 
using different weights. As the weight of the total flight delay 
gets larger, the system focus moves further away from 
passengers to airlines and flights. Fig.9 shows that current 
rationing rule (RBS) is acceptable only when the system solely 
focus on flights. However, when the passengers are 
considered, RBPax gives the minimum system disutility, 
followed by RBAc. 

Total flight and passenger delay values are important 
metrics. However, they don’t imply any information about the 
fairness of the delay distribution. Equity becomes an issue 
whenever goods, in this case available arrival slots, which are 
held in common by a group of users, airlines, must be allotted 
to them individually (Young, 1994). In the case of GDPs, 
equity means distributing fairly among all involved 
stockholders. Airline Equity by Flights (Fig.10) and Passenger 
Equity by Distance (Fig.11) captures this from the view point 
of airlines and passengers.  

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-934



Figure 9: Disutility of GDP for RBS, RBPax and RBAc

From airlines’ perspective, the more flights an airline has 
the more delay it should be assigned. Airline Equity by Flights 
is calculated as the ratio of an airline’s flight delays over the 
total GDP flight delay divided by the ratio of that airline’s 
flights in the GDP over all GDP flights. “Perfect equity” is 
represented as 1. If an airline’s equity is smaller than 1, the 
airline is given less delays than is fair. Conversely, if an 
airline’s equity is greater than 1, than the airline is given more 
delays than its fair share. Fig.10 shows the equity for airlines 
in the GDP. Airlines which have only international flights are 
omitted in this figure, since all their fights will be exempt. For 
each airline, the number of flights in GDP is also given in 
parenthesis. 

Figure 10: Airline Equity by Flights under RBS, RBPax and RBAc 

As expected, the results are different for different airlines. 
For Airline 1, the dominant carrier, the three rationing rules do 
not make much difference in its overall delays. However, for 
Airline 2, the main competitor, the equity does not reach 1 but 
it moves in the right direction with new rationing rules. All 
airlines have less delay with RBPax, except for airlines 2 and 
11. Airline 11 has two flights, one from Cleveland (CLE) and 
one from Long Island (FRG). FRG flight is assigned the same 
slot in all rationing rules and is cancelled later on. CLE flight 
is a general aviation flight carrying only 6 passengers, 
scheduled at 19:05. As seen from Fig.7, this is a very busy 
period for EWR, and RBPax assigned this flight a delay of 
306 minutes. Since there are only 2 “small” category flights, 
RBAc also assigned a very high delay. On the other hand, 

Airline 7 enjoys RBPax whereas RBS and RBAc results in the 
same unfair equity level. It has 4 flights, 3 of which are from 
DTW. All four flights are “large”, carrying 71-95 passengers. 
RBS gives these flights higher delays than RBPax because 
they are scheduled at the busy times of EWR. RBAc also gave 
high delays because all flights are “large”. Since 77% of all 
flights are large, the RBAc delay assignment is very close to 
RBS. However, RBPax further distinguishes flights with the 
number of passengers on board and assigned less delay to 
these flights. (Note: Equity metrics are calculated over a long-
term. For the purposes of this case study, only one day of data 
is used.) 

Figure 11: Passenger Equity by Distance under RBS, RBPax and RBAc

From passengers’ perspective, the passenger delay they 
encounter is important rather than the flight delay itself. 
Flight-based metrics cannot accurately reflect passenger travel 
experience (Wang, 2007). Flight cancellations reduce total 
flight delay while increasing total passenger delays, especially 
when the load factors are high. Passenger Equity by Distance 
(Fig.11) compares how much passenger delay is assigned to 
passengers flying from a distance group compared to the total 
number of passengers in the GDP. In other words, the more 
passengers a distance group has, the more passenger delay it 
will be assigned. Passenger Equity by Distance is calculated as 
the ratio of passenger delays for a given distance group over 
the total GDP passenger delay divided by the ratio of the 
number of passengers from that distance group over all 
passengers encountering the GDP. “Perfect equity” is again 
represented as 1. Fig.11 shows that the long-haul passengers 
are encountering much less delays than short-haul passengers 
in all three rationing rules. This is due to the fact that longer-
haul flights are scheduled less frequently with larger aircraft 
having more seats, whereas short-haul flights are scheduled 
more frequently with smaller aircraft. The higher load factors 
(100% for international flights) also result in favorable 
passenger delays for longer-haul flights. Difference in equity 
is more pronounced for RBPax than the other two rationing 
rules. (Note: Equity metrics are calculated over a long-term. 
For the purposes of this case study, only one day of data is 
used.)

Fig. 12 shows the total inequity as a result of all rationing 
rules. Total inequity for a given rationing rule is calculated as 
the sum of absolute differences between a category’s equity 
and the “perfect” equity (1). Figure shows RBS clearly results 
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in the smallest airline inequity compared to the other rules. 
Passenger inequity is also smaller with RBS. However, the 
favorable equity by RBS is achieved at the expense of 144,407 
minutes more passenger delays. Passenger equity values are 
very dependant on the airline scheduling choices and can be 
improved by upgauging.

Figure 12: Inequity Comparison for RBS, RBPax and RBAc 

V. CONCLUSION  

The case study of GDP with alternate rationing rules at 
EWR demonstrates the impact of GDP rationing rules on 
passenger flow efficiency and on airline equity. Adjusting the 
rationing rules to maximize the flow of passengers (and cargo) 
results in significant reductions in overall passenger trip 
delays. These delays are achieved with small changes in 
overall flight delay. Airline equity is adjusted in favor of 
larger airlines. Addressing this issue is an area of future work. 

The results of the case study at Newark Liberty 
International Airport (EWR) are as follows: 

• All three GDP rationing rules resulted in the different 
trade-offs between airlines and passengers.   

• Ration-by-Aircraft size (RBAc) decreased the total 
passenger delay by 10% compared to RBS with a 0.4% 
increase in total flight delay. 

• Ration-by-Passengers (RBPax) decreased total passenger 
delay by 22% compared to RBS with 1.1% increase in 
total flight delay.  

• Ration-by-Passengers (RBPax) results in the minimum
disutility for the air transportation system when both 
airlines and passengers are concerned. RBS is preferred 
choice only if airlines are the main focus of the system. 

• Ration-by-Schedule (RBS) results in the minimum total 
inequity for both airlines and passengers. However, this is 
achieved at the expense of a large efficiency loss due to 
high passenger delays. 

The application of alternate GDP rationing rules has 
broader implications. In principle, GDP rationing rules create 
priority queues which give preference to the compliant flights. 
As a consequence the rationing rules incentivize airline 
behavior. For example, the Ration-by-Passengers rule could, 

in the long-run, result in the migration of airline fleets to 
larger sized aircraft that would increase the passenger flow 
capacity. This would improve the efficiency of the air 
transportation system. This incentive does not directly result in 
reduced frequency, but reduced frequency may be a by-
product of upgauging. 

Results presented here are the outputs of the GDP Planner 
with substitution strategy 1. For future work, these results will 
be compared against the results of GDP Flight Simulator to 
see the differences between planned and actual metrics. 
Results can be further improved by comparing airport metrics 
to airline and passenger metrics.  
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Abstract—Passenger trip time performance is positively 

correlated with passenger satisfaction, airfare elasticity, and 

airline profits. Researchers have demonstrated that flight metrics 

are a poor proxy for passenger trip experience. Trip delays 

experienced by passengers due to missed connections and 

cancelled flights are not negligible.

This paper describes a passenger flow simulation which captures 

the asymmetric and unique passenger trip on-time performance 

and reflects the complexity and significance of the impact of a 

small set of cancelled flights and missed connections on passenger 

trip delays. It measures system performance from the flying 

public’s view. Furthermore, it enables researchers to conduct 

experiments outside the range of historical data. 

The results of this research provide decision makers with 

improved metrics for future investment decisions and better tools 

to manage the system. The passenger flow simulation model also 

provides the means to perform analysis for proposed changes to 

the system. 

Keywords—on-time performance; passenger flow; performance 

metrics; passenger trip time  

I. INTRODUCTION

The purpose of the Air Transportation System (ATS) is to 
provide safe and efficient transportation service of passengers 
and cargo. The on-time performance of a passenger’s trip is a 
critical performance measurement of the Quality of Service 
(QoS) provided by any Air Transportation System. QoS has 
been correlated with airline profitability, productivity, 
customer loyalty, and customer satisfaction [1]. 

Bratu et al. have shown that official government and airline 
on-time performance metrics (i.e. flight-centric measures of air 
transportation) fail to accurately reflect the passenger 
experience and underestimate the disruption on passenger trip 
time caused by cancelled flights and missed connections [2] [3] 
[4]. Flight-based metrics do not include the trip delays accrued 
by passengers who were re-booked due to cancelled flights or 
missed connections. Also, flight-based metrics do not quantify 
the magnitude of the delay (only the likelihood) and thus fail to 
provide the consumer with a useful assessment of the impact of 
a delay [5].

Research on passenger trip delay is limited because of the 
unavailability of proprietary airline data, which is also 
protected by anti-trust collusion concerns and civil liberty 
privacy restrictions. Wang et al. developed a set of algorithms 

designed to compute estimated passenger trip delay (EPTD) 
based on publicly available databases [6] [7] [8]. Results show 
disproportionately high passenger trip delays generated by 
cancelled flights. Cancelled flights accounted for only 1.4% of 
total scheduled flights in 2006, but they generated 39% of total 
EPTD. On average, passengers scheduled on cancelled flights 
in 2006 experienced 607 minutes of delay, while passengers 
scheduled on delayed flights experienced a much lower delay 
of 56 minutes. Except for the disproportionately high EPTD 
due to cancelled flights, Wang et al. proved passenger trip 
delay is a stochastic phenomenon that has asymmetric 
performance in terms of routes, airports, and time of year. Half 
of the total EPTD is generated by a smaller portion of routes 
(17%), airports (26%), and months (42%). Altogether, 
passenger behavior in the passenger tier of the air 
transportation system differs from flight behavior in the vehicle 
tier of the system.  

Wang et al. designed the algorithm based on segment data, 
which doesn’t contain flight connection information. As a 
consequence, the analysis does not include the passenger trip 
delay caused by missed connections. Moreover, expansion of 
the air transportation system is trending out of the historical 
operation range with record high load factors, operations, and 
enplanements. This trend prohibits using historical data for 
analysis, since historical data cannot predict the impact of 
future policy changes on passenger trip time. In this paper, a 
passenger flow simulation (PFS) is developed to perform 
“future option design evaluation.” The PFS enables researchers 
to conduct experiments outside the range of historical data and 
estimates passenger trip delay not only due to delayed and 
cancelled flights, but also due to missed connections. 

Section II of the paper describes the underlying concepts of 
the passenger flow simulation, PFS hierarchy, structure, 
algorithm, and results. Section III describes the experimental 
design for the PFS to identify significant factors for passenger 
trip performance and to perform sensitivity analysis.  

II. PASSENGER FLOW SIMULATION

The operational evolution plan (OEP) 35 airports are the 
nation’s busiest airports defined by the FAA [9]. They have the 
greatest number of operations and account for 73% of total 
enplanements and 79% of total operations in the air 
transportation system [10]. The passenger flow simulation is a 
closed network formed by 34 of the OEP-35 airports. Honolulu 
International Airport (HNL) is excluded due to its geographic 
location and negligible impact on the network.  
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A. The Underlying Concept 

Air transportation simulations of flight movement do not 
capture the passenger flow and connecting process. In the air 
transportation network, passengers cluster together into groups 
to fly from one airport to another. After arrival at the 
destination airport, this group of passengers breaks up: nonstop 
passengers make connections to ground transportation, and 
connecting passengers continue their trips by re-clustering with 
other passengers. Compared with flight movement, passenger 
movement 

Simulates passenger behavior instead of flight 
behavior; 

Converts flight information, such as arrival time and 
origin and destination airports, into attributes of 
passengers or groups of passengers; 

Converts flight schedules into clustering and scattering 
rules followed by passengers. 

The passenger flow simulation is built to simulate this 
dynamic clustering and scattering process of passenger flow in 
the system. Air transportation simulations of flight movement 
do not capture the passenger flow and connecting process. 

B. Colored Petri Net Modeling Tool 

A Petri Net is a graphical and mathematical modeling tool.  
It is well-suited to modeling public transportation networks 
[11] and has been used to model the passenger connecting 
process in a public bus transportation system [12]. 

For accurate modeling of a complex transportation system 
like the air transportation system, a more complicated 
extension of Petri Net is required. In this paper, a hierarchical, 
timed, Colored Petri Net (CPN) is built using CPN Tools to 

simulate passenger flow and connecting processes in the 
system. CPN Tools is a graphical user interface for editing, 
simulating, and analyzing Colored Petri Nets [13]. CPN Tools 
can model the complex level of interactions in the air 
transportation system visually by creating nodes, transitions, 
and arcs in the model environment. This visual modeling 
environment allows users to track and understand the behavior 
of each passenger easily. 

The concept of “color” distinguishes tokens (or resources) 
in the net. “PaxGroup” is defined as a color in PFS: 

Color: PaxGroup = (Origin) * (Dest) * (# of Pax 
Loaded) * (Aircraft Size) * (SchDeptime) * (SchArrTime) * 
(Carrier) * (FlightIndex) * (# of Local Pax)  timed; 

For example, the PaxGroup (DCA, ORD, 165, 200, 730, 
850, 13, 45, 165)@+750 in Figure 1 represents a group of 165 
passengers, loaded on United Airlines flight 45 with 200 seats, 
scheduled to depart from DCA at system time 730, and arrived 
at ORD at system time 850. However, this flight actually 
departed at system time 750, which is 20 minutes later than 
scheduled.    

Tokens in places (circles) represent available resources to 
enable a transition (rectangle). The left part of Figure 1 shows 
one group of passengers in place “local pax”1 and two groups 
of connecting passengers in place “conn pax”. The first group 
of 20 connecting passengers arrived at the gate at time 715, and 
the second group of 15 connecting passengers arrived at the 
gate at 770. When the flight departed at time 750, the first 
group of 20 connecting passengers were loaded on time, 
whereas the second group of 15 connecting passengers missed 
their connections, since they arrived at the gate after the flight 
departed. The departing flight was scheduled to load 35 
connecting passengers and depart with 200 total passengers at 
system time 730, but it actually loaded 20 connecting 

Figure 1 Example: passenger loading process in CPN 

                                                          
1 Local passengers are passengers who have just appeared in 
the air transportation system. They could either be nonstop 
passengers from DCA to ORD or connecting passengers 

whose first leg flight is from DCA to ORD. 
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Figure 2. Big Picture: Correlation between Algorithms and PFS 

passengers and departed at system time 750 with 185 total 
passengers. The right part of Figure 10 shows the CPN after the 
transition: one group of 15 connecting passengers missed their 
connecting flight, and a group of 185 passengers (165 local + 
20 connecting) were ready to gate out. 

C. PFS Overview 

Figure 2 depicts the correlations between algorithms and 
PFS. The algorithm section above the dotted line targets the 
“historical analysis.” In this section, different algorithms are 
designed to manipulate the data in different data processing 
phases. The “historical analysis” section sets the stage for 
“future option design evaluation.” As shown in Figure 2, 
processed data, algorithms, and the analysis report are 
embedded into the passenger flow simulation model as 
parameters, logical structure, and initial tokens. In other words, 
the parameter setting and passenger flow control in the PFS are 
based on historical statistics calculated by algorithms. 

TABLE 1 OVERVIEW OF PASSENGER FLOW SIMULATION (PFS) STRUCTURE

Aspects Description

Airports OEP-34 airports (excluding HNL) 

Routes 1,030 routes formed by OEP-34 airports 

Carriers 17 major carriers 

Daily Flights 8,500 

Daily Enplanements 900,000 

PFS Modes Deterministic and Stochastic 

Hierarchy 3-level

Places 580

Transitions 343

Initial Tokens 20,000

Functions 42

The network structure of PFS is formed by 34 of the OEP-
35 airports and the 1030 routes between pairs of these 
airports2. Passengers flow from one airport to another through 
the existing routes. Table 1 gives an overview of the PFS 
structure.

The PFS has two modes: deterministic and stochastic. They 
share the same PFS structure but use different functions and 
parameter values. In the deterministic PFS, passengers 
scheduled on a specific flight (e.g. UAL123 on route ORD and 
PFS DCA) will arrive at the actual arrival time (e.g. 1145). But 
in the stochastic PFS, the flight time is determined by a set of -

Figure 3. Big Picture: Correlation between Algorithms

                                                          
2 Not all of the 1122 possible city pairs are served by direct 

flights. 
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random number generators with specific means and standard 
deviations (e.g. flight time for UAL flights on route ORD-DCA 
is a normal random variable with µ=100 minutes and =15
minutes). Thus the arrival time for flight UAL123 is a 
stochastic value generated as “DepTime + NormRNG (µ=100, 

=15)”. In summary, the deterministic PFS is a pure 
conversion between flight performance and passenger 
performance, whereas the stochastic PFS allows flexibility and 
is more suitable for future option design evaluation. 

D. PFS Hierarchy 

The PFS has three levels, as shown in Figure 3. Airport and 
En Route subnets are represented as substitute transitions in the 
top-level net of PFS. These figures will be decomposed and 
described in the following paragraphs. Locations of the 
zoomed-in subfigures are labeled in Figure 3 (Figure 3.1 ~ 3.6). 
In addition, large figures showing the top-level, second-level 
and the third-level nets are available in Appendix A.  

As shown in Figure 3.1, the top-level page depicts 34 
airport substitute transitions, a single en route substitute 
transition, and the 68 ports connecting them. The zoomed-in 
inset shows an aggregated departure gate and an aggregated 
arrival gate for Washington-National Airport (DCA); there is 
one of these for each airport. An airport substitution transition 
is directionally connected to and from en route substitution 
through two ports, one representing an arrival gate and the 
other representing a departure gate (Zoomed-in figure is 
available in Appendix A).  

Figure 3.1 PFS Hierarchy, Top Level 

In the second-level airport subnet, the flow process of 
passengers inside the airport boundary is divided into three 
steps:  (1) splitting PaxGroup, (2) re-clustering of PaxGroup 
and (3) loading PaxGroup. In step 1, a PaxGroup arriving at the 
airport is split into two subgroups. The group of connecting 
passengers use the airport as a connecting hub, whereas the 
group of non-connecting passengers terminate their itineraries 
and leave the system at the airport. Different routes have 
different splitting rates for connecting and non-connecting 
passengers. In the example shown in Figure 3.2, 22% of 
passengers coming from ATL to ORD connect to another flight 
at ORD, while 78% terminate their trips at ORD.    

Figure 3.2 PFS Hierarchy, 2nd Level, Airport Subnet, Step 1 

In step 2 (Figure 3.3), connecting passengers are re-
clustered to form a new group for the second-leg flights. There 
are two functions involved in the simulation code. One of the 
functions returns the minimal connecting time (MCT) required 
for passengers between gates. The other function divides a 
group of connecting passengers into several subgroups and 
sends them to different gates [6]. 

Figure 3.3 PFS Hierarchy, 2nd Level, Airport Subnet, Step 2 

Finally, the newly formed PaxGroup is loaded onto their 
flights and ready to gate-out (Figure 3.4). The detailed loading 
process, which is the 3rd level subnet, will be explained in 
Figure 3.6. 

Figure 3.4 PFS Hierarchy, 2nd Level, Airport Subnet, Step 3 
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Figure 3.5 PFS Hierarchy, 2nd Level, Enroute Subnet 

All the functions, statistics, and ratios written in the 
transition code segment and on the arcs are responsible for 
guiding the passenger flow according to historical statistics.  In 
this specific PFS, all the statistics are obtained from 2006 
historical data provided by BTS. There are three BTS databases 
involved: AOTP, T-100 and DB1B. A detailed explanation of 
how to calculate the statistics is available in reference papers 
[6] and [8]. 

In the second-level en route subnet, each PaxGroup goes 
through taxi-out, air time, taxi-in, and finally reaches the 
arriving gate at destination airports (Figure 3.5). Functions in 
this subnet are responsible for reading attributes of PaxGroup, 
transporting passengers on the correct route (gate-to-gate), and 
assigning correct taxi-out, en route, and taxi-in times to the 

PaxGroup. The taxi-out time, air time, and taxi-in time are 
generated by random number generators, following some 
distributions with specific means and standard deviations 
calculated using 2006 data. 

In the third-level passenger loading subnet (Figure 3.6), 
general connecting passengers flow to the upper branch and 
then are loaded onto the scheduled flights, while disrupted 
passengers (due to missed connections and cancels), flow to the 
lower branch and wait to be re-booked. Flights finished loading 
general connecting passengers will check for disrupted 
passengers before they depart. If disrupted passengers are 
detected, flights with available empty seats will load them until 
either no more seats are available or there are no more 
disrupted passengers. The general connecting passengers 
(upper branch) have higher priority than cancelled or missed 

Figure 3.6 PFS Hierarchy, 3rd Level, Passenger Loading Subnet 
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connection passengers (lower branch). Passengers on both 
branches are sorted into first-come-first-serve airline queues to 
ensure passengers will be loaded on the correct flights 
(purchased flights) or will be re-booked by the same airline if 
disrupted (Appendix A Figure A.6).  

E. Passenger Missed Connection Algorithm in PFS 

Each experiment of PFS has two scenarios, the base 
scenario and the experimental scenario. The base scenario 
simulates passenger flow in an ideal environment without 
disruptions such as flight delays or cancellations. The goal of 
running the base scenario is to obtain passenger connecting 
information given a flight schedule. Passenger connecting 
information is then fed to the experimental scenario, which 
simulates delays, cancellations, and missed connections. As 
shown in Figure 4, passenger connecting information provided 
by the base scenario enables us to conduct research on missed 
connections in the experimental scenario. The simulation 
results of the experimental scenario estimate EPTD not only 
due to delayed and cancelled flights but also due to missed 
connections. 

Figure 4. Passenger Missed Connection Algorithm in PFS 

F. PFS Sample Results 

July 6, 2005 is a randomly chosen weekday in summer 
2005. Flight performance on July 6, 2005 was as follows: 

Scheduled Flights = 8,540; 

Delayed Flights = 1,764 = 21% of Scheduled Flights; 

Cancelled Flights = 176 = 2% of Scheduled Flights. 

Figure 5. PFS Simulation Result for July 6, 2005 

We used PFS to simulate passenger flow and calculate 
passenger trip delay on July 6, 2005. As shown in Figure 5, 2% 
of cancelled passengers generated 30% of total EPTD, 1% of 
missed connection passengers generated 15% of total EPTD, 
and 21% of delayed passengers generated 55% of total EPTD. 
On average, passengers scheduled on cancelled flights 
experienced 403 minutes of delay, missed connection 
passengers experienced 341 minutes of delay, and passengers 
scheduled on delayed flights experienced 64 minutes of delay. 

III. EXPERIMENTAL DESIGN FOR PFS

The purpose of the experiment design is to identify and 
rank the significant factors that have strong impacts on 
passenger trip time and to analyze the sensitivity of EPTD 
given changes in these factors.  

Based on experience and literature, six items are chosen as 
initial significant factors. These factors are shown in Table 2. 
Results of the experiments will prove how good the initial 
“guess” of significant factors is, and at what level they affect 
the passenger trip delay. A full factorial design for six factors, 
assuming a linear response function, needs 26 = 64 total runs, 
and each run requires two PFS scenarios (base and 
experimental scenarios). In total, 128 PFS models need to be 
built and executed for a full factorial design. Concerned about 
time, we performed a fractional factorial design with six 
factors, two levels (high and low) and 1/8 fraction. Table 2 lists 
the six factors and their high and low levels. 

TABLE 2 HIGH AND LOW LEVEL SETTINGS FOR  FACTORS 

Factors High Low 

# Passengers Loaded Increased by 5% Decreased by 15% 
Aircraft Size (# of seats) Increased by 15% Decreased by 5% 
Airline Cooperation Policy Y N
Flight Delay + 15 minutes - 15 minutes 

Cancellation Time 
Cancelled four hours 
earlier

Remain the same 
cancellation time 

Minimal Connecting Time + 15 minutes - 15 minutes 

The high and low levels of “# of passengers” and “aircraft 
size” are designed to keep load factor in the range of [61%, 
92%]. The highest value of load factor (92%) occurs in 
experiments with “# pax”=H and “aircraft size”=L, while the 
lowest value of load factor (61%) occurs in experiments with 
“# pax”=L and “aircraft size”=H. Airline cooperation policy 
indicates whether airlines on the same route cooperate with 
each other on re-booking disrupted passengers. If not, disrupted 
passengers must stick with the same airline for re-booking. 

The rank order of significant factors in terms of the 
absolute value of coefficients for NAS-wide total EPTD is 
depicted in Figure 6. The most significant factor to total EPTD 
is flight delay, which is obvious, since more than half of the 
total EPTD is due to delayed flights. Along with flight delay, 
number of passengers, flight cancellation time, and airline 
cooperation policy also have significant impacts on total 
EPTD.
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Figure 6. Rank Order of Factors for Total EPTD (Delay+Cancel+MissConn) 

The rank order changes from case to case. For example, the 
rank order of factors in terms of EPTD due to cancelled flights 
is: airline cooperation policy, aircraft size and number of 
passengers (or load factor), flight cancellation time, as shown 
in Figure 7. These three factors have stronger impacts on 
EPTD due to cancelled flights than any other factors, since they 
are directly related to re-booking flexibility and resource 
availability.  

Figure 7. Rank Order of Factors for EPTD due to Cancelled Flights 

As shown in Figure 8, the rank order changes for total 
EPTD due to missed connections. The most significant factors 
affecting total EPTD due to missed connections are: flight 
delay, cancellation time, and minimal connecting time. The 
risk of missing a connecting flight increases if a previous flight 
leg is delayed. Affected passengers, whether due to flight 
cancellation or missed connections, compete for limited 
resources. As a consequence, cancellation time has a strong 
impact on EPTD due to missed connections. If the airport is 
poorly designed, connecting passengers may need longer 
minimal connecting time to travel from one gate to another, 
and this may result in missing connecting flights.  

Figure 8. Rank Order of Factors for EPTD due to Missed Connections 

In summary, the significant factors for different cases are as 
follows: 

To reduce total EPTD: decrease flight delay, encourage 
airline cooperation, earlier cancellation time, and lower 
load factor 

To reduce EPTD due to cancelled flights: encourage 
airline cooperation, lower load factor, and earlier 
cancellation time 

To reduce EPTD due to missed connections: decrease 
flight delay, decrease minimal connecting time 
required and encourage earlier cancellation time 

To reduce EPTD due to delayed flights: less flight 
delay and fewer passengers loaded. 

A simple sensitivity analysis is done for a better 
understanding of the impact of factors on EPTD. As shown in 
Table 3, change in a single factor can result in 8% to 24% less 
total EPTD, thereby saving millions of dollars per day. 

TABLE 3 SENSITIVITY OF THE TOTAL EPTD
(DELAY+CANCEL+MISSCONN) TO CHANGES IN FACTORS 

Compared with Total EPTD on July 6, 2005 
Changes in a 

single factor Decrease in total 

EPTD (hours per day) 

Passenger Value of Time 

Saved (million $ per day) 

Reduce flight delay 
by 15 minutes

Decreased by 24% Save $2.3 million 

Encourage airline 
cooperation 

Decreased by 12% Save $1.1 million 

Cancel flights 4 hrs 
earlier

Decreased by 10% Save $0.9 million 

Reduce load factor 
from 83% to 70% 

Decreased by 8% Save $0.7 million 

Officials, operators, and service providers should consider 
the combined effect of factors on EPTD, which helps to 
achieve the strategic goals with minimal changes or costs. 
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IV. CONCLUSIONS

The goal of air transportation service is to provide safe, 
affordable, and convenient transport for passengers and cargo. 
As a consequence, the top level performance measures of the 
ATS should include the trip delays experienced by airline 
passengers. Passenger-based metrics, together with flight-based 
metrics, can give a more accurate and complete description of 
the ATS performance.  

The passenger flow simulation captures the asymmetric and 
unique passenger trip on-time performance and reflects the 
complexity and significance of the impact of a small set of 
cancelled flights and missed connections on passenger trip 
delays. Major findings of this research are listed as follows: 

1) High passenger trip delays are disproportionately 
generated by cancelled flights and missed connections. 

2) Passenger-based metrics are needed to capture the 
passenger travel experience, since flight-based metrics can 
unintentionally distort the actual performance of the system 
and effectively “hide” explanatory and diagnostic system 
behavior.  

3) Congestion flight delay, load factor, flight 
cancellation time, and airline cooperation policy are the most 
significant factors affecting total EPTD in the system. The 
combined effect of multiple factors should be investigated and 
used to support the decisions made by officials, policymakers, 
and researchers. 

4) Passengers should treat trip time as a stochastic 
phenomenon that can be assigned a probability of occurrence 
but cannot be avoided entirely in any systematic manner. 
Simple strategies can be used by passengers to reduce the 
probability of occurrence, such as choice of departure airport 
and route. For example, for a trip from Washington, D.C. to 
Chicago, flights from DCA to MDW had a 5% probability of 
more than one hour delay, whereas flights from DCA to ORD 
had 12% probability of more than one hour delay. 
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Figure A.4 
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Figure A.6 
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Abstract— Variation in airport runway capacity, including 
arrival and departure is one of the main causes of operational 
disruptions such as flight delays and cancellation. In the ideal 
situation, we will know the exact timing and magnitude of such 
variations and plan accordingly to minimize such impacts. In 
reality however, capacity evolution process is probabilistic and 
determined by numerous factors. Capacity scenarios are the 
probabilistic representation of capacity variation at daily level. 
Scenarios provide probabilistic representation of capacity 
profiles to reduce modeling complexity of capacity prediction 
model.  There are two data domains one can use to generate 
capacity scenarios; historical data, and day-of-operation 
information. While historical data provide long-term trend of 
capacity variation at an airport, day-of-operation information 
can increase the accuracy of the likelihood of each scenario on a 
given day. In this paper, we explore various Data Mining (DM) 
approaches to understand the historical trend of Airport 
Acceptance Rate (AAR) at San Francisco International Airport 
(SFO). We revisit earlier research based on k-means clustering. 
Among other shortcomings of k-means application, it lacks the 
sequential and time-dependent nature of AAR evolution. We first 
construct the Directed Acyclic Graph of AAR evolution to 
understand the conditional dependency among different time 
periods.  Based on our observation that AAR change is mostly 
Markovian, we apply Sequence Clustering to properly address 
sequential nature of AAR evolution. In the later section, we 
include the preliminary result of Bayesian approach that utilizes 
weather information. In the last section we discuss the 
applicability of Data Mining concepts in aviation research, and 
future directions of our runway capacity modeling research.  

Keywords-component; terminal capacity; data mining; bayesian 
learning; capacity prediction; AAR; scenario generation 

I. INTRODUCTION

Variation in airport arrival and departure capacity, 
including arrival and departure, is one of the main causes of 
numerous operation disruptions, such as flight delays and 

cancellations, as well as crew and aircraft rescheduling. In the 
perfect world, we will exactly know when and how such 
variation will occur, and be able to plan accordingly to reduce 
such disruptions. In reality however, capacity evolution process 
is probabilistic, which makes it harder to predict.  

Capacity scenarios represent the probabilistic variation of 
airport terminal capacity at daily level. A good set of scenarios 
significantly reduces the modeling complexity that a capacity 
prediction model needs to handle, without compromising the 
integrity of original data. There are two data domains one can 
use in scenario generation: (1) historical data of capacity 
variation, and (2) day-of-operation information such as weather 
forecast of the day. While historical data provide information 
about the long-term trend at an airport, day-of-operation data 
can increase the accuracy of the likelihood of each scenario. In 
earlier models, scenario probabilities were based upon 
historical frequencies alone. While day-of-operation 
information, such as weather conditions and forecasts, is 
clearly relevant to predicting how capacity will evolve, our 
ability to harness this information is lacking.  

Our main goal in this research is to understand the daily 
AAR evolution process, and to establish a Bayesian learning 
model. The main advantage of Bayesian approach is that 
capacity prediction is made not only based on the historical 
data, but also on day-of-operation information as the day 
unfolds. For example, if Air Traffic Control personnel are to 
make a decision on AAR changes at noon, Bayesian model 
utilizes realized AARs until noon, to make AAR prediction for 
the rest of the day. We consider several types of day-of-
operation information; (1) realized AAR of the day, (2) 
weather forecasts, and (3) physical and other operational 
constraints at the airport.  

We also identified two major factors that have to be 
captured in scenario generation; (1) the sequential and time 
dependent nature of capacity and forecast data, and (2) the 
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input-output relationship between the weather factors and 
capacity. Although intuitively natural, establishing a systematic 
way to capture such relationships is not an easy task. Data are, 
if available, are scattered in many sources, and the size and 
complexity of data available today are certainly beyond simple 
statistical interpretation. In addition, capacity variation is 
determined not just by weather factors, but also by numerous 
other factors, including human experience. 

In this paper, we first review several Data Mining concepts 
in chapter II. The data collection and representation is 
explained in chapter III. In chapter IV, we revisit the evaluation 
result of earlier research based on k-means clustering, and 
discuss the challenges of this distance-based partitioning 
algorithm. We then present Graphical Model of historical 
AAR, and Sequence Clustering based on the homogeneous 
first-order Markov Chain. Graphical Model shows the 
complete hierarchy of conditional dependency of AARs. 
Sequence Clustering effectively captures sequential and time-
dependent nature of AAR evolution. Finally Bayesian Network 
model is presented, in order to study the potential role of 
weather information in airport runway capacity forecasting, 
and how we can extend our model to incorporate such 
information.  

II. METHODOLOGY

In this chapter, we will briefly review several Data Mining 
(DM) concepts used in our study, including; (1) Graphical 
Model, (2) k-means clustering, (3) Sequence clustering, and (4) 
Bayesian Network. 

A. Graphical Model 

Graphical Model, or graph theory, is a mathematical 
representation of conditional dependency of data objects. A 
graphical model consists of nodes and edges. Each node in a 
graphical model corresponds to a random variable, and 
contains a family of probability distributions associated with 
the node. Each edge, whether directed or undirected, represents 
conditional relationships between nodes it connects.  

When applied to the historical airport capacity data, 
Graphical Model gives us a complete hierarchy of condition 
dependency of capacity evolution over time. Given only 
historical AAR values, we can still make a relatively sound 
prediction based on conditional dependency and probability 
distributions found in our Graphical Model. Although a very 
powerful way to understand data and make predictions, 
Graphical Model in general has a complexity that is 
exponential to the number of nodes. If we want to include 
additional factors such as weather to the model therefore, it will 
further increase computational complexity. 

B. k-means Clustering  

k-means clustering is one of the most widely available and 
used data mining concepts. k-means clustering is a partitioning 
method, which construct partitions of given dataset. It is an 
unsupervised data mining task, as each data point is not used in 
training process but treated equally. K-means clustering 
partitions objects into k nonempty subsets. Iterative assigning 
process puts each object to the cluster with nearest centeroid, 
until no more new assignment is possible.  

The main draw of K-means is that it is relatively efficient, 
and the solution is readily available in conventional statistics 
packages, such as SAS, SPSS. On the other hand, k-means 
requires to preset the number of cluster, k, and unable to handle 
non-numerical data, and outliers. It is also not suitable to 
analyze high-dimension data and often terminates at a local 
optimum. There are several variations of k-means to address 
some of shortcomings mentioned above.  

C. Sequence Clustering 

Sequence clustering constructs clusters based on the 
transitional behavior of sequential data. It analyzes the state 
transitions in a sequence, and partitions data based on the 
similar transitional behaviors. Sequence analysis, including 
sequence clustering and sequence pattern recognition, is a 
relatively new data mining concept, which is becoming more 
and more important in areas such as web-log analysis and DNA 
analysis. We found this concept applicable to capacity 
evolution data, to address the sequential and time-dependent 
nature of capacity and weather data.  

Among several algorithm choices, we adopted the model 
utilizing first-order Markov chains to capture transition 
behaviors among states. The algorithm works in a similar way 
to k-means clustering. The model starts with a specified of 
clusters, which can be preset or optimized, and then assigns 
each observation to one of the clusters. Instead of evaluating 
the centeroids and distance between the centeroids and data 
objects, Sequence Analysis model learns and updates the 
transition probability of Markov chains in each cluster. This is 
one of the soft clustering algorithms, yielding more flexibility 
in making predictions. 

D. Bayesian Network (Bayesian Inference) 

 Bayesian Inference utilizes a combination of conditional and 
unconditional probabilities of evidence, along with the 
hypothesis one is interested. It is a straightforward and 
powerful classification data mining method, applicable to risk 
management, decision analysis, and many other areas. 
Classification data mining method such as Bayesian Inference 
and Neural Network requires specifying input and output to the 
model, which suits our need to establish the relationship 
between weather factors and airport capacity in a systematic 
manner.  

III. DATA

Data collection covers three domains; (1) airport  
operational data, (2) airport weather observations, and (3) 
airport  weather forecasts. In addition, considering the fact that 
decisions on capacity changes are a human-driven process, we 
conducted a series of interviews and meetings with a Traffic 
Management Coordinator at SFO Air Traffic Control Tower, 
Air Traffic Management Officers at Oakland ARTCC, and 
Northern California TRACON, to understand the human 
factors in the decision process, and how these data affect final 
decision. 
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A. Airport Terminal Operational Data 

Our main source of airport operational data is the Aviation 
System Performance Metrics (ASPM), published by FAA. 
ASPM contains a wide range of data including, but not limited 
to, Airport Acceptance Rate (AAR), Airport Departure Rate 
(ADR), ceiling, visibility, wind speed, wind angle, and runway 
configuration. Each data field can be retrieved in quarter-
hourly or hourly level. Although arguably the most extensive 
and complete source of airport operational data, ASPM has its 
limitations. Since it reports data values in fixed time intervals, 
the actual times of operational changes are missing, and some 
numeric values are divided or summed over user-specific 
reporting intervals. For example, if AAR was 30 at noon, and 
then changed to 60 at 12:39, the 15 minutes report of AARs 
from ASPM between 12:00 and 1:00 looks as follows; 7@ 
12:00, 8@ 12:15, 15@ 12:30, and 15@ 12:45. Rates such as 7, 
8, or 15 are not real, as Air Traffic Controllers will never call 
rates on quarter-hourly basis, and change rates whenever 
necessary, not quarter-hourly. There are also instances of 
missing data in the data fields, and some hours are not reported 
at all. In our research, we retrieved operational data every 15 
minutes, and post-processed them to be suitable for our needs. 
Format and unit conversion, and aggregation over multiple 
periods were necessary in most cases.  

B. Airport Terminal Weather Observation Data 

Our main source of airport terminal weather observations is 
the Hourly Surface Observations Summary, published by 
National Oceanic and Atmospheric Administration (NOAA). 
This observation data includes a wide range of aviation-related 
weather factors, such as sky condition, visibility, wind 
direction, wind speed, as well as more common factors such as 
temperature and precipitation. Surface observations are mostly 
automatic, and recorded every hour, unless there are significant 
changes that potentially affect aviation, such as ceiling 
reduction.  

C. Airport Terminal Weather Forecast Data 

Our main source of terminal weather forecast data is 
Terminal Aerodrome Forecast (TAF), published by National 
Oceanic and Atmospheric Administration (NOAA). According 
to National Weather Service Aviation Weather Center, 
“Terminal Aerodrome Forecast (TAF) is a concise statement of 
expected meteorological conditions at an airport during a 
specified period, usually 24 hours.” TAF is generated by 
human forecaster, and considered to be more accurate than 
model-generated weather forecasts. TAFs are produced four 
times a day starting at approximately 30 minutes before each 
main synoptic hour (00Z, 06Z, 12Z, and 18Z), and is valid as 
designated in each forecast. There are also cases when 
amendment is necessary to report temporary weather changes 
that affect airport operational condition.  

TAF is a detailed forecast, covering various factors 
affecting airport operational condition. Meteorological 
condition includes wind – visibility – weather - sky condition – 
and other optional data. Wind, visibility, and sky condition are 
mandatory field in any forecast, while other conditions are 
included only when significant. TAF is only available in text 
format, and contains specific keywords for different weather 

factors. We developed our custom parsing tool TAFparser to 
import text TAFs into our database. 

D. Data Manipulation and Representation 

Finding the right representation of collected data is the first 
step in any data analysis, and in many cases, it is directly 
related to modeling choice. In the data preparation step, we 
converted quarter hourly AARs of ASPM, to hourly AARs, 
while maintaining the quarter hourly intervals. This gives us a 
better idea of how AAR evolves during the day. Also, we 
prepared two different representations of daily variation of 
AARs: one at a fixed time interval, and another as a sequence 
of changes, as shown in Figure 1. 

Fixed time interval data representations are preferred in 
earlier researches, as they are readily available from ASPM, 
and easy to read and apply readily available statistical 
packages. However, it has certain limitations. First of all, fixed 
time interval representation emphasizes the continuation of one 
rate, rather than the changes in rates. Quarter hourly data gives 
a point in 96 dimensional space, and each point has the same 
degree of importance. Due to this fact, some of our early data 
analysis results suggested that the AARs tend not to change 
over time, and changes are pretty rare. Although this is an 
important fact, it is the main one we want to capture in our 
modeling. 

Our goal of capturing the cause and trend of rate changes 
are better represented in a different format, value-and-duration 
representation. Value-and-duration representation shows daily 
AAR profile in a vector form. With this representation, we can 
more effectively detect the patterns of rate changes, as shown 
in the second table of Figure 1. This table shows for each day, 
what the total number of different rates called was, and what 
their sequence and duration were. 

Figure 1. Two representations of one day AAR changes 

IV. DATA MINING APPLICATIONS

The focus of this chapter is studying AAR evolution 
process itself using several Data Mining (DM) methods. 
Studying historical AARs has two advantages. First, we can 
compare the several DM models to understand the advantage 
and disadvantages of different DM algorithms. Secondly, better 
understanding of capacity evolution process itself would give 
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us clues how and which additional information is crucial in 
generating representative scenarios, and making accurate 
prediction. 

A. Graphical Model  

The daily evolution of AAR can be represented as a 
Directed Acyclic Graph (DAG). Each node represents AAR at 
certain time period, and contains the family of probability 
distributions AARs at a given time. This graph provides 
complete information of conditional dependency of AAR at 
each time period. Figure 2 shows selected node-edge 
representation from the model output. One of the major finding 
is that most time periods exhibits Markovian property. For 
example, AAR of time period 42, or between 10:15am and 
10:30 am, is only dependent on AAR of the previous time 
period 41. There were a few cases like time period 44, which 
exhibits second-order Markovian property, as it depends both 
on 42 and 43. This confirms our postulation that AAR 
evolution process is mostly Markovian. There are however, 
special cases such as time period 82 to 96, or last four hours of 
the day, which only depend on time period 81, or 8:00pm-
8:15pm. This reflects an operational constraint specific to SFO, 
where AAR is lowered to the minimum 30 after 8:00 pm (9:00 
pm during daylight saving), on most days. 

Figure 2. Bayesian Network of AAR evolution at SFO 

B.  k-means Clustering 

k-means Cluster analysis is a powerful and widely used 
data mining technique. Liu and Hansen (2006) applied this 
method to capacity scenario generation, by representing one 
day capacity profile as a point in 96-dimension space, and 
applied the K-means algorithm based on Euclidean distance. 
The result is shown in Figure 3. 

As desired, the result appears to represent typical days for 
SFO. For example, cluster3 may represent days where the fog 
never burns off all day, and AAR remained at the minimum of 
30 per hour. 

Figure 3. k-means clustering of 15 minute AAR evolution  

Although this is a reasonable approach, it may suffer from 
the general shortcomings of k-means clustering. First of all, 
given AARs every 15 minute, and thus 96 data points per day, 
K-means clustering treats one day capacity profile as a single 
point in the 96-dimension space. This has two potential 
problems: (1) it ignores the sequential and time-dependent 
nature of AAR; and (2) k-means clustering is subject to the 
Curse of Dimensionality. AAR at one time period is likely to 
be highly correlated with the previous and following ones. In 
addition, as we expand the dimensions of data, they become 
less concentrated and sparser, and the distance measure, which 
is the foundation of k-means clustering, becomes less 
meaningful. SFO airport capacity case, it is reasonable to 
assume the data points are well concentrated in certain regions, 
and dimensionality issue is not evident for certain clusters. 
However, it is desirable to develop a more robust solution that 
can be applied in the general case. 

C. Sequence Clustering 

Sequence clustering is a relatively new area in data mining, 
which captures the strength of partition-based clustering such 
as k-means, and applies it to sequential data. Sequence is a 
series of discrete events, or states, which are usually finite. 
Sequence data is ubiquitous in our everyday life. A series of 
book purchase you made at Amazon.com, the sequence of web 
sites you visited yesterday, the hourly temperature changes in 
San Francisco, and DNA sequences in gene expression. If the 
sequence is stochastic and has a Markovian property, then such 
characteristics are well modeled in Sequence clustering using 
Markov Chains.  

Sequence clustering combines the strength of two 
techniques, by assigning each data object to specific cluster(s) 
with certain probabilities, while each cluster is characterized by 
a unique Markov chain.   To determine which data object 
belongs to which cluster(s), Sequence clustering uses a 
probability measure, unlike distance measure of k-means 
clustering. Probability and likelihood of data objects are then 
calculated based on the transition matrix of each cluster.  As 
data objects are added to clusters, transition probabilities are 
adjusted reflecting the new data members. 

In our research, we can apply Sequence clustering to 
capture the time-dependant and sequential nature of daily 
airport capacity variation. Figure 4.1 is the cluster diagram we 
obtained with� SFO 2006 data. Each cluster contains its own 
Markov chain that characterizes the cluster. Figure 4.2 shows  
Markov chain of Cluster 1. It is also extendable to higher-order 
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Markov Chains or Hidden Markov Chains, depending on the 
data characteristics.  

Figure 4. ����������	�
���
�����
�	���
Figure 4.1. Cluster Diagram 

Each node represents one cluster. Node with darker shades 
contains more data objects than lighter ones. Similar clusters 
(clusters with similar transition probabilities) are closer to each 
other, and the degrees of similarities are represented as edges 
connecting cluster. In this figure, cluster 5 has a rather unique 
transition behavior than other cluster, while cluster 2, 3, 4 share 
strong similarities. 

�

Figure 4.2. Markov Chain Associated with Cluster 2 

Transition matrix associated with Cluster 2 is shown below. 
Cluster 2 contains AAR 20, 40, 45, 52, and 60. Days in 
Cluster 2 starts operation with AAR 30 with probability of 
1. Once the rate is set, the rate tends to persist as high 
transition probability from one rate to the same rate 
suggests. Some of the characteristics of Cluster 2 include; 
(1) transition to rate 52 only occurs when the previous rate 
is 52, or 60; (2) rate 40 tends to make a transition to other 
rates, more than any other rate, suggesting that AAR 40 is 
used for short period of time; and (3) rate 60 tends to persist 
once the rate is set, with possibility to get reduced to 52. 

�

D. Distribution of Rate Changes 

During the course of our DM applications, we observed that 
at SFO, there are handful of time windows and rates that are 
crucial in answering the question of when and what is the rate 
change going to be. For example, first rate change of the day is 
very likely to occur around 8:00 am, to decide whether to 
increase AAR from the early morning minimum rate of 30. 

Also around 5:00pm, AAR is to be lowered to 52, even if 
weather permits the full capacity of 60, due to operational 
restriction such as noise abatement. Also, timing of recovery 
the full capacity of 60 depends on fog burn-off time, which is 
likely to burn off around 9:00-10:00, or 13:00-14:00. To 
investigate our observations further, we plotted probability 
distribution of AAR changes by absolute and relative 
frequency of time of such changes, as shown in Figure 5. It is 
also observed that first rate change mostly occurs at 8:00am, 
when the air traffic control personnel decide which rate they 
will start the day with.  

From the probability distribution of time of change given 
AAR value (Figure 5.1), we can observe that the full capacity 
of 60 AAR per hour is most likely to kick in at the start of the 
operation at 8:00 am, followed by between 9:00 and 10:00 
when early morning fog burns off, followed by between 13:00 
and 14:00 when morning fog persists until afternoon and burns 
off late in the afternoon. Also, AAR change to 52 mostly 
happens between 17:00 and 21:00, as this rate is mandatory 
change during evening time, partly due to noise abatement 
issues. 

An insight this observation provides us is that not all time 
periods are equal, and there are set of critical time periods that 
we want to model more accurately. For example, we might 
want to use most recent and accurate weather forecast available 
to predict capacity at 8:00 am. An interesting flip side of this 
observation is that AAR change might not be as dynamic as the 
weather change, and managed in a rather conservative manner.  

Figure 5. Distribution of Rate Change 
Figure 5.1. Probability Distribution of Time of AAR Changes, 
given AAR

This chart shows the relative frequency of time of change to a 
specific rate, or Probability(Time of Change|AAR). For 
example, change to AAR 60 is most likely to occur at time 
8:00 am, followed by 10:00 am, and 2:00 pm. 

Figure 5.2. Relative Frequency of Rate Changes, given time of the 
day 

This chart shows the relative frequency of different AARs at a 
specific time of the day, or Probability(AAR|Time of Change). 
For example, rate change at 8:00am is most likely to be 60, 
followed by 30. 
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E. Bayesian Network  

There has been recognition that it is necessary and possible 
to calibrate and extend the existing model, by incorporating 
weather information. By adding weather forecast information 
as additional model parameter, we might be able to obtain 
more accurate understanding, hence prediction, of airport 
capacity. Figure 6 shows the ideal modeling structure, 
incorporating weather information as well as historical AAR 
evolution process. In the ‘Prediction Model’ arrow, we model 
historical AAR, weather observations, and weather forecast 
data, as well as day-of-operation weather forecast, to generate 
day-of-operation capacity profiles.  

Figure 6. Capacity Prediction Modeling Structure 

�

�
Bayesian Network is a simple yet powerful way to explore 

and understand input-output relationship of data with 
prediction ability. It is also powerful tool to analyze 
relationships among attributes when making a prediction, using 
conditional probability of observed events. Bayesian Network 
can be used as a preprocessing step to identify critical variables 
in predicting the variable of interest. 

The implementation of Bayesian Inference is pretty much 
standard across different data mining platforms. Dependency 
Network from model output is shown in Figure 7. This figure 
illustrates the degree of dependency and predictability. Form 
this diagram, we can see that AAR at SFO is most dependent 
on Runway Configuration, Ceiling, Wind Angle, Wind Speed, 
and Visibility in that order. It corresponds to widely recognized 
belief that Ceiling and Wind Angle have the biggest impact on 
airport capacity. Runway Configuration for SFO, obviously 
affects maximum AAR.  

Figure 7. Dependency Network of Weather Factors and 
AAR

V. CONCLUSIONS AND FUTURE STUDIES

In this paper, several Data Mining concepts are introduced 
and applied to runway capacity scenarios generation. Data 
Mining concepts, while still at early stage of research and 
development, showed strong possibility to significantly 
contribute to aviation research, where complexity and size of 
available data are beyond the application of simple statistical 
methods.  

Earlier research based on k-means clustering provided a 
reasonable mean to classify days with similar characteristics. 
We revisited k-means clustering and came to a conclusion that 
it lacks the sequential nature of AAR evolution, and is prone to 
dimensionality problem of k-means clustering. This review 
process also led us to explore different representation of daily 
AAR variation, such as in quarter hourly rate, hourly rate, and 
value-and-duration representation. Outcome of statistical 
analysis is heavily depends on how data is organized, and it is 
desirable to choose most suitable representation for each 
method. It is also observed that there is prevailing trend in the 
time and magnitude of the rate change at SFO, which may 
suggest that the rate change is not as dynamic as the weather 
change. 

We first construct full Directed Acyclic Graph (DAG) of 
AAR change, to understand conditional dependency of AAR at 
each time period. At SFO, we found that AARs are mostly 
Markovian, which supports applications of algorithms such as 
Sequence clustering. We also observed that there are certain 
operational restrictions, not related to weather or previous 
AAR, such as mandatory rate reduction in the evening. 
Although providing complete hierarchy of conditional 
dependency among time periods, DAG has complexity that is 
exponential in the number of nodes, which makes it less 
attractive in making predictions.  

To address the time dependent, sequential nature of AARs, 
Sequence Clustering with first-order Markov Chain is applied. 
This clustering method soft-partitions days based on 
transitional behaviors, which are captured in the transition 
matrix. The algorithm effectively captures the nearly 
Markovian property of AAR changes, as well as time of the 
day effect. Another advantage is that the analysis result 
represented in Markov Chain fits well as an input to stochastic 
optimization model. 

Relative Frequency of Rate Change by AAR
Prob(AAR|Time of Change)
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Bayesian Network is applied to understand the relationship 
of different weather factors and AAR. Dependency Network 
confirms our prior belief at SFO, that runway configuration, 
ceiling, and wind conditions are most influential factors in 
AAR determination. Knowledge from Bayesian Network, 
combined with day-of-operation weather forecast can increase 
the accuracy and reliability of capacity prediction result.  

 As an extension of this study, authors continue focusing on 
relationship between AAR and weather factors, and on how to 
model such relationship.  
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Abstract - This paper introduces an empirically driven, non-

parametric method to isolate and estimate the effects of demand 

and throughput changes to observed changes in flight delay. 

Classical queuing model concepts were used to develop a method 

by which an intermediate queuing scenario could be constructed, 

in order to isolate the delay effects due to shifts in demand and 

throughput. This method includes the development of a 

stochastic throughput function that is based entirely on data and 

as a result has two advantages: it uses non-parametric, 

empirically-based probability distributions, and capacity need 

not be estimated explicitly. The method was applied to a case 

study of the three major New York airports of LaGuardia 

(LGA), John F. Kennedy (JFK), and Newark Liberty (EWR), for 

the peak summer travel seasons of 2006 and 2007, using data 

extracted from ASPM. This case study was of particular interest 

given that these airports experienced record levels of delay in 

2007. The simulation results were consistent with both OPSNET 

and ASPM data, and were successful in quantifying the delay 

effects of demand and throughput changes from 2006 to 2007. 

Keywords - delay; demand; throughput; capacity; runway 
operations; New York airports; simulation; probability; ASPM; 

OPSNET.

I. INTRODUCTION

This paper introduces a method for estimating the effects of 
demand and throughput changes to observed changes in flight 
delay. As the delay observed over days, weeks or years 
changes from one time period to the next, we would like to 
know how much its evolvement can be attributed to demand 
and throughput changes. As a result, the motivation for this 
work is to address the following question: how can we isolate 
and measure shifts in delay caused by changes in demand and 
throughput when both are changing simultaneously? 

There is an extensive body of literature and knowledge on 
methods to predict airport capacity and delay, both analytically 
[1] and through simulation. The purpose of this work is not to 
estimate the expected capacity outright [2], but to use empirical 
data that implicitly contains information about capacity to 
quantify how simultaneous changes in demand and throughput 
affect delay. 

A new, empirically driven simulation procedure was 
developed from classical queuing concepts to address the 
question posed above. The main engine of this new procedure 

is a stochastic throughput function that was developed to have 
two key advantages. Firstly, this throughput function is driven 
by non-parametric probability distributions of throughput 
constructed from available data. Secondly, capacity need not be 
explicitly estimated, as the capacity of the operation under 
analysis is implicitly included in the probability distributions. 
This is advantageous because operational capacity is subject to 
a wide variety of factors and can be quite difficult to estimate 
well.

The simulation method is then applied to a case study of 
flight delay at the three major New York area airports: 
LaGuardia (LGA), John F. Kennedy (JFK), and Newark 
Liberty (EWR). Specifically, the arrival and departure 
operations at these airports were analyzed in order to determine 
how demand and throughput affected the delay changes 
observed between the 2006 and 2007 summer travel seasons. 

The main goal in applying this new procedure is to provide 
information about the causes of delay shifts at one greater level 
of detail. The ability to isolate individual contributions of 
demand and throughput mechanisms to delay could be helpful 
in creating more focused, effective strategies and policies to 
address the delay problem. 

II. BACKGROUND

During the summer of 2007, flight delays reached record 
high levels throughout the National Airspace System (NAS) 
and beyond. National and international headlines reported story 
after story describing the extreme wait times and missed 
connections that air travelers were subject to during this peak 
travel season. The three airports of the New York area 
experienced some of the highest delays within the NAS, with 
travelers spending 3.9 million more hours waiting for their 
aircraft to take off after leaving their gates in 2007 as compared 
to a decade earlier [3]. The increase in total operations from 
2006 to 2007 at these airports was approximately 3-4%, but the 
increase in delay was in the order of about 28% [4]. In 
addition, in 2007 the New York airports accounted for about 
40% of all delay in the NAS; in 2004 they accounted for only 
15% [5]. 

Delay metrics can be found and/or calculated with relative 
ease from several data sources. One such source is OPSNET, 
which is the official source of historical NAS air traffic delays 
and operations. In OPSNET, an airport picks up a delay each 
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time a flight is held up 15 or more minutes due to runway 
congestion, weather, air holding, traffic flow restrictions, or 
other event that would cause a flight’s realized schedule to 
deviate from its flight plan. Table 1 contains the results of 
OPSNET airport delay data extracted for LGA, EWR, and JFK 
for May through September of 2006 and 2007. The first half of 
the table indicates that the total number of operations have 
decreased at LGA and EWR, but have increased significantly 
at JFK. The second half of the table shows the number of 
flights that were delayed more than 15 minutes from their flight 
plans; it can be observed that the number of delayed flights has 
almost doubled at JFK from 2006 to 2007.  

TABLE I. OPSNET DATA

Total Number of Arrival and Departure Operations 

May-Sept 2006 May-Sept 2007 % Change 

LGA 172,142 168,616 -2.0% 

EWR 191,531 188,211 -1.7% 

JFK 169,957 197,626 +16.3% 

Total Number of Flights Delayed >15 Minutes 

May-Sept 2006 May-Sept 2007 % Change 

LGA 14,119 15,810 +12.0% 

EWR 21,707 19,809 -8.7% 

JFK 8,276 15,065 +82.0% 

III. METHODOLOGY

Delay can be estimated using the traditional queuing model, 
where a queuing scenario is constructed from a cumulative 
demand curve and cumulative throughput curve [6]. An 
example of a simplified fictional queuing scenario is shown in 
Figure 1. The demand and throughput curves are actually step 
functions because customers (or vehicles, aircraft, etc.) are 
discrete entities. However, demand and throughput can be 
approximated as continuous functions (smoothed curves) over 
sufficiently long periods of time, which simplifies calculations. 
Under a classical deterministic approach, the throughput 
function at some time t can be determined as follows:  

Q(t) = d(t) if d(t) < c 

 = c if d(t)  c

Where Q(t)  is the throughput at time t 
d(t) is the demand at time t 
c is the fixed service capacity, constant 

over all t 

n

t

Throughput1

Demand1

Delay1no

tdes tact

N

Figure 1. Queuing Scenario under Year 1 Demand and Year 1 Throughput 

Note that in Figure 1 cumulative Q(t) and d(t) are shown to 
vary linearly with time. However, this is a simplification in that 
these quantities are most often non-linear, time-dependent
functions.  

Assuming first-in first-out (FIFO) conditions, the delay 
experienced by an arbitrary customer n is the difference 
between n’s desired service time (tdes) and actual service time 
(tact). This is also the horizontal distance between the two 
curves. The number of customers queued for service at time t is 
the vertical distance between the curves at t. Where the demand 
and throughput curves meet, customers are being served 
without any delay and as a result there are no standing queues 
for service; when the curves are apart, customers must queue 
for service. The throughput curve cannot cross the demand 
curve as per Equation (1) because customers cannot be served 
until they demand service. The area between the demand and 
throughput curves is the total delay experienced by customers 
over the total observation time T (we assume that our 
observations begin at time 0): 

Jj

j

T

jQjddtdttdtQ
1

0
)]()([*)]()([

Where is total delay over time period (0,T) 
Q(t)  is the throughput function at time t 
d(t) is demand at time t 
T is total observation time 
dt is the duration of a small time slice 
j is the number of time slices over time 

T, from j=1 to j=J  

An average delay per customer can then be determined by 
dividing this total delay by the total number of customers N
that requested service over the observation time T. In these 
queuing diagrams, T could represent one day.  

Figures 1 & 3 depict fictional queuing scenarios for an 
average day in an arbitrary year (Year 1) and the following 
year (Year 2), respectively. The areas between the demand and 
throughput curves represent the total delays in Year 1 and in 
Year 2. The change in total delay from Year 1 to Year 2 is the 
difference of the two areas; however, this difference could be 
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caused by changes in demand, changes in throughput, or both. 
In order to isolate the change in delay caused solely by a 
change in demand, we can construct a “counterfactual” 
scenario where the Year 2 demands are served using the Year 1 
throughput function. The counterfactual scenario is represented 
in Figure 2, and the resulting delay is represented by the total 
area between the demand and throughput curves. The 
difference between the resulting counterfactual delay and the 
Year 1 delay (solid area in Figures 1 and 2) is the change in 
total delay due to the demand shift from Year 1 to Year 2 
(depicted in cross-hatch). The Year 2 delay (total area between 
the curves in Figure 3) minus the counterfactual delay and Year 
1 delay is the change in total delay due to the throughput shift 
from Year 1 to 2 (depicted by the unfilled area in Figure 3). 

n

Throughput1

Demand2

Delaycounter

t

Figure 2. Queuing Scenario under Year 2 Demand and Year 1 Throughput 
(Counterfactual)

Demand2

Throughput2

n

t

Figure 3. Queuing Scenario under Year 2 Demand and Year 2 Throughput 

The figures show an increase in demand and a decrease in 
throughput from Year 1 to 2, but this trend was chosen for 
illustrative purposes only. The entire process is summarized in 
Table II. 

TABLE II. DEMAND AND THROUGHPUT SCENARIOS

Demand Throughput Total Delay  in Total Delay 

for an average day in… 

Year 1 Year 1 (1) Year 1   n/a  

Year 2 Year 1 (2) Counterfactual 
(2)-(1); due to 
demand shift 

Year 2 Year 2 (3) Year 2 
(3)-(2); due to 
throughput shift  

The Year 1 and Year 2 queuing scenarios can easily be 
constructed from available data (which will be discussed in 
detail later on), but the counterfactual scenario, because it does 
not actually exist, must be generated through simulation. The 
simulation is an iterative process that takes the demand in each 
time interval and, using a throughput function, assigns a 
throughput value. All aircraft not served in a time interval 
comprise the queue in that time interval, and from this a delay 
calculation can be made. 

The classic definition of a deterministic throughput 
function was introduced in Equation (1). Based on available 
data sets that include arrival and departure demand, arrival and 
departure throughput counts, and weather information, we can 
construct a deterministic throughput function as follows: 

qo(t)=min[do(t),co(w(t))] 

Where qo(t)  is the actual recorded throughput for        
 operation type o in time interval t
do(t) is the actual demand for operation o in 
 time interval t
co is the fixed capacity for operation o
w(t) is the weather condition at time t

Weather enters into the model as either visual or instrument 
flight rules (VFR or IFR), and is included as a factor in the 
model because of the significant impact it has on operational 
capacity. The operation types are either arrivals or departures.  

The deterministic throughput function is an idealized 
situation and as such does not represent actual operations very 
well. co is a critical input to the function and several major 
assumptions are needed to determine its value(s). The 
alternative to the deterministic throughput function is a 
stochastic model that incorporates some levels of uncertainty. 
Based on the available data, a stochastic model that preserves 
the dependence of throughput on demand and weather can be 
constructed as follows: 

P(Qo(t)=qo(t)|do(t),w(t)) = fQ(qo|do,w) 

Where Qo is a random variable representing 
 throughput 
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 fQ is the conditional probability 
distribution function for throughput 

The probability that Qo takes some throughput value qo,
conditional on the demand and weather in time interval t, is 
taken from fQ. It was necessary to include capacity as an 
explicit input to the deterministic model; however, in the 
stochastic throughput function it is implicitly captured in fQ. fQ

can be constructed entirely from an appropriate data set without 
having to make assumptions about its shape and parameters. In 
fact, the non-parametric nature of fQ is one of the main 
advantages of this model. 

The counterfactual scenario discussed earlier was modeled 
using approximations of the stochastic throughput function, as 
described in Figure 4. The deterministic approximation uses 
mean throughput values conditional on demand, weather, and 
other known factors to simulate the counterfactual scenario. 
The stochastic approximation uses random number generation 
to simulate throughput values. For the purposes of the New 
York airports delay analysis, Year 1 will correspond to the time 
period of May through September 2006, while Year 2 
represents that of the same months in 2007. Modeling the 
counterfactual scenario involves assigning simulated 2007 
(Year 2) demand and 2006 (Year 1) throughput, calculating 
queue lengths in each time interval, and then calculating the 
average delay per flight over all time intervals from May 
through September. The following is the iterative procedure 
that was followed. 

Figure 4. Specifications for the Throughput Function 

1) At time interval t=1, initialize  

 = D’o,07(1) (1)Do,07
ˆ

Where is the simulated total (new & 

 queued) 2007 demand for operation 
o in time interval t

)(ˆ
07, tDo

D’o,07(t)  is the “new” 2007 demand for 
 operation type o in time interval t.

2) Find 06,
ˆ

oQ (t) conditional on )t(D̂ 07,o , Qo,07(t), & w, 
where 06,

ˆ
oQ (t) is the simulated 2006 throughput for operation 

type o in time interval t. 06,
ˆ

oQ (t) is determined using a 
stochastic throughput function. 

3) If t=T, go to Step 4. Otherwise,  

a) Set

]ˆˆ 1)(to,06Q1)(t)o,07D'(t)o,07D ˆ (to,07D[

Where  is comprised of the “new” demand of the 
current interval t in addition to the queued aircraft (those 
that are still waiting for service) from the previous time 
interval (t-1). 

)t(D̂ 07,o

b) Update t=t+1. 

c) Repeat Step 2. 

4) Calculate the average delay per flight for operation o 
for the simulated counterfactual scenario. 

oQ

t

1
(06,

ˆ

)(07,

T

t
t

T

t
toQoDt

o

)

1
)](06,

ˆˆ[*
ˆ

Where o
ˆ is the simulated average delay per 

 flight for operation type o, from t=1 to 
  t=T, in minutes 

t is the length of one time interval  

Deterministic

qo(t) = 

min[do(t),co(w(t))] 

Stochastic

P[Qo(t)=qo(t)|do(t),w(t)]  

= fQ(qo|do,w) 

The above procedure must be able to reproduce 2006 and 
2007 operations as shown in the data such that when the 
counterfactual scenario is simulated using the same procedure, 
we can be confident of the results. In other words, the 
simulation method must produce good agreement between the 
actual and simulated baselines, which entirely depends on the 
specifications of the throughput function applied in Step 2. 
Deterministic approximations to the stochastic throughput 
function were first tested. These consisted of mean counts 
conditional on demand and weather, in addition to time of day 
effects and queue presence indicators, were first tested. 
Stochastic approximations of the throughput function, which 
involved randomly drawing from probability distributions of 
throughput conditional on demand and weather, were also 
tested. The methods above did not satisfactorily reproduce 
2006 and 2007 operations, most likely due to underlying 
mechanisms not controlled for in the simulation. These 
phenomena might include serial correlation of demand and 
throughput between the quarter-hour intervals, arrival & 
departure interaction effects, and more. Finally, a stochastic 
approximation method that compares probability distributions 
of 2006 and 2007 counts, conditional on demand and weather, 
was tested. This approach, herein referred to as the “compared 
distribution” method, is able to, by design, identically 
replicates the baseline scenarios. As such the compared 
distribution method was chosen for use here.

Deterministic 

Approximation 

Stochastic 

Approximation 

In the compared distribution method, o,06(t) is simulated 
in the following manner by starting with the 2007 (Year 2) 
data. All steps below are “substeps” of Step (2) from above. 

Q̂
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The compared distribution method was used to generate the 
counterfactual scenarios for all New York airports under 
analysis. Note that the compared distribution method (as well 
the other stochastic approximation method) preserves time of 
day, day of week, and monthly effects from one year to the 
next, because the simulation is run time sequentially from t=1 
to T in both 2006 and 2007. 

1) Construct cumulative probability distributions (cdf) of 
counts conditional on demand and weather, F(Qo,07|Do,07,w07),
for 2006 and 2007. 

2) Find the cumulative probability of the empirical 2007 
count for operation type o, conditional on 2007 demand and 
2007 weather condition for some time interval t, 
F(Qo,07|Do,07,w07).

3) Based on the simulated 2007 demand, 07,oD̂ , find the 
interval in the 2006 count cdf that the 2007 probability found 
in the previous step falls into. From this, lower and upper 
bounds (FL(Qo,06| 07,oD̂ ,w06) and FU(Qo,06| 07,oD̂ ,w06),
respectively) of the 2006 cdf and corresponding 2006 
simulated count values (Qo,06,L and Qo,06,U, respectively) are 
obtained. 

4) Construct a probability value, f(x), for the simulated 
2006 count based on the 2007 count cdf’s position between 
the lower and upper bounds of the 2006 cdf interval: 

)06w,o,07D |o,06(QLF-)06w,o,07D |o,06(QUF

)07w,o,07D|o,07F(Q-)06w,o,07D |o,06(QUF

)Lo,06,Qo,06QPr(f(x)

ˆˆ

ˆ

ˆ

f(x)1)Uo,06,Qo,06QPr( ˆ

5) Generate random number n. If n  f(x), set count to 
lower bound 2006 count Qo,06,L; otherwise set count to upper 
bound Qo,06,U.

There are fewer count data recorded at very high demand 
values, and as a result the cumulative probability distributions 
of counts conditional on high demands are often based on small 
and incomplete data sets. To avoid reliance on probability 
distributions constructed using sparse data, all counts recorded 
with demands beyond the capacity threshold were combined 
into a single truncating probability distribution at the cut-off 
demand. For all simulated demands higher than that of the 
demand truncation point, this combined probability distribution 
is used for count simulation.  

IV. DESCRIPTION OF DATA

The Aviation System Performance Metrics (ASPM) 
database is part of the Federal Aviation Administration’s 
(FAA’s) Operations and Performance Data system. Data from 
the “Download/Airport” section of the ASPM database was 
used for this analysis. The data includes hourly as well as 
quarter-hourly arrival and departure counts, demands, and 
visibility conditions (either visual (VFR) or instrument (IFR) 

flight rules). The data is available for 77 major airports in the 
United States. 

ASPM count data are based on individual aircraft landing 
and take-off times as supplied through Airline Service Quality 
Performance (ASQP) data or Enhanced Traffic Management 
System (ETMS) messages.  

ASPM provides the perfect data set to construct the 
counterfactual scenarios described in the previous section; 
however, some particular characteristics of the ASPM demand 
data selected for this analysis must be noted. Firstly, the 
demand data used here is based on the updated flight plan just 
before a flight is due to take off at the origin airport; it does not 
reflect demand as defined by airline schedules. As a result, for 
flights arriving at a given airport, the delay calculated in this 
analysis includes all delays that occur between the filed flight 
plan take-off time (demand) and actual landing time (count), 
but does not include the delays between scheduled and flight 
plan take-off times (although this information can also be 
found in the ASPM dataset). For flights departing the airport, 
the delay calculated in this analysis includes the delay incurred 
between the time that the flight was scheduled to depart 
according to the flight plan, and the time that it actually does 
depart. As a result, the calculated delay will not include the 
effects of ground delay programs (GDP), the effects of air 
traffic management (ATM), plus other mechanisms that would 
cause a flight to deviate from its schedule. Secondly, the 
reported demand represents the total number of aircraft that 
were available for operation o (arrival or departure) in time 
interval t. An aircraft will count towards demand in each and 
every time interval starting in the one when it was first 
available to land/depart until the time interval when it is 
actually able to do so. As a result, the demand Do(t), reported in 
t includes the “new” demand D’o(t), plus the queued (unserved) 
aircraft from the previous time interval [Do(t-1)-Qo(t-1)]. D’o(t) 
for each 15-minute interval is easily calculated from the ASPM 
dataset, and is used for input to the simulation. 

1)](toQ1)(to[D(t)oD(t)oD'

Where D’o(t) is the “new” demand for operation 
 type o in time interval t

t is the length of one time interval  
 Do(t)  is the total demand for operation 

o in time interval t
 Qo(t-1) is the throughput for operation o in 

 time interval t-1.

If an aircraft’s demand and service times fall within the 
same or adjacent intervals, its delay is recorded to be zero. For 
instance, if time intervals are 15 minutes in length, an aircraft 
will not be counted towards delay if its demand and actual 
service times are, for instance, 1 minute and 14 minutes into 
the interval respectively. Also, ASPM counts will never exceed 
the total demand in any given time interval, meaning that 
operations which occur earlier than scheduled are not counted 
as negative delay or a delay savings. 
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Data from LGA, EWR, and JFK were obtained for May 1 
through September 30 2006, and May 1 through September 30 
2007. From the data, we can derive the following information 
about demands, throughput, and delay. Figure 5 displays 
cumulative arrival demands by hour averaged over all days 
from May 1 through September 30. It can be observed that the 
total daily demand (averaged over all days) at LGA and EWR 
has decreased (between 2% and 3%) from 2006 to 2007 while 
it has increased significantly (by approximately 18%) at JFK. 
As expected, departure demands exhibit very similar trends and 
as a result are not displayed here. Figure 6 displays the average 
arrival count recorded during VFR conditions plotted against 
demand. The average arrival count per demand was calculated 
by averaging all counts recorded at each demand level from 0 
to 70+. Observe that the arrival counts match arrival demands 
up to a certain point, after which this trend stops as the facility 
cannot serve at the demanded rate any longer. After this peak 
count level, arrival counts remain steady or begin to decrease 
until the slope of the curve flattens out. Also beyond the peak, 
all demand cannot fully be served within the same time period 
any longer. The peak arrival count is the realized arrival 
capacity for a given airport [7]. Based on this simple yet 
reliable capacity estimation, Figure 6 suggests that the arrival 
capacities of all three airports have decreased from 2006 to 
2007. One can also observe that higher arrival demands were 
reported at LGA and JFK in 2007, which suggests that there 
were longer queues, which in turn suggests that aircraft waited 
longer for service and therefore experienced greater delay in 
2007. The same phenomenon, however, was not recorded at 
EWR. A similar analysis can be applied to the averaged 
departure counts in Figure 7, which implies that departure 
capacities have dropped at LGA and EWR but have increased 
at JFK from 2006 to 2007. However, much higher demands 
(and therefore queuing) were reported at JFK in 2007, which 
may be the result of increased demand and/or more severe 
demand peaking effects, as the data does not seem to suggest 
that capacity has decreased. 
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Figure 5. Cumulative Arrival Demands (Average Day of Ops), by Hour 
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Figure 6. Average Arrival Counts vs. Demand, in VFR, by Quarter-Hour 
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Figure 7. Average Departure Counts vs. Demand, in VFR, by Quarter-Hour 

The average delay per flight was also calculated for arrival 
and departure operations at each airport from May through 
September of 2006 and 2007 as per Equation (7). Recall that 
delay is calculated against flight plan demand, and the data is 
tabulated in 15-minute intervals (such that t=15 min). The 
data set contains T=14,688 quarter-hour intervals. 

The delay results are summarized in Table III. 

TABLE III. AVERAGE DELAY PER FLIGHT, MAY-SEPT 2006 & 2007 

Average delay per flight (min) Change
(from 2006 to 

2007)2006 2007 

LGA Departure 8.56 10.72 +2.16 

Arrival 8.85 10.7 +1.85 

EWR Departure 11.53 9.95 -1.58 

Arrival 11.46 12.06 +0.60 

JFK Departure 12.06 14.38 +2.32 

Arrival 3.23 8.11 +4.88 

The average delay per flight increased at both LGA and 
JFK between 2006 and 2007, and significantly so for JFK 
arrivals. Average delay has decreased by about 1.6 minutes per 
departing flight at EWR, and for arrival flights it has increased 
0.6 minutes. These results from ASPM are consistent with the 
OPSNET data discussed previously. 

Modeling the counterfactual scenarios involves recreating 
the structure of the ASPM demand and count data by assigning 
simulated 2007 demand and 2007 throughput values, and then 
calculating queue lengths and average delay in the same 
manner as was done for the data shown in Table III.  

V. RESULTS

The simulation results are summarized in Table IV. The 
reported counterfactual delays are the average of 10 simulation 
runs for each scenario. The standard deviations of the 10 runs 
are also reported. 
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TABLE IV. DELAY RESULTS

Average Delay per 

Flight (min) 

 delay

due to  

 demand 

(implies)

 delay 

 due to 

throughput

(implies)

SD**

2006 CF* 2007 

LGA 

Departure 8.56 6.49 10.72 -2.08 4.24 0.115 

Demand has 

decreased

Throughput has 

decreased

Arrival 8.85 6.03 10.70 -2.82 4.67 0.097 

Demand has 

decreased

Throughput has 

decreased

EWR

Departure 11.53 5.78 9.95 -5.76 4.18 0.064 

Demand has 

decreased

Throughput has 

decreased

Arrival 11.46 6.65 12.06 -4.81 5.41 0.097 

Demand has 

decreased

Throughput has 

decreased

JFK

Departure 12.06 19.09 14.38 7.03 -4.71 0.138 

Demand has 

increased

Throughput has 

increased

Arrival 3.23 4.91 8.11 1.68 3.20 0.084 

Demand has 

increased

Throughput has 

decreased

* Counterfactual, referring to scenario with 2007 demand and 2006 throughput 

** Standard deviation of counterfactual delay, for 10 simulation runs made 

The results are consistent with the trends seen in the 
OPSNET data, as well as the ASPM data presented in the 
previous section and used for this simulation. At both LGA and 
EWR, arrival and departure demand changes have results in 
decreases in arrival and departure delay, implying that demand 
has declined. In addition, delays attributed to changes in 
throughput have increased, which would imply that throughput 
has dropped as well. At JFK, arrival and departure delays have 
increased due to changes in demand, suggesting that demands 
have gone up (with the departure demands having caused 
relatively significant increases in delay). However, increases in 
departure throughput have caused departure delays to drop 
while arrival throughput may have decreased and caused a 
subsequent increase in arrival delay.  

The counterfactual scenario can also be constructed by 
swapping the demand and throughput years and simulating 
2006 demand with 2007 throughput; in other words, using the 
same procedure described above but with the years switched. 
In this case, the difference between the counterfactual and 2006 
base year delays can attributed solely to changes in throughput, 
and the difference between the 2007 base year and 
counterfactual scenario delays to changes in demand. Table V 
contains the results of this simulation. 

TABLE V. DELAY RESULTS (COUNTERFACTUAL SCENARIO II) 

Average Delay per 

Flight (min) 

 delay

due to  

 demand 

(implies)

 delay 

 due to 

throughput

(implies)

SD**

2006 CF* 2007 

LGA 

Departure 8.56 13.08 10.72 4.52 -2.36 0.093 

Throughput has 

decreased

Demand has 

decreased

Arrival 8.85 13.36 10.70 4.51 -2.66 0.287 

Throughput has 

decreased

Demand has 

decreased

EWR

Departure 11.53 20.33 9.95 8.80 -10.38 0.088 

Throughput has 

decreased

Demand has 

decreased

Arrival 11.46 16.40 12.06 4.94 -4.34 0.351 

Throughput has 

decreased

Demand has 

decreased

JFK

Departure 12.06 9.10 14.38 -2.97 5.29 0.060 

Throughput has 

increased

Demand has 

increased

Arrival 3.23 6.52 8.11 3.29 1.59 0.084 

Throughput has 

decreased

Demand has 

increased

* Counterfactual, referring to scenario with 2006 demand and 2007 throughput 

** Standard deviation of counterfactual delay, for 10 simulation runs made 

The delay trends in Tables IV and V are consistent with one 
another. It also appears that the magnitudes of the changes in 
delay are consistent between the two analyses at LGA, EWR 
arrivals, and JFK, although there is greater discrepancy in the 
departure results for EWR. Because demand, throughput and 
delay are not necessarily related linearly, the “direction” in 
which the counterfactual scenario is simulated could have a 
significant effect on the delay results (of Tables IV and V). 
However, the choice regarding which way to simulate the 
counterfactual scenario is arbitrary, and consequently the two 
sets of delay results may serve to validate the simulation 
process. The differences between the two sets of results for 
EWR departures may be due to other dependent effects not 
accounted for or readily apparent in the simulation process. 
Also, as demands increase, delays also increase at much faster 
rates; conversely, when demands are lower an increase in 
throughput can result in a significantly greater delay reduction 
[2]. This may account for the fact that the Table V results for 
EWR show much larger changes in delay between the two 
years than Table IV. 

We can make a few inferences based on the results in 
Tables IV and V above. Firstly, of the three airports JFK has 
experienced the largest overall increase in delay due to changes 
in throughput and demand. In particular, a substantial growth 
in arrival and departure demands has contributed to the large 
increase in delay at JFK. Departure throughputs have not 
similarly increased to offset this rise in demand, while the 
problem in the arrival operations is further exacerbated by a 
decrease in throughput. Decreased throughput does not 
necessarily mean a drop in airport capacity. In fact, sources at 
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the FAA believe that fleet mix changes in 2007 at JFK led to 
higher minimum in-trail separations, which would certainly 
reduce throughput. It has also been suggested that New York 
airspace controllers had grown more conservative about 
aircraft separations due to safety concerns. This would support 
the findings of Figures 6 and 7, which suggest that capacities 
have generally decreased (except for JFK departures) between 
2006 and 2007. The drop in demand at LGA and EWR (Figure 
5) occurred alongside a drop in throughput, and generally 
resulted in an overall increase in delay at these airports. 

VI. CONCLUSIONS

The New York airports experienced a very significant rise 
in delays over the summer of 2007 compared to previous 
periods, most specifically that of summer 2006. The purpose of 
this work was to estimate how much of this change in delay 
was due to demand changes and how much was due to 
throughput changes. Because demand and throughput change 
simultaneously, the purpose of this work was to quantify how 
changes in each contribute to a change in delay, and ultimately 
provide information about the causes of delay at one greater 
level of detail. To do this, an empirically driven simulation 
procedure was developed from classical queuing concepts, and 
applied to a case study of the three major New York area 
airports in summer 2006 and 2007. This procedure consists of a 
stochastic throughput function whose main advantages are that 
it uses non-parametric, empirically-based probability 
distributions and that capacity need not be estimated explicitly. 
The throughput function was used to recreate the structure of 
the ASPM data and construct the intermediate “counterfactual” 
scenario, by which the delay changes from 2006 to 2007 could 
be attributed to either demand or throughput.  

The simulation results confirmed the OPSNET and ASPM 
data results. The counterfactual scenario was first constructed 
with 2007 demand and 2006 throughput. At both LGA and 
EWR, arrival and departure demand changes have results in 
decreases in arrival and departure delay, implying that demand 
has declined. In addition, delays attributed to changes in 
throughput have increased, which would imply that throughput 
has dropped as well. At JFK, arrival and departure delays have 
increased due to changes in demand, suggesting that demands 
have gone up. However, increases in departure throughput have 
caused departure delays to drop while arrival throughput may 
have decreased and caused a subsequent increase in arrival 
delay. The counterfactual scenario was also constructed with 
2006 demand and 2007 throughput, and the results of this 
simulation served to validate the previous simulation results. 

VII. FURTHER WORK

This procedure is a starting point from which we can 
further analyze and deconstruct the causes of operational delay 
at airports in terms of demand and throughput. However, 
knowing only the demand and throughput effects on delay has 
limited importance; it would be beneficial to identify factors 
other than flight rule conditions that influence demand and 
throughput. This could, in turn, be used to re-specify the 
throughput function to control for additional factors not yet 
included in the model. Phenomenon yet uncontrolled for might 
include fleet mix changes, and arrival/departure interaction 
effects (the model as of yet assumes arrivals & departures to be 
independent of one another). Another direction for future work 
is to base delay calculations on a demand scenario other than 
that of the flight plan, such as demand recorded at the time 
flights are scheduled by the airlines to arrive or depart. Using 
this, the effects of GDP as well as all the effects of ATM at 
origin airports could be incorporated into the analysis. 
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Abstract—We analyze how large gaps between the planned
and realized number of aircraft into flight sectors propagate
through the European- and the Japanese Airspace. For this we
analyze the sample cross-correlation matrix of the most congested
part of the networks. Because of the motion of aircraft, gaps
propagate to neighboring sectors, expecting positive correlation
coefficients. The question in the analysis is whether there are
unexpected coefficients. Such coefficients would be caused by
traffic controllers or flow managers who compensate for strong
gaps by re-routings or speed adjustments. Such strategies would
often lead to negative correlation coefficients. Our results show
that meaningful correlations appear on two levels: (i) locally,
that is between a sector and its direct neighbors and (ii) globally
on ‘traffic highways’, that is between sectors that are connected
through a flight route with high traffic densities. This is true
for both, the European- and the Japanese Airspace. Moreover,
all correlations are positive and their time-lags correspond to
the average travel times. No unexpected correlations have been
found. We conclude that no systematic strategies to compensate
strong delays are applied by controllers. The results are useful
to justify predictive congestion models for future flow planning.
They also give a first insight into how controllers deal with their
workload, although a more detailed analysis is required to explore
this topic.

Index Terms—Flow analysis, correlation analysis

I. INTRODUCTION

Airspace is divided into geographical regions, called sectors.

A flight plan is a sequence (S1, t1), ..., (Sn, tn) of sectors

Si and entry times ti in the sector. Due to uncertainties

(weather conditions, congestion etc.), aircraft can deviate from

their flight plans. [BLHM05] classify the major sources of

uncertainty as

• Demand uncertainty: flights fail to meet planned depar-

ture, arrival or en-route travel times. Contributing factors

are mechanical problems, boarding passengers or weather

conditions.

• Capacity uncertainty: airport and airspace throughput

levels vary. Contributing factors are weather conditions

and changes in flight sequences that disturb scheduled

departure or arrival spacing.

• Flow control uncertainty: actions are taken by the traf-

fic controllers in response to demand and capacity un-

certainty. Examples are re-routing, re-sectorization and

temporary capacity limitations. The human element of

decision making adds another layer of uncertainty to the

whole system.

Deviations from flight plans lead to gaps between the planned

and the real number of aircraft entering flight sectors. For

example in the year 2004, 17.7 % of European flights

departed- and 18.5 % arrived more than 15 min behind their

schedule [EUR06].

Obviously, a gap between planned and real number

of entries in a sector S in time slot t propagates to its

neighboring sectors in slot t+1, because aircraft cannot stand

still. On the other hand, pilots and air traffic controllers can

compensate gaps by re-routing or speed adjustments of all

aircraft.

In this article we analyze past flight data to see how such

gaps propagate in reality through the airspace. Are there

strategies of controllers to compensate the gaps successfully?

We will look at (i) local propagation, that is propagation

between a sector and its direct neighborhood and (ii) global

propagation, i.e. between a sector and any other sector in

the system. Based on such knowledge flow planning can be

improved, because systematic gaps can be controlled, once

their mechanisms are understood.

The article is divided into two parts and a conclusion: in

the first part we explain the method and give some examples

from literature. In the second part we report our results. We

conclude with a critical comment and motivate future work.

II. METHOD AND RELATED WORK

We consider Zt = [Z1t, Z2t, ..., Zmt]
′, t, Zit ∈ Z as a

random process where Zit represents the gaps between

planned and realized number of aircraft entering sector i
in time slot t. Our aim is to study the correlation structure

of the process. Positive correlation between two sectors i
and j in time slots t1 and t2 has the meaning that gaps

above average in sector i and slot t1 are associated with

gaps above average in sector j and slot t2. As mentioned

above, we expect such correlations between neighboring

sectors. But we are more interested in unexpected correlations

in the real traffic data. For example, take a sector with a
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crossing of two routes. When a traffic peak on the first route

is predicted to arrive at the sector some time ahead, the

controllers could coordinate with sectors on the second route

to re-route aircraft for compensation. Such a strategy would

cause negative correlation between the sectors along the two

routes. Likewise, vanishing correlation between two sectors,

when conditioned on the value of other sectors, might help

reveal network effects.

Related work from the ATM domain can be found in the

analysis of flight data on a sector level: [WCGM03] and

[WSZ+05] analyze uncertainties in sector demand. One of

their observations is that flow control actions against con-

gestion are visible in the data, in cases that the predicted

peak counts are greater than some alert value displayed in the

Enhanced Traffic Management System (ETMS). [RSWB06]

analyze radar data to identify traffic flows in the U.S. airspace.

They define a flow as a cluster of aircraft with similar

trajectory properties. A trajectory is a high-dimensional vector

of geographical components. They apply several clustering

techniques to the data. But even after enhancing the data set

with additional features (e.g. aircraft type), they conclude that

none of the algorithms provides satisfactory results for practi-

cal purposes. A correlation analysis of sector data, as proposed

in our article, has not been identified in literature review. This

might be due to the known difficulties in the interpretation

of auto- and cross correlation coefficients [Ken89], [Dig90].

On the other hand, correlation analysis is the first step in

an analysis of multiple time series, as for example applied

to highway traffic prediction in [KP03]. In what follows, we

analyze the risk of misleading coefficients in our data before

visualizing the most interesting correlation patterns. This is

exploratory work with the aim to generate new hypotheses

about the phenomenon.

A. Inference for cross-correlation matrices

In this part we define the sample correlation matrix func-

tion between multiple time series and derive bounds for the

variability of its coefficients.

1) Estimation: We use the standard estimators of lag-k
crosscorrelation

ρ̂ij(k) =
γ̂ij(k)

[γ̂ii(0)γ̂jj(0)]1/2

with sample crosscovariance elements

γ̂ij(k) =
1

n − k

n−k∑
t=1

(Zit − Z̄i)(Zj,t+k − Z̄j)

where

Z̄i =
1

n

n∑
t=1

Zit

are the component-wise sample means of an observation

consisting of n time slots.

These estimators are asymptotically normally distributed

[Ken89]. Modifications exist to address issues of bias and
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Figure 1. Histogram of estimated correlation coefficients. Bold: empirical
distribution. Blue: empirical null distribution. Triangles: local false discovery
rate. Data: Japanese Airspace.

high-dimensionality [Ken89], [LW04] and [SS05]. A disad-

vantage of the latter approaches is that the sample properties

of their estimators are not known. Note also that the matrices

do not have to be invertible for our study.

2) Sample Variability: Our objective is to decide whether

the coefficients of the correlation matrix differ significantly

from 0. For this, the variance of the sample correlations has

to be known. For a large number n of independent observations

the variance of a single sample correlation coefficient under

the hypothesis that the true correlation is 0 is 1

n−1
[Sap06].

There are two reasons why this result cannot be used directly

in our analysis: (i) our observations are not independent and

(ii) there is a large number of hypotheses to be evaluated.

a) Bartlett: When observations are dependent, a result

from Bartlett gives insight into the problem [KSO83]. It shows

that when the stationary series Zi(t), Zj(t) are uncorrelated

and estimated from a single realization

V [ρ̂ij(k)] =
1

n − k

∞∑
s=−∞

ρii(s)ρjj(s) (1)

This means that even for large n, the variance of the

sample correlations depends on all correlations of the original

processes, which are generally unknown. Consequences are (i)

a risk of ‘spurious’ correlations and (ii) that it is impossible

to estimate these quantities directly from a finite sample.

In practice, approximations are often used, for example by

assuming that the individual series correspond to white noise

(for example after pre-whitening).
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Figure 2. Airspaces. Left: European Central Airspace. Right: Japanese Airspace.

�
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�

��
lmax

ρmax

0.01 0.05 0.1 0.2

10 1.002 1.05 1.20 1.8
75 1.015 1.375 2.50 7.0

100 1.02 1.50 3.00 9.0
150 1.03 1.75 4.00 13.0

Table I
VARIANCE INFLATION AS A FUNCTION OF SERIAL CORRELATION

To characterize the risk of spurious correlation in our

instance, we calculate the variance inflation for several depen-

dency structures compared to independent observations due

to Bartlett’s formula. Looking ahead to Figure 4 we used

scenarios with a low amount of constant dependency ρmax

up to time-slot lmax in order to obtain upper bounds for the

inflation. The dependency structures are the following:

ρii(s) = ρjj(s) =

{
ρmax s < lmax

0 else

Under this structure, equation 1 becomes

V (ρ̂ij(k)) <
1

n − k

∞∑
s=−∞

ρ2
ii(s) =

1

n − k
(1 + 2lmaxρ2

max)

Table I shows nV (ρ̂ij(1)) for different values of ρmax and

lmax: For example, for a correlation of ρmax = 0.1 up to lag

lmax = 10, an inflation of 20% would occur. For stronger

correlations, an explosion of the variance can be seen (bottom

right part of the table). Again, looking ahead to Figure 4,

we expect weak correlations in our series. We can expect

30 - 70 % increase of variance with respect to independent

realizations.

b) False discovery rates: The second problem is that of

the large number of coefficients to be evaluated. Classical

hypothesis tests would expect a large number of rejections

by their very nature [Efr04]. [ETST01] proposes a heuristic

method to identify a number of ‘interesting’ coefficients in

large-scale testing contexts. They define the local false dis-

covery rate

fdr(ρ̂) ≡ f0(ρ̂)/f(ρ̂)

where f0(ρ̂) is the density of uninteresting coefficients and

f(ρ̂) the density of all coefficients. fdr is the expected

proportion of of null coefficients in a selection of coefficients

with value ρ̂. Interesting coefficients are those with

fdr(ρ̂) < c, a threshold value, comparable in meaning

with the significance level of classical tests.

Figure 1 shows the histogram of all 21*21*30 = 13230

cross-correlation coefficients in our matrix for the Japanese

Airspace (please see below for details on the selection of the

21 sectors). It has been estimated from 11 days of data, each

consisting of 288 observation intervals. The bold line (green)

is the empirical distribution, fitted by a polynomial of degree

3. The dotted blue line is the empirical null distribution,

fitted by Efron’s method. It is a normal distribution with

unknown variance. Both distributions look almost identical;

small differences can be seen at the peak and ρ̂ ∼ 0.1.

The triangles mark the interval, outside which the computed

fdr < 0.2. Finally, the pink bars represent the estimated

mass of non-null coefficients. The majority of their mass lies

inside the fdr interval. We obtain three results: (i), correlation

coefficients above 0.12 can be regarded as interesting, (ii), the

standard deviation of the empirical null distribution is 0.033,

which is ≈ 86% larger than the null variance for independent

observations (for 11 days, each 288 observations). This is in

agreement with the results from the previous paragraph. And

(iii), a risk that interesting coefficients will be undetected

exists.

To summarize, we analyzed how dependent observations
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and a large number of variables affect statistical methods to

infer significant correlation coefficients. The first approach

showed that a variance inflation has to be expected and the

second that there is risk of leaving interesting coefficients

undetected. Both methods suggest a rather small critical value

for interesting coefficients. At this point we remind that we

wish to explore meaningful patterns of correlation rather than

single coefficients. Subjective judgement may prove useful in

this task.

III. RESULTS

We analyzed correlations in the European and in the

Japanese airspace. The left part of Figure 2 shows the most

congested part of the European Airspace. It comprises 31

sectors covering London, Zurich and Berlin, belonging to 9

control centers. The daily number of aircraft is about 8000

for this area. The yellow routes are from North to South and

the brown ones from South to North. Between London and

Frankfurt, one can see a bi-directional high density route.

The Japanese airspace can be seen in the right part of Figure

2. Our area of interest contains 21 sectors, covering Fukuoka

(south), Tokyo (center) and Sapporo (north). These sectors

belong to 3 control centers. For these sectors, more than

85 % of the entry-times of the aircraft could be determined

accurately. About 4000 aircraft use this part of the airspace

every day. One can see high traffic routes from/to Tokyo

(yellow, blue) as well an important number of over-flights

(pink).

More formally, we consider the vector of random processes

GAPt = PLNt −REALt, t ∈ R, where the ith component

GAPi,t = PLNi,t − REALi,t represents the gaps between

the planned and realized number of entries in sector i. The

process is observed in 5 minutes time intervals, leading to

288 samples per day. For the European Airspace, 91 week-

days are available (Mon-Thu) in the summer period May, 13

- Sept. 29. 2004. For the Japanese Airspace, 11 days from

August and November in the Year 2006 are available.

c) Time-Plots: Typical time plots of one component

process GAPi,t can be seen in Figure 3. The top panel

shows a sector from the European Airspace, the bottom

shows an example from the Japanese Airspace. In both, the

gaps fluctuate around 0, the variance looks constant during

the day (7-19h). The marginal distributions of the processes

turned out to be symmetric, as expected (not shown). In

the following, we assume that the component processes are

second-order stationary during the day.

d) Cross-correlation plots: We now analyze in more

detail cross-correlations between local neighbors (local

correlation) and between far lying sectors (non-local

correlation). Figure 4 shows typical cross-correlation matrices.

In the left panel, the 2x2-matrix from the two neighboring

sectors T01 and T27 from the Japanese airspace are shown.

The diagonal elements correspond to the autocorrelation

functions (acf) up to lag 30, corresponding to 2h30. Both

Airspace Type avg max

Europe
local 0.19 0.34
non-local 0.16 0.24

Japan
local 0.24 0.28
non-local 0.23 0.36

Table II
SUMMARY STATISTICS FOR CORRELATION COEFFICIENTS. TOP:

EUROPEAN AIRSPACE. BOTTOM: JAPANESE AIRSPACE.

Airspace Type # coeffs lag-range

Europe
local 1.29 [-4, 3]
non-local 1.09 [-6, 6]

Japan
local 4.3 [-4, 2]
non-local 5.2 [-8, 8]

Table III
SUMMARY STATISTICS FOR CORRELATED SECTORS. TOP: EUROPEAN

AIRSPACE. BOTTOM: JAPANESE AIRSPACE.

show no peaks. The off-diagonal elements display the

cross-correlations for positive lags in the upper diagonal

ρ(GAPit, GAPj,t+k) and negative lags in the lower diagonal

ρ(GAPit, GAPj,t−k). A peak at lag -3 has value 0.26. Its

neighbors (lag -2 and -4) show still some higher value than

the remaining ones. These three coefficients are the only

interesting in the plot.

For more insight into correlation between far lying sectors,

we analyze the two sectors EXH and EUY from European

Airspace. They are separated by the two sectors EUF and

EXE. Their correlation matrix function is plotted in the right

panel of Figure 4. A decay of autocorrelation, starting from

-0.1, can be seen. A peak in the cross-correlation is found at

lag -5.

Table II summarizes the significant correlations of the full

cross correlation matrices. In Europe, local correlations are

on average 0.19 and have a maximum of 0.34 (columns 2,

3). The non-local correlations are on average 0.16 and have

a maximum of 0.24. In Japan, the local correlations are on

average 0.24 with a maximum of 0.28. And the non-local

correlations are on average 0.23 and have a maximum of 0.36.

All correlation coefficients are positive. Table III summarizes

how two sectors are correlated. Of interest are the number of

significant coefficients (at different lag values) and the time

lag of these coefficients. In Europe, for locally correlated

sectors, 77 % have exactly one significant coefficient, 19 %

have two and 4 % three or four, leading to an average of

1.29 coefficients (column 2). In the Japanese Airspace, the

average number is 4.3. For non-locally correlated European

sectors, 91 % have exactly one and 9 % have two significant

coefficients, averaging 1.09. The Japanese is higher again,

with 5.2 significant coefficients per correlated sectors. Local

correlations occur between lags -4 and 3, and non-local

ones between lags -6 and 6 (column 3) in the European and

between lags [-4,2] and [-8,8] in the Japanese Airspace. The
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Figure 3. 3 successive week-days of gaps between planned and realized traffic at a sector entry, 5 minutes time-scale. Top: Sector from European Airspace.
Bottom: Sector from Japanese Airspace. Daily repeating patterns. Constant mean around 0, constant variance over time (except night hours).
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Figure 4. Cross-correlation matrices. Left: local neighbors. Right: non-local sectors
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Figure 5. Visualization of the cross-correlation matrix. Left: Europe, Right: Japan.

higher average values in the Japanese Airspace have been

analyzed further: there are generally many coefficients close

to the critical value. This can be attributed to the higher

sample variability as compared to the European data, because

of the smaller sample size and because of the quality of the

Japanese Airspace data [Gwi08].

The weak autocorrelation of the component processes and

the sparse number of peaks in the crosscorrelation matrices

suggest that the correlation structure in the system (i) does

not contain spurious correlations because the component

processes do not imply a severe variance inflation and (ii)

has an intuitive explanation: all coefficients lie in the range

of expectation since the traversal time for one sector lies

between 6 and 10 minutes.

e) Visualization of correlation matrix: The correlation

matrix functions for all 31 European and all 21 Japanese

sectors were estimated up to lag k = 30, corresponding to

2.5 hours.

Figure 5 visualizes the results. An arrow between two

sectors (i, j) represents a significant correlation at least one

lag k. Positive and negative lags have opposite arrows. Local

correlations are drawn in red. They reproduce almost the route

network. For example, in the central flow (Frankfurt-London),

they are bi-directional, whereas in the flow from Zurich to

London, they are mono-directional. Non-local correlations are

plotted in green. They reproduce only routes with high traffic

densities. No correlations between two sectors that are not

connected by a route are found.

IV. CONCLUSION AND FUTURE WORK

We analyzed how gaps between planned and realized traffic

propagate through the European and the Japanese airspace. For

this we did a correlation analysis for the most congested part of

the systems. Because of the motion of aircraft, gaps propagate

to neighboring sectors, expecting positive correlation coeffi-

cients. The question in the analysis was whether there are

unexpected coefficients. Such coefficients would be caused

by traffic controllers or flow managers who compensate for

high gaps by re-routings or speed adjustments. Such strategies

would often lead to negative correlation coefficients. We first

analyzed the risk of obtaining misleading coefficients in a large

correlation matrix. Then, we analyzed data from the European

and Japanese airspace.

Our main results were:

• European and Japanese Airspace show similar patterns.

• significant cross-correlations appear on two levels: (i)

locally, that is between a sector S and a direct neighbor

and (ii) on high density routes, that is between two sectors

S1, S2 that are connected through a flight route with high

traffic densities.

• all correlations are positive.

• their lags correspond to the average traversal times.

No unexpected correlations have been found, and none of

the correlations appears to be induced by the autocorrelation

structure of a component process.

On the other hand one can argue that systematic re-routings

would cause only weak correlations. Also, correlation assumes

that the only source of covariation lies in the two variables

under study. Indeed, the average strength of correlation was
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0.2 in our data sets. This means that the non-existence for such

strategies cannot be concluded; it can only be confirmed that

such strategies currently show very weak effects in the counts

of aircraft entering flight sectors. Such information is useful

for demand prediction based on traffic densities: network-

effects from far-lying sectors appear to have negligible effect.

In order to get a deeper understanding of how controllers treat

high workloads, a more specific model should be built. As a

next step, inspiration for the construction of semi-empirical

models (of conflict probabilities) can be found in the work of

[Jar03]. This work is a step toward the identification of the

mechanisms that lead to congestion in air traffic. Based on

this, flow planning can be improved by taking into account

the traffic predictions.
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VI. VALIDATION

Figure 6 shows 4 scatter plots of variables in the system.

The two upper ones are from the Japanese- the two lower

ones from European Airspace. In each panel the bold line is

the sample mean. It is reasonably linear. No other functional

form of dependency is visible, neither. The first and third have

significant coefficients of linear correlation. The second and

fourth ones have not. Thus, linear correlation as a measure for

dependence seems justified, even if the dependency between

the variables is visibly weak.
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Abstract— This paper is a continuation of previous
research on optimal airspace configuration. It is expected
to improve the predictability and the flexibility of the
airspace management process by computing realistic pre-
dictions of the sectors opening schedules in En-route ATC
centers. In previous papers, we selected relevant complexity
metrics to predict the controllers workload, using neural
networks trained on recorded airspace configurations. We
also introduced new algorithms to build optimally balanced
airspace configurations, exploring all possible combinations
of elementary sectors.

As a result of this previous work, we were able to
compute realistic schedules on a whole day of traffic, using
complexity metrics that were computed from recorded
radar tracks. The raw metrics, however, showed high vari-
ations in time which caused a "configuration switching"
phenomenon. Although the number of control sectors in
the computed schedule stayed globally close to the recorded
number of sectors, the airspace was reconfigured much
more often than in reality. The present paper shows how
the input metrics can be smoothed in order to avoid this
problem, and what may be the subsequent problems caused
by the smoothing strategy.

INTRODUCTION

Over the years, and in a context of increasing air

traffic demand, there has been a growing need to increase

the capacity of the Air Traffic Management system.

Improving the predictability of the system’s response to

the traffic demand is also a crucial issue, as it would

allow a better use of the existing resources and an earlier

anticipation of future congestions.

The work presented in this paper is the continuation

of previous research on airspace configuration schedules

([1], [2], [3]) and air traffic complexity metrics ([4], [5])

previously led at the Global Optimization Laboratory

(CENA/ENAC) and now continued within the Planifica-

tion, Optimization, and Modeling team of DSNA/DTI-

R&D. The initial aim of this research is to compute

realistic sectors opening schedules for en-route air traffic

control centres, given an input traffic demand on a

chosen day.

The current FMP/CFMU working method to build

airspace configuration schedules relies on pre-defined

sectorization scenarios, where the incoming traffic flows1

are matched against the sector capacities2 to detect

1The metric used is the "incoming flow", also called "flight counts"
or "traffic-volume" in some Eurocontrol documentations ([6]) or "traf-
fic load" in the CFMU handbook. For a sector, it is the number of
flights that will enter the sector within the next 60 minutes (or any
other chosen period of time).

2The sector capacity is defined as a threshold value on the number
of flights that may enter the sector in a chosen period of time.

potential overloads. Although it may prove effective in

practice as it relies on the FMP/CFMU operators experi-

ence, this method is not grounded on a solid assessment

of the actual controllers workload. Consequently, imple-

menting any strategy to optimize the airspace schedule

on this basis may lead to unexpected results (see [1]).

Another drawback of the current method is that only

a small subset of all possible airspace configurations is

used.

In [3], new algorithms were proposed, using more

relevant complexity metrics to assess the controllers

workload, and exploring all possible combinations of

elementary sectors to build optimal airspace configura-

tions. As a result of this previous work, we were able

to compute realistic airspace configuration schedules on

a whole day of traffic, using raw complexity metrics

computed from recorded radar tracks. The raw metrics,

however, showed high variations in time which caused

a "configuration switching" phenomenon. Although the

number of control sectors in the computed schedule

stayed globally close to the recorded number of sectors,

the airspace was reconfigured much more often than in

reality.

The present paper shows how the input metrics can

be smoothed in order to avoid this problem. The next

section first provides a short overview of the current re-

search on airspace configuration and air traffic complex-

ity. Section II describes the algorithms used to predict the

sector status and to build airspace configurations, mainly

focusing on the few improvements that were made since

[3] was published. The experimental procedure applied

to select the best smoothing parameters is described in

section III. Results are provided in sections IV and V.

Section VI concludes this paper.

I. OVERVIEW

A. Airspace configuration

Current research on airspace configuration is manifold

and may deal with strategic airspace partitioning (see

[7] and included references, [8]), pre-tactical sectors

opening schedules ([9]), or tactical airspace management

([13]). In this paper, we are mainly concerned with pre-

tactical airspace configuration schedules, although some

of the proposed algorithms may also be used in tactical

applications, provided the complexity metrics being used

are relevant in that context.

The FMP/CFMU working method to build sectors

opening schedules was shortly described in the intro-

duction. Current research led by Eurocontrol proposes
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short-term improvements of the Flow Management pro-

cess, mainly by avoiding unecessary regulations when

building sectors opening schemes ([9],[6], [11]). One of

the main concerns is the network effect observed in ATM

regulations ([12]). These studies still use incoming flows

and sector capacities, and a small number of pre-defined

configurations.

In the United States, the main concern seems to be the

dynamic adjustment of the airspace structure to the traffic

flows reroutings caused by severe weather conditions. It

is expected that more flexible boundaries would allow a

more efficient use of airspace and increase the overall

capacity. In [13], pre-defined scenarios of airspace sec-

torizations associated to traffic rerouting scenarios are

proposed as a short-term improvement to the current

practice.

A more dynamic resectorization with flexible bound-

aries is envisionned in future operational concepts ([14],

[15], and some SESAR Operational Improvement steps).

It is expected that moving the sector’s boundaries in

real-time to adapt to the traffic demand would increase

the capacity and the efficiency of the ATM system.

The actual capabilities and potential benefits of this

new operational paradigm are still largely unknown at

this early stage, however. There is also some concern

that unlimited flexibility in the sectors boundaries would

lead to a loss of situational awareness by the air traffic

controllers (see discussion and litterature review in [16]).

The work presented in this paper is more medium-

term research, trying to improve the predictability and

the flexibility of today’s airspace management in Europe.

The idea is to find the optimal combination of elementary

(or modular) sectors that will provide the maximum ca-

pacity to a given input traffic, and balance the controllers

workload as best as possible among the control sectors.

This airspace partitioning problem would be difficult

to solve without choosing a heuristic if every combina-

tion of sectors was possible. The partitionning of the

whole ATCC’s airspace into control sectors is highly

combinatorial ([2]), even with relatively few elementary

sectors. Hopefully, the list of possible control sectors

(either elementary or collapsed sectors) that can be

operated in an air traffic control center is relatively

small3, as not all combinations of elementary sectors

are operationnally valid4. So we may explore all valid

airspace configurations, which may be built with oper-

ationally valid control sectors only, using classical tree

search methods ([1], [3]).

These algorithms are applied to the prediction of

airspace configuration schedules, optimally balancing the

workload among the control sectors. Consequently, we

need a way to assess the controller’s workload, and it was

proposed to use relevant air traffic complexity metrics to

that purpose ([4], [5]).

3The list of control sectors is available from the ATCC’s database
4One usually does not merge sectors which are not geographically

connex, for example.

B. Air traffic complexity

A multitude of air traffic complexity metrics have

been proposed in the litterature (see [17] and [18] for

a review), and many studies tried to correlate some of

these metrics to the controllers workload, using various

methods: linear ([19]) or logistic ([20]) regression, cross-

sectional time series analysis ([21]), neural networks

([22]),... Many ways to quantify the controller’s work-

load have also been tried: physical activity ([23], [21]),

physiological indicators ([24], [25]), simulation models

of the controller’s tasks ([26], [27]), subjective ratings

([19], [22], [20]). The reader may refer to [4] for a

discussion on these variables. Let us just say that, in

addition to being subject to noise and biases5, most of

the above dependent variables require relatively heavy

experimental setups to collect the data, usually with the

active participation of controllers. Databases are often

small and might exhibit low variability, which may in

turn harm the statistical relevance of the results.

In order to avoid some of these drawbacks, we pro-

posed a new dependent variable for which a large amount

of data is available from the ATCC databases, and

which does reflect an operational reality. The basic idea,

introduced in [29], is that the decisions to split (resp.

merge) a sector are mostly taken when the controller

is close to overload (resp. under-load). So the sector

status (merged, operated, or split) is directly related to

the controller’s workload and may therefore provide an

acceptable dependent variable. In [4] and [5], neural

networks were trained on recorded patterns of metrics

and sector statuses6 to select the most relevant metrics

for our airspace configuration problem.

The proposed method allowed to select a subset of

only 6 relevant indicators among the initial 28 cho-

sen from [19], [22], [30], [31] and other sources. The

airspace configuration schedules obtained with these

metrics as input were quite realistic ([3]) when computed

from recorded radar tracks. In this previous work, how-

ever, the input metrics were not smoothed, and a "con-

figuration switching" phenomenon was observed. Let us

now see, after a short description of the algorithms, if

smoothed metrics provide better results.

II. ALGORITHMS

Our aim is to build a realistic schedule of the airspace

configuration throughout the day. To that purpose, one

needs first a correct assessment of the workload gen-

erated by the traffic throughput in a control sector,

and second an algorithm exploring all possible airspace

configurations to find out the optimal one, with respect

to the workoad balance over control sectors.

A. A neural network to predict the sector status

Neural networks are used to issue sector status proba-

bilities for each control sector of a candidate configura-

5such as the subjective ratings recency effect denounced in [25], or
raters errors in the case of "over-the shoulder workload ratings" [28]

6In our case, a pattern is a vector of complexity metrics measured
at a time t in a given sector, together with the sector status (merged,
normal, or split) that was recorded at this time.
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tion. Beyond the similarities with the biological model,

an artificial neural network may be viewed as a statistical

processor, making probabilistic assumptions about data

([32]). A training set of patterns is used to determine

a statistical model of the process which produced this

data. Once correctly trained, the neural network uses this

model to make predictions on new data. The reader may

refer to [33] and [34] for an extensive presentation of

neural networks for pattern recognition.

In our case, the neural network is trained on recorded

airspace configurations, considering the actual status

of each control sector : merged when the sector is

collapsed with other sectors to form a larger sector (low

workload), normal when the control sector is opened

(normal workload), or split into smaller sectors operated

separately (high workload)7. The input variables are the

relevant complexity metrics, or any candidate subset of

metrics, normalized by substracting the mean value and

by dividing by the standard deviation. The output of the

neural network is a triple of sector status probabilities

(pmerge, pnormal, psplit).

The network is unable to make complex recommen-

dations such as to split the sector’s volume in several

parts and then to merge each of these parts with other

sectors. It only recommends to merge the sector when

the workload is low, or split it when the workload is high,

or operate it normally when the workload is acceptable.

As we are necessarily in one of the above three cases,

the sum of the three probabilities pmerge, pnormal, and

psplit is always 1.

More details on neural networks applied to sector

status prediction, in the context of airspace configura-

tion, can be found in previous works ([3]). How these

networks were used to select the most relevant metrics

is described in [4] and [5]. The same network’s topology

and training algorithms are used in the work presented

here to select the most relevant smoothing strategy for

the input metrics.

The software implementation is different, though. In

previous works, the nnet R package developped by

Pr. Ripley was used. As it is envisionned in a near

future to try other types of neural networks, more suited

to time series, some new software8 was developped.

A backprogation method9 and a BFGS10 quasi-Newton

optimization method were implemented in Ocaml lan-

guage. The same stopping parameters as in previous

works with nnet were used.

7Irrelevant statuses, such as when a part of the initial sector is
merged with one control sector, and the other part with another control
sector, were discarded in the neural network’s training.

8ANNiML (Artificial Neural Networks in ML) is written in Ocaml
and should be made available soon, probably under GNU Lesser
General Public License.

9Backpropagation of the output error through the network’s layers
allows to approximate the partial derivatives of the error function with
respect to the weights

10BFGS (Broyden-Fletcher-Goldfarb-Shanno) is an iterative local
optimization method, starting from an initial point (weights values in
our case) and using an approximate hessian and the gradient of the
objective function to find a local optimum. Note that different initial
points may lead to different local optima.

B. Tree search algorithms for well-balanced sector con-

figurations

As previously told, the neural network cannot issue

complex recommendations on how to reconfigure several

control sectors. A tree search algorithm was used to

that purpose, exploring all possible combinations of

elementary sectors, to find out the optimal one.

An optimal configuration is one for which the work-

load among the control sectors is balanced as best as

possible, while using the less possible ressources, and

satisfying operational constraints such as a maximum

number of available working positions for example.

Once again, we used the same algorithm as in [3]

to compute optimal airspace configurations, with a few

improvements that shall be detailed later in this section,

and with the aim to study the influence of the smoothing

strategy on the computed opening schedule.

Let us just describe the main features of this algo-

rithm. Starting at time t=0 with a configuration where

all elementary sectors are assigned to a single con-

troller’s working position, the situation is reconsidered

every minute of the day, using the status probabilities

(pmerge, pnormal, psplit) of each control sector in the

current configuration to decide if the airspace should be

reconfigured or not.

The decision criterion may be straightforward (taking

the action corresponding to the highest probability),

or it may propose to take an action only when the

corresponding probability is close enough to 1, and when

the difference between the two highest probabilities is

sufficient. The first, straightforward, decision criterion

was called D1 in [3], and the second was name D2,

with decision parameters η (threshold on the difference

between the two highest probabilities, for merging deci-

sions), α (proximity of pmerge to 1) and β (proximity

of psplit to 1). Figure 1 illustrates criterion D2, showing

the evolution of the sector status probabilities just before

a "split" decision, when psplit reaches 1 − β.
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Fig. 1. Example of sector status probabilities in NGA sector (Brest
ATCC) just before the algorithm decides to split the sector.

Once a decision to reconfigure some control sectors

is taken, the corresponding elementary sectors are re-

combined, exploring all possible partitions of this set.

3

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-979



Some drawbacks of this local recombination method

were highlighted in [3], for example in the case where

the decision criterion triggers a "merge" action for two

control sectors which are not neighbours. This is typi-

cally a case where the local recombination leads to no

change, because the airspace should be reconfigured on a

larger scale. A solution to this problem is to reconfigure

the whole airspace in such cases. However, exploring

exhaustively the whole tree of possible configurations

by computing all of them becomes very rapidly compu-

tationnally intensive even with a relatively small number

of elementary sectors.

So the previous algorithm was improved as follows.

Local recombinations are made as before when the

control sectors that need to be reconfigured are geo-

graphically connected. If this is not the case, a full

airspace reconfiguration is triggered, using a Branch &

bound algorithm to explore all possible combinations.

The detailed description of this algorithm will be the

subject of a next publication, but the reader may refer to

[1], [2], and [29] where a very similar Branch & bound

algorithm is detailed.

A second improvement introduced in this paper is

about the cost function allowing to compare the can-

didate airspace configurations. A more simple and more

understandable cost function was designed, where the

cost depends on the number of control sectors and the

maximum probability in each category (merge, normal,

split).

An "ideal" configuration should have

(pmerge, pman, psplit) = (0, 1, 0) for all its control

sectors. This is not always possible, so we need to

take account of overloaded or underloaded sectors, and

ill-balanced configurations. The cost of a configuration

c, with a vector x of complexity metrics measured at

time t is expressed as follows:

cost(c, x, t)) = xx︸︷︷︸
k1

xxx︸︷︷︸
k2

xx︸︷︷︸
k3

xxx︸︷︷︸
k4

xx︸︷︷︸
k5

xxx︸︷︷︸
k6

where we have assigned:

• k1 digits to the number of overloaded sectors,

• k2 digits to the maximum value of psplit among the

overloaded sectors, where the probability is suitably

scaled to the allowed number of digits,

• k3 digits to the number of under-loaded sectors,

• k4 digits to the maximum value of pmerge among

the under-loaded sectors,

• k5 digits to the number of normally loaded sectors,

• k6 digits to the maximum value of 1 − pnormal

among the normally loaded sectors,

With this cost, the first priority is to have the less

possible overloaded sectors, and if there still remains

some then the maximum probability psplit among these

sectors should be as small as possible. The same ex-

planation stands for underloaded sectors. For normally

loaded sectors, we still want to use the less possible

ressources, but workload should be balanced as well as

possible among the sectors. So the minimum value of

pnormal among the normally loaded sectors should be

as high as possible. This is why we use the maximum

of 1 − pnormal in the cost, so that minimizing this cost

will lead to more desirable configurations.

III. EXPERIMENTAL PROCEDURE

Each complexity metric xi may be smoothed by taking

its average value over a period of time [t − δ1, t + δ2],
where we may try different values for δ1 and δ2 for each

metric.

For now, the metrics are computed on past data

(recorded radar tracks). In future applications, they may

be computed either from simulated trajectories following

flight plans, in the context of airspace configuration

schedules, or from real-time radar tracks and trajectory

predictions for tactical airspace management purposes.

For real-time applications, one may prefer to smooth the

metrics on a time window [t − δ, t], considering only

the past positions of the aircraft. We decided to try this

strategy first, which may be applied also to simulated

trajectories for airspace schedules.
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Fig. 2. Raw and smoothed number of aircraft in N sector (Brest
ATCC). The splitting decision was taken at t=530 (vertical line).

As an illustration of the effect of smoothing on the

metrics, figure 2 shows the number of aircraft within

sector N (Brest ATCC), with different values of δ. We

may notice the high variations in the raw aircraft count.

The vertical line shows when the decision to split the

sector into two smaller sectors was taken.

A. Testing different smoothing strategies

We would like to find out which combination of

metrics and smoothing parameters is the best. This is a

model selection problem. The main difficulties in model

selection are the choice of a search strategy (how to

explore the possible subsets of explanatory variables,

knowing that the number of combinations is usually too

large for an exhaustive search), and also the assessment

of each model’s performance (quality criterion, ability to

generalize to fresh data).

In this paper, we will consider different values for

the size of the smoothing window: 3, 5, 10, 15, 30, or

60 minutes. Ideally, we should make the same study as

in [4], [5] but applied to the 27 complexity metrics with
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all smoothing possibilities, which means 190 variables11.

The forward strategy that was used in previous works to

explore different combinations of variables would take

too much computation time, so it was decided to focus

on the 6 most relevant variables found in our previous

studies. These were the sector volume V , the number of

aircraft within the sector Nb, the average vertical speed

avg_vs, the incoming flows with time horizons of 15

minutes and 60 minutes (F15, F60), and the number of

potential crossings with an angle greater than 20 degrees

(inter_hori).

As a first approach, and keeping in mind that it

is a fairly restrictive search strategy, it was decided

to try different smoothing values, applying the same

smoothing window to all variables in the set of rel-

evant raw metrics. The reference set of variables is

REF={V, Nb, avg_vs, F60, F15, inter_hori}. The other

combinations that were tested are SM3, SM5, SM10,

SM15, SM30, SM60, which contain the same complex-

ity metrics, smoothed respectively using time windows

of 3, 5, 10, 15, 30, or 60 minutes.

B. Model selection and performance assessement

In our previous works ([4], [5]), the mean AIC12

(averaged over the sample’s size) was used to compare

the performance of a given neural network on data

samples of different sizes (a training set and a test set),

and the mean BIC13 was used to compare different neural

networks, trained on candidate subsets of complexity

metrics (models of different sizes). In this paper, we will

also use the mean BIC to compare the candidate models

and assess the improvements provided by smoothing the

metrics values, and the AIC to assess the generalization

performance.

Once trained on past data, it important to check if

the neural network also provides good predictions of

the sector status when feeded with new inputs. This is

generally done by splitting the initial data set in two

samples: a train set and a test set. This split-sample (or

hold-out) procedure is generally satisfying on large data

samples, but may be prone to overfitting 14 problems

11
27 metrics multiplied by 7 smoothing values (counting a zero

value for the raw metrics), plus the sector volume.
12Akaike’s "An Information Criterion" AIC = 2λ−2ln(L), where

λ is the number of unadjusted parameters of the model (i.e. the number
of weights and biases of the network), and ln(L) is the log-likelihood
error. When used for model selection with neural networks, AIC tends
to overfit (see discussion in [34], p. 61), leading to select bigger
models. The Schwartz’s Bayesian Information Criterion is usually
preferred.

13Schwartz’s Bayesian Information Criterion BIC = 2λ.ln(N) −

2ln(L), where N is the size of the data sample. The BIC criterion
gives a higher penalization than AIC to big models, but varies with
the size of the data sample, so it may not be used to compare the
performances of a neural network on samples of different sizes. Note
that AIC and BIC are not absolute criteria: their evaluation is specific
to the underlying "true" model, and only the relative differences in the
criterion’s value is useful.

14Overfitting occurs when the statistical model fits very well the
data from which it was derived, but cannot generalize well on fresh
data. The number of parameters in the model (network’s weights for
example) and few data samples may both cause overfitting problems.
A neural network with too few weights may not be able to capture all
the variations of the response to the input x, whereas a network with
too many weights will more likely be subject to overfitting (see [32]).

on small samples. It was used in [4] and [5] with good

results, but one may argue that the selected models may

only be fit to the chosen train and test sets, although

some tests on a second test set (another day of traffic)

proved also satisfying.

So is was decided to apply a more sophisticated proce-

dure, using first a k-fold cross-validation method for the

model selection, and second a split-sample method (or

hold-out validation) to assess the generalization perfor-

mance of the best model. The initial data set is randomly

split in two samples. The first one (training set) is again

divided in k sub-samples and used for an iterative k-fold

cross-validation allowing to select the best smoothing

parameter. Then, the neural network is trained on the

whole training set, and the generalization performance

is checked on the the test set.

In our case, we applied a 10-fold cross-validation,

iteratively holding out one of the 10 sub-samples of the

training set to assess the candidate model, and training

the neural network on the 9 remaining sub-samples.

The Schwartz’s Bayesian Information Criterion (BIC)

is computed on the sample that was not used to train

the network. The BIC is averaged on the 10 runs for

each model. The best model is found by comparing the

average BIC.

Once we have found the best model, the neural

network is trained on the whole training set (the 10
samples). The generalization performance of the trained

network is assessed by comparing the AIC value found

for the training set to the AIC of the test set. As the

training method is an iterative local optimization (BFGS)

which may fall into local optima depending on the

chosen initial weights vector, ten training runs are made

with different random values of the initial weights15.

C. Comparison of airspace configurations schedules

So far we have only detailed how to compare different

statistical models allowing to predict the sector status

from smoothed complexity metrics. Our final goal, how-

ever, is to build realistic airspace configuration sched-

ules. So we also need to consider the influence of the

smoothing strategy on the overall airspace configuration.

Ideally, the computed schedule should reproduce the

actual configurations recorded that day. However, there

is a high variability in the decisions made by control

room managers on how to reconfigure the airspace,

which comes in addition to the variability of decisions

on when to reconfigure. We may hope that our sector

status prediction could give an indication on when to

trigger a reconfiguration and allow to build realistic

configurations, but our algorithms may not compute

exactly the same configuration as in reality.

We will assess the realism of the computed schedule

by comparing the number of control sectors to the

actual number of sectors that were opened that day. The

Pearson’s correlation coefficient may give an indication

of the linear correlation between the computed and the

15Note that the ten runs of the cross-validation were also made with
different random initial weights
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real number of control sectors. However it may not be

always reliable16 so we will also compute an ad-hoc

"dissimilarity measure" which is the surface delimited

by the two curves, divided by the surface of the real

schedule. With this measure, two identical curves shall

have a dissimilarity 0 if they are exactly superposed.

In addition, we will also consider the number of recon-

figurations throughout the day, which should be close

enough to the real one.

So we don’t have a unique quantified measure of simi-

larity between airspace configuration schedules for now:

the influence of the smoothing parameter on the opening

schedule is assessed by considering both the number of

control sectors and the number of configuration changes.

But before looking how smoothing the complexity

metrics may change the overall airspace configuration

schedule, let us show some results on the influence of

the smoothing parameter on the prediction of the sector

status.

IV. INFLUENCE OF SMOOTHED METRICS ON SECTOR

STATUS PREDICTION

The results of the 10-fold cross-validation with dif-

ferent values of the smoothing window are presented in

tables I, II, and III.

Set mean BIC BIC std dev

REF 1.163 2.7E − 2

SM3 1.156 3.0E − 02

SM5 1.141 2.9E − 02

SM10 1.117 2.4E − 02

SM15 1.114 2.4E − 02

SM30 1.059 2.6E − 02

SM60 1.046 3.5E − 02

TABLE I

MEAN BIC VALUES AND STANDARD DEVIATIONS FOR THE

CROSS-VALIDATION

Table I shows the mean value and the standard devi-

ation of the BIC criterion over the 10 runs of the cross-

validation, for each candidate model. A somewhat sur-

prising result is that SM60 (smoothing over 60 minutes)

seems to provide the best results if we look only at the

mean BIC. However, considering the standard deviation,

it is not obvious that there is a true statistical difference

between SM30 and SM60. Note also that the model with

the lowest mean BIC is the one with the highest standard

deviation.

Tables II and III show the mean correct classification

rates and their standard deviations, over the ten runs,

for all classes (Global) and also for each sector status

class. Let us notice that the main improvement, when

smoothing the input metrics, is made for the class

corresponding to the normal domain of operation.

Let us now assess the generalization performance of

the models. As explained in the previous section, the

16The correlation coefficient between two equal variables x and y =

x will be 1. Let us note however that this coefficient is not sufficient
to actually measure how close we are to equality: the correlation
coefficient between a variable x and another variable y = x + d,
where d is a constant offset, will also be 1.

Set Global Merged Normal Split

REF 82.074% 88.353% 62.799% 90.322%

SM3 82.428% 88.451% 63.691% 90.587%

SM5 82.673% 88.545% 64.279% 90.75%

SM10 83.454% 89.401% 64.918% 91.548%

SM15 83.784% 89.365% 66.066% 91.699%

SM30 84.947% 89.910% 68.036% 93.147%

SM60 85.811% 90.698% 69.798% 93.242%

TABLE II

CORRECT CLASSIFICATION RATES

Set Global Merged Normal Split

REF 0.446% 0.616% 1.543% 0.572%

SM3 0.662% 0.586% 1.853% 0.641%

SM5 0.662% 0.852% 1.275% 0.556%

SM10 0.574% 0.714% 1.419% 0.384%

SM15 0.696% 0.771% 1.822% 0.636%

SM30 0.648% 0.568% 1.667% 0.794%

SM60 0.601% 1.091% 1.488% 0.794%

TABLE III

STANDARD DEVIATIONS OF THE CORRECT CLASSIFICATION RATES

neural network is trained again on the whole training

set of patterns (instead of 9 sub-samples in the cross-

validation). Ten runs were made with different random

initial weights. The difference with cross-validation is

that there are all made on the same training set.

Training set Test set

Set mean AIC AIC std dev mean AIC AIC std dev

REF 0.765 1.2E − 02 0.781 1.5E − 02

SM3 0.750 1.3E − 02 0.757 1.3E − 02

SM5 0.743 1.6E − 02 0.751 1.5E − 02

SM10 0.733 2.1E − 02 0.744 2.3E − 02

SM15 0.710 2.2E − 02 0.727 2.2E − 02

SM30 0.681 1.5E − 02 0.697 1.3E − 02

SM60 0.644 1.6E − 02 0.662 1.8E − 02

TABLE IV

GENERALIZATION PERFORMANCE: MEAN AIC VALUES AND

STANDARD DEVIATIONS FOR THE TRAINING SET AND THE TEST SET

Table IV shows the mean AIC values and the standard

deviation, over the 9 best results out of the 10 runs17,

for each smoothing parameter. The neural networks

performances on the training and test sets are quite

close, with any smoothing parameter. All models seem

to generalize well, and show little differences in that

respect (see figure 3).

V. INFLUENCE OF SMOOTHED METRICS ON OPENING

SCHEDULES

The last section was dedicated to the influence of

the smoothing strategy on the performance of the sector

status prediction. Now, let us see how it modifies the

resulting opening schedules, comparing the different

models on a same day and for a chosen air traffic centre

(Brest ATCC, 2003, June 1st). The same algorithms

17In two cases, it happened that the choice of the random initial
weights and the training process relying on a local optimization led to
significantly less performing networks. So it was decided to remove
the ten percent less performing networks from the results.
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Fig. 3. Mean AIC for the training set and the test set.

were used for all models, with the same values for the

split/merge decision parameters (eta = 0.2,alpha = 0.1,

and beta = 0.3).

Set Correlation coeff. Dissimilarity Nb. config.

REF 0.9443 0.1169 101

SM3 0.9196 0.1489 202

SM5 0.9142 0.1510 179

SM10 0.9038 0.1783 125

SM15 0.9065 0.1681 140

SM30 0.9471 0.1094 34

SM60 0.9101 0.1426 23

TABLE V

CORRELATION COEFFICIENT AND NUMBER OF AIRSPACE

CONFIGURATIONS FOR EACH MODEL

Table V shows the correlation coefficient, the dissimi-

larity measure, and the number of configurations for each

model. All models show a good correlation, above 0.9
to the recorded number of control sectors. The number

of reconfigurations is fairly high when smoothing on

less than 15 minutes, showing a lot of "configuration

switching", whereas SM30 and SM60 are much closer

to the 28 airspace configurations that were actually used

that day. Considering the dissimilarity measure and the

number of configurations, SM30 seems to be the model

that is most similar to reality. Let us now have a closer

look at each computed schedule.

Figure 4 shows the reference situation, for Brest

ATCC (2003, June 1st). The number of control sectors

computed by our algorithm, using raw complexity met-

rics, can be compared to the actual number of control

sectors that where opened, for each minute of this day.

The evolution of the number of aircraft within the center

is also displayed, above the two other curves. Let us

remind that the number of aircraft is not sufficient to

explain the number of control sectors, as other complex-

ity metrics are also involved in the explanation of the

sector status, and as the traffic load may not be equally

dispatched among the sectors. It is still a good indication

of the overall traffic load, however.

We may notice that, while the computed output stays

globally close the recorded number of control sectors,

 0

 5

 10

 15

 20

 0  200  400  600  800  1000  1200  1400
-20

 0

 20

 40

 60

 80

 100

N
b
. 
co

n
tr

o
l 

u
n
it

s

N
u
m

b
er

 o
f 

ai
rc

ra
ft

Time (minutes)

Computed
Real

Traffic

Fig. 4. Number of control sectors (computed schedule, real
configurations), and traffic for Brest ATCC (2003, June 1st), with REF
setup

it also shows many variations around the actual curve,

more or less following the traffic trends on that day.

Notice the peak of traffic around 20:00 UTC (1200

minutes after 00:00), where the curve of the computed

schedule apparently better follows the traffic trend than

the actual configurations (we shall see later that this

depends on the chosen smoothing parameter).
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Fig. 5. Number of control sectors (computed schedule, real
configurations), and traffic for Brest ATCC (2003, June 1st), with
smoothed metrics (SM15)

Figures 5, 6 and 7 show the airspace schedule com-

puted with smoothed metrics, using a smoothing window

of 15, 30, or 60 minutes respectively. The traffic load’s

curve displayed on each figure shows the smoothed

number of aircraft, using the smoothing window cor-

responding to each model.

At this point, when comparing figures 4, 5, 6, and 7,

we may notice two phenomena which are not quantified

by the measures of correlation and the number of recon-

figurations. First of all, considering the peak of traffic

aroung 20:00 UTC (1200 minutes after 00:00), we can

see that the more you smooth the metrics, the less the

computed number of control sectors reflects this peak of

traffic. In fact, it becomes closer to the actual number of

control sectors.
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Fig. 7. Number of control sectors (computed schedule, real
configurations), and traffic for Brest ATCC (2003, June 1st), with
smoothed metrics (SM60)

The second conclusion that may be drawn from these

figures is that smoothing the input metrics leads to delay

the decisions to reconfigure the airspace. This is most

visible on figure 7 (SM60) where the "climbing steps"

corresponding to the split decisions in the morning and

the "descending steps" of the merge decisions towards

the end of the day are both on the right of the actual

curve. In other words, the sector status prediction seems

more performant on average when smoothing over 60

minutes18, but smoothing too much leads to take late

split/merge decisions, thus delaying the moments at

which the reconfigurations should be triggered.

All these experiments were made using the same

decision parameters (eta = 0.2, alpha = 0.1, and

beta = 0.3) for all models. These parameters also have

an influence on the moment at which reconfigurations

are triggered. Some other parameter values were tried

(eta = 0, alpha = 0.5, and beta = 0.5), with the aim to

improve the reactivity of the reconfiguration algorithm.

For SM60, the reconfigurations were triggered slightly

18Although it was not such a clear-cut in deciding which of SM30
or SM60 was the best model, in table I

earlier but still the same phenomenon was observed, and

the number of configurations increased to 38 configura-

tions. Other trials were made, mixing metrics smoothed

over 60 minutes and metrics smoothed over 10 minutes,

with similar results.

So, smoothing the metrics over 15 minutes or less al-

lows a higher reactivity to the traffic variations, but with

much more reconfigurations than observed in real life.

Among the models that were tested, SM30 (smoothing

the input metrics over 30 minutes) seems the best com-

promise, considering the performance of the sector status

prediction, but also the realism of the computed airspace

configuration schedule. It seems to better capture the

moments at which the reconfigurations are triggered,

than when smoothing over 60 minutes.

VI. CONCLUSION AND PERSPECTIVES

The opening schedule computed with metrics

smoothed over 30 minutes showed a number of recon-

figurations close to reality, and with a number of control

sectors well correlated to the actual configurations. It

seems the best compromise among the models tested so

far with the chosen neural network topology.

In a pre-tactical context, smoothing over relatively

long periods of time may have positive consequences.

The model should be more robust to uncertainties on

aircraft trajectories when the complexity metrics will be

computed from flight plans instead of past radar tracks.

In regard to the instant workoad of a controller operat-

ing a sector at a time t, this smoothing strategy seems too

drastic and may lead to miss the exact moments at which

reconfigurations should be triggered, if this model was

to be used for tactical purposes in a dynamic airspace

management tool. An explanation is that only snapshots

of the traffic situation – i.e. metrics values measured at

time t – were used to predict the sector status. We may

expect better results by considering the input metrics

as time series, and by using recurrent neural networks

instead of simple feed-forward networks. Provided this

approach proves successful, the airspace configuration

algorithms may prove useful for tactical purposes: flow

managers may issue what-if requests and get some

feedback on the resulting sectorization and workload

balance among the control sectors.

Further works shall adress both issues: improve the

statistical model by using time series and recurrent

networks to better capture the instant workload, and

test the current model on simulated traffic, using flight

plans as inputs, in order to predict the airspace opening

schedule for the next day. Other smoothing strategies

may also be tried, with different smoothing parameters

for each metric for example, or with smoothing intervals

centered on the current time.
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Abstract  Current air traffic forecast methods employed by the 

FAA function under the assumption that the flight route network 

will not change, that is, no new flight routes will be added and no 

existing flight routes will be removed. However, in reality the 

competitive nature of the airline industry is such that new routes 

are routinely added between cities possessing significant 

passenger demand while other city-pairs are removed. This 

paper investigates models for forecasting network 

reconfiguration that exploit knowledge of network structure in 

the Air Transportation System (ATS), with the goal of improving 

overall forecast that drives policy and infrastructure 

enhancement decision-making.  

Keywords-forecast; network theory; air traffic 

I. INTRODUCTION

In order to synthesize long term plans for new technology, 
infrastructure improvements, policy enhancements, and 
regulations for the Air Transportation System (ATS), an 
understanding of air traffic dynamics is needed (i.e., 
determining how, when and where would air traffic arise or 
shift in the future). To meet this need, the FAA Air Traffic 
Organization (ATO) Office of Performance Analysis and 
Strategy (PAS) produces air traffic forecasts to project future 
demand, identify operational shortfalls, determine workforce 
requirements, and estimate the benefits of future investments. 
In the current forecast algorithm, the projected schedules are 
based upon the assumption that the future route network 
structure will be the same as the current network structure. 
That is, no new direct service routes are added between cities 
and, thus, the existing airline hub airports will continue to 
operate as hub airports. 

However, the flight service route network structure is likely 
to change over time. The competitive nature of the airline 
industry is such that new direct routes are routinely added 
between cities with significant passenger demand and routes 
are also removed when demand dwindles. In addition, the 
location and number of airline hubs are not fixed; within the 
past several years, two major hubs have been eliminated (St. 
Louis and Pittsburgh), one airline hub opened and 
subsequently closed (Washington Dulles International 
Airport), and several other hubs were substantially 

restructured. Looking further, scenarios are now taking shape 
in which environmentally-inspired imperatives may 
significantly modify the feasible sets of operations and 
network reconfiguration states. Overall, in order to enhance 
the ATS forecast precision, a better understanding of 
restructuring dynamics is required. Motivated by this goal, 

research described in this paper is focused on investigating 

several models for forecasting the mechanism of network 

restructuring, in particular the aspect of new flight service 
route formation. Families of parameters that describe the 
network topology are used as predictor variables in these 
models. 

The remainder of the paper is organized as follows. After 
an introduction to network theory and some examples of its 
use in previous efforts for analyzing the ATS (Section II), 
Section III describes the data source and assumptions for all 
analysis. Detailed explanation of the three forecast algorithms 
developed up to date, along with key implications will follow 
in Section IV. Section V summarizes the interim results from 
these forecast algorithms. 

II. NETWORK THEORY

A. Background 

Multiple networks subsist in the overall ATS; the primary 
ones are summarized in Table I. The transport network 
topology was analyzed in the present study in which airports 
(nodes) are interconnected by flight routes (links). Modern 
Network Theory (also known as Network Science)1,2 has 
produced powerful results from multiple domains (e.g. 
physics, information, social science, biology) in recent years 
concerning how real world networks evolve. Some researchers 
have begun to explore application for analyzing air 
transportation networks. Guimera et al analyzed the 
worldwide air transportation network topology and computed 
measures which characterized the relative importance of 
cities/airports.3 Bonnefoy and Hansman4 used a plot of the 
weighted degree distribution for light jet operations to 
understand the capability of airports to attract the use of Very 
Light Jets (VLJs). A significant body of work exists in the  
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TABLE I.         MULTIPLE, INTERACTING NETWORKS IN THE ATS 

Network  Node (N) & Link(L) Time Scale 

Demand 
N : Homes/Business 

L : Demand for Trips 
Months/Years 

Mobility 
N : Origin/Destination 
L : Actual PAX trips  

Days/Weeks 

Transport 
N: Airports 

L: Flight Routes 
Days/Weeks 

Operator 
N: Aircraft / Crew 

L: Mission 
Hours 

Infrastructure 
N: Waypoints and Airports 

L: Flight Routes
Months 

TABLE II. DEFINITIONS FOR SELECTED NETWORK MEASURES 

Parameter  Symbol Description 

Node N/A Airport 

Node 

Degree 
ki 

Number of flight routes 

existing at node i 

Node 

Weight 
wi 

Amount of operations 

associated with node i 

Link Weight rij 
Amount of operations 

between node i and j 

Clustering 

Coefficient 
Ci 

Measure of local 

cohesiveness for a node. 

Higher Ci implies that it is 

more likely an alternate 

connection path exists 

when a existing link fails 

Eigenvector 

Centrality 
xi 

A centrality measure of a 

node determined by its own 

and  degree. In 

the transport network, the 

importance of one airport is 

determined not only by its 

own number of routes 

supported, but also the 

number of routes and traffic 

level of airports with which 

it directly connects (an 

airport with high 

eigenvector centrality is 

likely to be very busy itself 

and also connected to other 

busy airports) 

Population* popi 
Population within a 50 mile 

radius of node i 

related domain of operations research on the design of optimal 
networks for particular instances and applications (e.g. 
schedule for an airline). However, these approaches generally 
do not pursue insight into the underlying structure of networks, 

the role this structure plays in future designs, nor the interplay 
between networks from multiple domains. Examination of the 
ATS using network theory at the national level and assessment 
of associated analysis models and techniques as a framework to 
provide both insight into ATS structure and a useful systems 
analysis has been a topic for our work5. The forecast of service 
route restructuring presented in this paper is one example 
application. Table II summarizes key network theory 
parameters that will be discussed and utilized for the remainder 
of this paper. More details can be found in [6].   

The manner in which some of these parameters translate into 
real world performance and operations metrics is also topic of 
ongoing research4 . One example of such a mapping is depicted 
in Eq. (1). This expression is a multivariate regression model 
for predicting the  number of delayed operations for an airport 
using its degree, clustering coefficient, eigenvector centrality, 
degree weight and surrounding population as predictor 
variables. 

   = 0.01928 + 0.147 +

0.02606 + 0.56722 + 0.20758 + 0.07462 .    (1) 

All variables are normalized using the corresponding 
maximum value, and the model produces a good coefficient of 
determination (R2 = 0.95). The graph shown in Figure 1 
displays the comparison between the actual and predicted 
number of delayed operations (for airports that registered at 
least one delay) for the 2004 ATS. A 5% error interval is also 
included. Eigenvector centrality and degree compose the 
majority of the regression model (significantly high F-values 
and Type II Sum of Squares compared to the other variables in 
the model). The number of expected delays can be forecasted 
using Eq. (1), but in order to reduce traffic congestion more 
attention should be placed on airports with not only high 
degree but also higher eigenvector centrality since these two 

Figure 1. Prediction validation for 2004 delayed operations regression model 
(each data point is an airport) 
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variables are anticipated to be the main source of operation 
delays. The primary implication for utilizing network theory 
as an ATS analysis tool, then, is that these measures can be 
efficient indicators of network operational performance. Also, 
focusing on the high-level characteristic of the ATS network 
generates deeper understanding on the nature of the ATS 
without being overwhelmed by its complexity. 

III. DATA SOURCE AND ASSUMPTIONS

The primary research conducted under this study follows a 
similar approach to the delay regression model presented in 
the previous section. The objective is to determine if network 
theory parameters can be utilized to identify unconnected city-
pairs that are most likely to connect in the future. The data 
used for this study was obtained from Air Carrier Statistics 
database family maintained by the U.S. Bureau of 
Transportation Statistics7. In particular, the Form 41 T- 100 
Domestic segment (All US Carriers) database was used to 
construct the network studied. The BTS monitors 2627 total 
airports; however, the ATS network analyzed in this study was 
restricted to airports that had at least one cumulative 
commercial flight since 1990. This criterion reduces the 
network size to 887 nodes (airports). Several different 
measures are available for use in defining a link, such as the 
number of passengers, available seats, flights scheduled or 
actually performed. Since the transport network was explored 
in this research, a link was constituted by performed passenger 
flights per year between airports. Each flight route was 
required to have a minimum of 24 annual flights to be defined 
as a link in order to filter out any spontaneous, irregular flights 

network analysis. To further 
simplify the analysis, the ATS network was assumed to be 
undirected and the number of arrival and departure operations 
were simply added together to compute the wi and rij.

The source of the ATS network evolution can be broken 
down into four basic categories flight route addition due to 
network expansion or reconfiguration, and flight route 
removal due to network contraction or reconfiguration. 
Reconfiguration refers to the - of links within a 

defined set of nodes; no new nodes are added and no pre-
existing nodes are removed to create or destroy a link. 
Network contraction and expansion are opposite to 
reconfiguration, with links either being created by connecting 
to newly developed nodes or removed by detaching nodes 
from an existing set. Figure 2 illustrates the morphing of the 
ATS network categorized in these four evolution sets it can 
be seen that the vast majority of the flight routes removed and 
created are a result of network reconfiguration. Thus, all 
forecast model and results described in the following section 
will only examine the mechanism of flight route construction 
due to reconfiguration. Investigation of the mechanism for the 
other three evolution categories (flight route removal due to 
network contraction / reconfiguration and flight route addition 
due to expansion) can be done relatively easily by supplying 
historical data sets to the algorithm that corresponds to the 
evolution category of interest. 

IV. ROUTE CONSTRUCTION FORECAST ALGORITHMS

Three prototype forecast algorithms were created, 
compared and contrasted a) the logistic regression model, b) 
fitness function model and c) the artificial neural network 
approach. In this paper, the logistic regression model is 
discussed in detail. A brief summary for each approach is 
listed below.

Logistic regression is a statistical method to train a 
probability curve for event occurrence based on historical data 
input. The event for which the occurrence probability is 
calculated will be the construction of a new flight route 
between unconnected city-pairs and the inputs will be the 
parametric characteristics of the flight route. The iteratively-
reweighted least squares (IRLS) method was utilized as the 
algorithm to fit the regression model with historical data.  

Fitness function model is a network growth logic which 
operates under principles of the scale free network model 
where nodes with higher importance, or fitness value, are 
granted a higher probability to construct a new link. The initial 
composition of the function that computes nodal fitness 
projects growth that favors highly connected nodes (a hub-
and-spoke type growth) that is typical in the ATS today. 
However, the fitness function can be modified to investigate 
the efficacy of various types of network growth mechanisms 
corresponding to a mix of different business models.

The Artificial Neural Network (ANN) is composed of a set 
of interconnected neurons that mimic human brain activity in 
attempting to develop optimal input-output mappings for 
prediction. Though some underlying fundamentals are similar 
to logistic regression, the ANN usually has higher precision. 
One drawback is that the relationship between input and 
output remains t it cannot be expressed in 
terms of explicit equations as is typical in conventional 
statistical models. Also, due to the higher computational 
requirements of the ANN algorithm, the network to be 
analyzed via ANN must be kept relatively small. Figure 2. Variation in source of ATS network topology evolution 
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A. Logistic Regression Model 

A new flight route in the network context represents a new 
pathway between unconnected node pairs. The characteristic 
of new routes can be described by observing the traits of the 
airport pairs that create the route. The traits of the airport pair 
can be captured from two perspectives: a) by examining the 
list of parameters for each of the airports and b) by examining 
the relative difference of parameters between the airports. A 
record of network parameters (referred to as [parameter] list)
for each airport involved in a new route indicates the type of 
airports that are most likely to be involved in a new 
connection. On the other hand, a record of parameter 
difference, or deviation, between the airport pairs produces a 
pair-wise measure that may be better able to characterize new 
connection formation. In particular, the type of connection can 
be categorized into either homogenous (connection between 

- -
heterogeneous -

Figure 3. Node weight list distribution for new flight routes established in the 
ATS network between 1990 and 2005

Figure 4. Node weight deviation divergence distribution for new flight routes 
established in the ATS network between 1990 and 2005  

By combining insights from the parameter list and 
parameter deviation traits of the airport pairs that construct a 
new connection, the patterns that facilitate new flight routes 
can be extracted. The histograms in Figure 3 and 4 illustrate 
the distribution of node weight list and deviation for airports 
that formed new flight routes in the ATS network between 
1990 and 2005. Figure 3 shows that most of the nodes 
involved in flight route constructions had relatively low traffic 
(between 1 and 100,000 annual operations), and Figure 4 
shows that the difference (deviation) in the traffic of nodes 
involved in new links was mostly homogenous. The 
implication is that most new flight routes are established 
between airports that have lower traffic. A similar exercise 
was carried out for the remainder of the network parameters 
listed in Table II. 

Parametric data are fed into the logistic regression model 
via design matrix X which ultimately gives node pairs that 
follow such trends higher likelihood of connection. Design 
matrix X is structured as shown in Eq. (2) for which all 
network theory variables in Table II are included, along with 
the distance information between node i and j. The second 
column of X, rij , signifies the occurrence of a new flight route 
construction for node i and j between observation years. If a 
new route is established between i and j ij

1

)(1 ijijiij wkkabskkr
X

(2) 

Based on the design matrix input, the regression model 
computes the variable parameter estimates using the standard 
iteratively-reweighted least squares (IRLS) algorithm and 
feeds the estimates into Eq. (3) which computes the 
probability of an unconnected node pair ij will construct a new 
flight route. 

ijXxijconnect
e

P
,, 21

1 (3) 

X2 in Eq. (2) is a matrix that contains the network parameter 
and parameter deviation information structured identically to X,
except X2 only includes data for unconnected node pairs. The 
design matrix X contains information for all connected and 
non-connected node pairs for probability curve training 
purposes. After Eq. (2) has been computed, Pconnect,ij is 
compared to a random number (rand) between 0 and 1 and the 
algorithm predicts a new flight route construction between 
node i and j if Pconnect,ij  > rand.

B. Accuracy Measures 

Three accuracy measures are employed to assess the 
forecast precision. 

routespredictedofnumbertotal

routespredictedcorrectlyofnumber
Accuracy 1

(3) 
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TABLE III. SUMMARY OF LOGISTIC REGRESSION RESULTS FOR ACCURACY 3

Logistic Regression Results Distribution  
(1990-2005 Cumulative) 

Historical Distribution(1990-2005 Cumulative) 
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routesnewactualofnumber

routespredictedcorrectlyofnumber
Accuracy 2

(4) 

Accuracy 1 shown in Eq. (3) was used to check how many 
new routes the forecast algorithm was predicting in order to 
obtain the correct new route. If the algorithm is predicting 
thousands of new routes to acquire only few correct new 
routes, accuracy 1 will be very low. On the other hand, 
accuracy 2, shown in Eq. (4) simply describes how many of 
the predicted new routes were correct, with respect to the 
number of actual new routes.  

Accuracy 3 is a special type of accuracy measure which 
the coherence in distribution of characteristic trends for new 
links between the data and forecast model is examined. This is 
done by comparing the node parameter list and divergence 
histogram curve from the data and forecast algorithm, such as 
those seen in Figure 3 and Figure 4. The goal of employing 
accuracy 3 is to make sure that the forecast methods are 
predicting the future ATS network in the right direction ; a 
formal equation to describe accuracy 3 currently does not 
exist. 
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TABLE IV. SUMMARY OF LOGISTIC REGRESSION RESULTS

Year
Correctly 
Predicted

Total 
Predictions

Accuracy1 Accuracy 2

1990 N/A N/A N/A N/A
1991 83.7 1217.6 0.0700 0.4314 
1992 88.7 1427.6 0.0624 0.4264 
1993 68.8 1065.1 0.0658 0.4145 
1994 80.0 1365.8 0.0594 0.4645 
1995 146.7 1395.8 0.1077 0.3976 
1996 82.6 1409.8 0.0596 0.4325 
1997 78.2 1489.0 0.0535 0.3476 
1998 62.7 1177.6 0.0552 0.3968 
1999 71.3 1488.4 0.0488 0.4006 
2000 113.6 1980.2 0.0580 0.3381 
2001 52.0 1286.3 0.0410 0.3824 
2002 388.8 2328.9 0.1676 0.2878 
2003 128.2 1123.5 0.1159 0.2728 
2004 120.5 1043.1 0.1157 0.2953 
2005 104.4 1088.1 0.0970 0.2806 

Average       111.3          1392.5          0.0785           0.3713 

C. Logistic Regression Results and Discussion 

Results for an iteration of the logistic regression model are 
shown on Table IV; output for each year is an average over 10 
runs. Inputs to the model consist of all the network theory 
parameters and deviation values for variables listed on Table 
II as well as the distance between airport pairs. Forecasts are 
done on a year-over-year basis; that is, parameters from only 
the previous year are utilized for the forecast. 

number of correctly predicted routes for that year while the 

predicted routes from the forecast algorithm. The logistic 
regression model has relatively high Accuracy 2 but low 
Accuracy 1 across all years, indicating that the algorithm can 
correctly forecast a significant number of new routes but does 
so by forecasting many additional routes in the process. 

Accuracy 3 outcomes for both list and deviation 
distributions for degree and eigenvector centrality are shown 
in Table III. The first important finding was that the 
distributions produced by the logistic regression differ from 
those observed from historical data. In particular, the logistic 
regression allocates too much preference for connection to 
airports and airport pairs with small valued network 
parameters. This result, however, does not mask a second 
important finding from these results: across both parameter list 
and deviation distributions [for nodes with new connections], 

airports, whether defining small by degree or centrality 
significance. Appropriately, the logistic regression model 
distributes higher probability to establish connections between 
t
to these. Owing to the fact that the current ATS network is 
dominated by hub-and-spoke style architectures8, there exist 
many small, spoke airports and very few large, hub airports. 
Since there are more small nodes in the network, many small-

to-small airport pairs arise as candidates for flight route 
construction. Abundant small-to-small airport connection 
candidates coupled with the forecast model favoring small-to-
small airport connections from historical trends results in 
significant number of over-predictions for small-to small 
airport connections. This conclusion is the message conveyed 
from simultaneous consideration of Accuracy 1 and 3 metrics. 

D. Brief Introduction and Analysis of the Artificial Neural 
Network

The Artificial Neural Network (ANN) is composed of a set 
of interconnected neurons that mimic human brain activity. 
Through supervised back-propagation training techniques, an 
ANN is able to achieve desired input-output mapping by 
adjusting the weights associated with each neuronal 
connection in the network. While the basic concept underlying 
ANN is similar to that of the logistic regression, the ANN 
usually has higher accuracy due to its higher degrees of 
freedom. However, the relationship between input and output 
for a trained ANN remains difficult to describe, unlike the 
logistic regression model. Also, the size of the network that 
can be analyzed with an ANN was restricted to a smaller size 
(~250 nodes) than for the logistic regression model due to the 
computational intensity of the ANN training algorithm.  

The ANN approach proceeded via a feed-forward, fully-
connected network algorithm9. After training the ANN with 
historical data, it was used to predict connections between two 
airport nodes. To capture the ATS network dynamics, the 
airport metrics for the previous three years were used at the 
input neuron layer resulting in an input layer of 63 neurons, a 
hidden layer consisting of 126 neurons, and a single output 
neuron. The input neurons represent two airport nodes, the 
hidden layer neurons used a tan-sig activation function, and the 
output neuron used a log-sig activation function. The single 
output neuron indicated the connectivity between the two 

data consisted of 50% of the historical data, while 25% was 
used for testing and 25% for validation. Once again, it should 
be noted that, for research reported here, the ANN was used to 
forecast only a subset of the ATS, mainly due to current 
computational limitations. In particular, historical data from the 
American Airlines (composed of routes operated by American 
Airlines, American Eagle and Executive Airline) and 
Southwest Airlines Transport Networks were employed to 
evaluate the accuracy of the ANN algorithm. 

The trained ANN had extremely high accuracy rates in 
predicting new flight routes, with a minimum value of 70% for 
both Southwest and American Airlines Transport Networks. 
The ATS network used for the ANN forecast algorithm was 
abbreviated to 224 nodes (recalling that the logistic regression 
model considers 887 nodes). The 224 nodes included in the 
ANN training were the most active nodes in the ATS, 
excluding smaller, inactive airport nodes. Results for the two 
airline network forecasts along with translation to Accuracy 1 
and 2 are shown below in Table V and VI.  

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-992



TABLE VII. . SUMMARY OF LOGISTIC REGRESSION RESULTS

Year
Correctly 
Predicted

Total 
Predictions

Accuracy1 Accuracy 2

1990 N/A N/A N/A N/A
1991 36.9 1217.6 0.0700 0.4314 
1992 45.3 1427.6 0.0624 0.4264 
1993 28.5 1065.1 0.0658 0.4145 
1994 31.1 1365.8 0.0594 0.4645 
1995 75.3 1395.8 0.1077 0.3976 
1996 33.6 1409.8 0.0596 0.4325 
1997 46.7 1489.0 0.0535 0.3476 
1998 30.9 1177.6 0.0552 0.3968 
1999 29.8 1488.4 0.0488 0.4006 
2000 51.6 1980.2 0.0580 0.3381 
2001 23.3 1286.3 0.0410 0.3824 
2002 139.5 2328.9 0.1676 0.2875 
2003 54.7 1123.5 0.1159 0.2728 
2004 45.4 1043.1 0.1157 0.2953 
2005 48.1 1088.1 0.0970 0.2806 

Average       111.3           1392.5           0.0785          0.3713 

TABLE V. TRAINED ANN RESULTS (SOUTHWEST AIRLINES NETWORK)

Historical Data 
Connect Disconnect 

Network 
Simulation 

Connect 2850 1104 
Disconnect 738 380706 

Accuracy 1 = 72.08% 
Accuracy 2 = 79.43% 

TABLE VI. TRAINED ANN RESULTS (AMERICAN AIRLINES NETWORK)

Historical Data 
Connect Disconnect 

Network 
Simulation 

Connect 7291 2788 
Disconnect 2962 372357 

Accuracy 1 = 72.33% 
Accuracy 2 = 71.11% 

The results displayed in Tables V and VI are separated into 
four cells. The sum of rows in the table describes the forecast 
results by the ANN, and the sum of columns describes the 
actual status of the unconnected node pairs. For example, in 
the American Airlines results (Table VI), the ANN forecasted 
a total of (7,291+2,788) 10,079 new flight routes (city pairs). 
Out of this total number of predicted new routes, in actuality 
7,291 formed connections as determined from the historical 

Similarly, the ANN forecasted that (2,962+372,357) 375,319 
node pairs would remain disconnected but in actuality 2,962 
out of these 375,319 made a connection. The overall accuracy 
results of the ANN are impressive when compared to the 
logistic regression model; however, it is difficult to extract any 
insights on the ATS evolution mechanism itself, since the 
relationships inside the trained ANN do not relate directly to 
the meaning of the input data (it is just an optimal prediction 
configuration). It is noted here again that the network size was 
significantly reduced in the ANN case. 

E. Brief Introduction and Analysis of the Fitness Function 

Method 

      The fitness function model is a network growth logic 
which operates under the fundamentals of scale-free network 
model8. In this type of growth mechanism and network model, 
nodes with higher importance, or fitness value, are granted a 
higher probability to participate in a new link. The procedure 
begins by reading in the network topology from the previous 
year. For each node in the network, a fitness value was 
calculated through a specific functional composition of several 
nodal metrics listed in Table II. The initial functional 
composition used in the research was simply a ratio of 
individual nodal parameter of airports and the network sum of 
that parameter. For example, if a particular node has k=10 and 
the total k for the entire network is 100, its fitness function 
will be 10/100 = 0.1. This type of fitness function projects 
growth that favors highly connected and important nodes (a 
hub-and-spoke type growth) that is typical in the ATS today. 

     However, the fitness function can be modified to allow 
various types of network growth mechanisms corresponding to 
a different mix of business models that might emerge in the 
future. This ability to tailor scenarios in an explicit manner 
dealing directly with service provider behavior is an attractive 
advantage of this approach. Subsequent to the fitness 
calculation, a pair-wise fitness was calculated for each node 
pair, and this was used to determine a probability of linking 
for all unconnected node pairs in the network. Links are added 
to the topology based on those pairs with high link probability 
(under some randomness). 

    Unlike the logistic regression model and the ANN 
approach, for which historical trends were directly projected to 
forecasting, the fitness function algorithm employs insights 
from growth models developed from the network science 
domain. Various combinations of network parameters 
(summarized in Table II) were investigated for the fitness 
function to determine which combination best suited the 
forecasting task. The fitness function that combines distance, 
degree, eigenvector centrality and nodal weight produced the 
forecast with highest accuracy. Results for an iteration of this 
fitness function model are shown on Table VII, noting once 
again that output for each year is an average over 10 runs. In 
comparison with the logistic regression model, the fitness 
function model produces poor results in the form of Accuracy 

- was not resolved. 

    Surprisingly, however, the fitness function has improved 
Accuracy 3 results especially in the parameter list histograms 
(not displayed). The fitness function seems to develop the 
correct traits for choosing the nodes that develop new routes, 

perhaps due to the large pool of new connection candidates 
(there are approximately 4 million unconnected node pairs to 
choose from!). Even though Accuracy 1 and 2 for the fitness 
function approach may be lower than the ANN or logistic 
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regression, the results appear sensible for an algorithm that 
does not depend on historical trends. This latter fact makes it 
difficult to judge the fitness function model performance 
comparative to the other two models described in this paper 
that purely utilizes historical trends as input. In addition, 
models that are independent of historical trends have an 

likely that the forecast accuracy can be maintained even if the 
characteristic of the ATS is significantly shifted from the 
nature of past trends. The logistic regression and ANN model 
will be able to forecast the ATS at higher accuracy levels if 
and only if the ATS continues to evolve in the direction it has 
been evolving. However, if new policy, technology or 
operation methods that revolutionizes the ATS are introduced, 
the logistic and ANN will require new historical data to 
accumulate before further accurate forecast can be made. With 
algorithms like the fitness function model, change in ATS 
characteristics can be readily introduced by appropriately 
adjusting the fitness function calculation. Combinations of the 
models, therefore, also seem like a promising avenue for 
further research. 

V. CONCLUSION AND FUTURE WORK

Current air traffic forecast methods employed at the FAA 
function under the assumption that the flight route network 
will not change, that is, no new flight routes will be added and 
no existing flight routes will be removed. In reality, the 
competitive nature of the airline industry and the potential 
need for new policies relating to the environment are such that 
new routes are routinely added between cities possessing 
significant passenger demand and other city-pairs are 
removed. 

     Research performed under this project and described in this 
paper explored means to understand network reconfiguration 
dynamics in the ATS. In particular, the aim was to expand the 
capabilities of the existing ATS forecast methods developed 
by the FAA, ultimately leading to improved decision-support 
in maintaining and enhancing the ATS. Employing network 
theory variables and concepts as a foundation to characterize 
the network of flight service routes in the ATS, three families 
of models were developed and tested: a) Logistic regression, 
b) a network topology based fitness function method, and c) 
an artificial neural network (ANN) algorithm. Results indicate 
that each has merit under differing accuracy metrics and each 
has methodological drawbacks. Advantages and disadvantages 
were documented. Overall, the logistic regression appears to 
capture more likely new city pairs, though in an inefficient 
manner as compared to the fitness function model. The ANN 
has superb prediction capabilities but was only tested on a 
sub-set of the network data due to computational and time 
constraints of this short duration study. 

     There still is much room for expansion in the current ATS 
forecast capabilities described in this paper. First, means are 

available to increase all accuracy measures for each forecast 
algorithm. Some proposed methods to meet this goal include 
the implementation of more accurate and precise data of the 
ATS (i.e. ETMS instead of BTS), parsing the ATS network 
into sub-networks such as specific aircraft class or service 
provider, and removing variables deemed insignificant to the 
model or causing high multicollinearity. Forecasting based on 
multiple previous years for the logistic regression and fitness 
function model may also increase accuracy. Eventually, 
multiple forecast methods may be merged to go beyond the 
limit of individual methods. Second, enhanced ability to 
implement future scenarios will greatly improve the value of 
this research. All forecast methods are essentially based under 
an assumption in which the future ATS will grow in the way it 
has in the past. However, this is not true. New types of airline 
services, emergence of innovative technologies as well as new 
regulations and policies will impact the future state of network 
configurations; each of these may also drastically change the 
fundamental principles of operation of the ATS. In order to 
anticipate the effect for some of these ground-breaking factors 
in the forecast algorithms, a better understanding and mapping 
of the ATS is required. Finally, combining the best of the 

current forecast method (based largely on the FRATAR 
algorithm) constitutes the most immediate next step. 
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Abstract  
In this paper we formulate an optimization problem for the 
assignment of dispositions to flights whose preferred flight 
plans pass through a flow-constrained area.  For each flight, 
the disposition can be either to depart as scheduled but via a 
secondary route that avoids the flow-constrained area, or to 
use the originally intended route but to depart with a 
controlled departure time and accompanying ground delay.  
We anticipate that the capacity through the flow-constrained 
area will increase at some future time once the weather
activity clears.  The model is a two-stage stochastic program 
that represents the time of this capacity windfall as a random 
variable, and determines expected costs given a second-stage
decision, conditioning on that time.  The goal is to minimize 
the expected cost over the entire distribution of possible 
capacity increase times. 

I. INTRODUCTION 

A flow-constrained area (FCA) is a region of the national 
airspace system (NAS) where a capacity-demand imbalance is
expected due to some unexpected condition such as adverse 
weather, security concerns, special-use airspace, or others.  
Flow-constrained areas might be drawn as polygons in a two-
dimensional space, although in practice they are usually 
represented by a single straight line, functioning as a cordon. 

When an FCA has been defined, it is then often the case that 
an airspace flow program (AFP) is invoked by the Federal 
Aviation Administration (FAA).  An AFP is a traffic 
management initiative (TMI) issued by the FAA to resolve the 
anticipated capacity-demand imbalance associated with the 
FCA.  It is the goal of this paper to develop a method by
which, given the aggregate data described here, specific orders 
for individual flights can be developed for a single FCA that a) 
maximize the utilization of the constrained airspace, b) 
prevent the capacity of the FCA from being exceeded, and c) 
achieve a system-wide delay minimization objective.  We 
recognize that this model cannot be directly applied to AFP 
planning as it does not address issues related to the manner in 
which the FAA and the flight operators collaborate in reaching 

a final decision regarding each flight.  Our goal here is to 
develop relevant stochastic optimization models.  We intend to 
address issues related to collaborative decision making (CDM) 
in later papers.  

II RELATED RESEARCH 
The research most closely related to this paper has to do with 
airport ground holding.  Much work has been done in 
addressing the airport ground holding problem, including the 
development of stochastic integer programming models, [1],
[4], [5], [6], [11].  However, there is still much active research 
in the development of models for managing flights through 
congested areas of en route airspace under weather 
uncertainty. 

In [10], the rerouting of a single aircraft to avoid multiple 
storms and minimize the expected delay was examined.  In 
this model, the weather uncertainty was treated as a two-state 
Markov chain, with the weather being stationary in location 
and either existing or not existing at each phase in time.  A 
dynamic programming approach was used to solve the routing 
of the aircraft through a gridded airspace, and the aircraft was 
allowed to hedge by taking a path towards a storm with the 
possibility that the storm may resolve by the time the aircraft 
arrived.  The focus of the work was on finding the optimal 
geometrical flight path of the aircraft, and not on allocation of 
time slots through the weather area.  Follow-on work 
expanded to modeling multiple aircraft with multiple states of 
weather and attempted to consider capacity and separation 
constraints at the storms.[9][8] 

Initial steps at a concept of operations that describes the 
terminology, process, and technologies required to increase
the effectiveness of uncertain weather information and the use 
of a probabilistic decision tree to model the state space of the 
weather scenarios was provided in [1].  Making use of this 
framework is a model recently proposed that uses a decision-
tree approach with two-stage stochastic linear programming 
with recourse to apportion flows of aircraft over multiple 
routing options in the presence of uncertain weather [3].  In
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the model, an initial decision is made to assign flights to 
various paths to hedge against imperfect knowledge of 
weather conditions, and the decision is later revised using 
deterministic weather information at staging nodes on these 
network paths that are close enough to the weather that the 
upcoming weather activity is assumed known with perfect 
knowledge.  Since this is a linear programming model, only 
continuous proportions of traffic flow can be obtained at an
aggregate level, and not decisions on which individual flights 
should be sent and when they should arrive at the weather.  In 
[7], a stochastic integer programming model is developed 
based on the use of scenario trees to addressed combined 
ground delay-rerouting strategies in response to en route 
weather events.  While this model is conceptually more 
general than ours, by developing a more structured approach 
we hope to develop a more scalable model. 

Recently, a Ration-by-Distance (RBD) method was proposed 
as an alternative to the Ration-by-Schedule (RBS) method 
currently used for Ground Delay Programs (GDPs) that 
maximizes expected throughput into an airport and minimizes 
total delay if the GDP cancels earlier than anticipated [3].  
This approach considers probabilities of scenarios of GDP 
cancellation times and assigns a greater proportion of delays to 
shorter-haul flights such that when the GDP clears and all 
flights are allowed to depart unrestricted, the aircraft are in 
such a position that the expected total delay can be minimized.  
While this problem was applied to GDPs, the principles of a 
probabilistic clearing time where there is a sudden increase in 
capacity and making initial decisions such that the aircraft are 
positioned to take the most advantage of the clearing is similar 
to our problem. 

III. MODEL

A. Model inputs 

Our base model inputs consist of information about the FCA,
which is consistent with the information used in AFP 
planning. 

• Location of the FCA 
• Nominal (good weather) capacity of the FCA 
• Reduced FCA (bad weather) capacity of the FCA 
• Start time of the AFP 
• Planned end time of the AFP 

From a list of scheduled flights and their flight plans, we
determine the set of flights whose paths cross the FCA, and
who therefore would be subject to departure time and/or route 
controls under an AFP.  We also require a set of alternate 
routes for each flight (see Figure 1).  The alternate route for 
each flight should be dependent on the geometry of the FCA 
and the origin-destination pair it serves.  These most likely 
would be submitted by carriers in response to an AFP; for the 
purposes of this paper it is assumed they are submitted 

exogenously, although for testing purposes it was necessary to 
synthesize some alternate routes. 

Primary Route p

Secondary Route s

FCA

Figure 1.  Primary route through the FCA and secondary route 
bypassing FCA.

B. Controls 

In order not to exceed the (reduced) FCA capacity, each flight
will be assigned one of two dispositions in the initial plan 
reacting to the FCA: 

1. The flight is assigned to its primary route, with a 
controlled departure time that is no earlier than its 
scheduled departure time.  Given an estimate of en 
route time, this is tantamount to an appointment (i.e., 
a slot) at the FCA boundary.  Some flights might be 
important enough that they depart on time, the AFP 
notwithstanding.  Other flights might be assigned 
some ground delay. 

2. The flight is assigned to its secondary route, and is 
assumed to depart at its scheduled departure time. 

This limited set of conceived actions imposes several 
important assumptions: 

• We do not consider airborne holding as a metering 
mechanism to synchronize a flight on its primary 
route with its slot time at the FCA 

• We assume that any necessary number of flights can 
be assigned to their secondary routes without 
exceeding any capacity constraints in other parts of 
the airspace.   (In fact, our model can easily be 
extended to handle such “other” capacity constraints 
but in this initial version we do not include them.) 

• We assume that, when the weather clears, the FCA 
capacity increases immediately (“in one step”), back 
to some  higher capacity. 

• The random variable is the time at which the FCA 
capacity increases back to a higher value.  We 
assume that perfect knowledge of the realization of 
this random variable is not gained until the scenario 
actually occurs, and so no recourse can be taken until 
the scenario is realized.  

  
C. Scenarios and future responses 

The outputs of this model are: 
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1. An initial plan that designates whether a flight is 
assigned to its primary route or secondary route;  for 
those assigned to their primary route an amount of 
ground delay (possibly zero) is assigned. 

2. A recourse action for each flight under each possible 
early clearance time. 

We model the time at which the weather clears (i.e. FAC
capacity increases) as a discrete random variable, with some 
exogenous distribution. For any realization of the capacity 
increase time, the flights in question will be in some particular 
configuration as specified in the initial plan.  Some will have 
departed, either on their primary or secondary routes, some 
will already have completed their journeys, and some will still 
be at their departure airports. 

Flights that were originally assigned to their primary route and 
that have already taken off will be assumed to continue with 
that plan.  For any such flight, the primary route is assumed to 
be best, so no recourse action is necessary.   

We now consider flights originally assigned to their primary
route that have not yet taken off.  We need not consider 
transferring them to their secondary routes, because if that 
were a good idea in the improved capacity situation, it would 
also have been a good idea in the initial plan.  Thus, the only 
possible change in disposition for these flights involves
potentially moving their controlled departure time, i.e. 
reducing their assigned ground delay.  Constraints are required 
to define the range of times the fight can arrive at the FCA 
boundary based on the required en route time and the time the 
recourse action is taken (clearance time).  We also explicitly 
enforce the restriction that under such situations the assigned 
ground delay (or equivalently arrival time at FCA) cannot be 
increased.  

All other flights not yet considered were originally assigned to 
their secondary routes, with departure times as originally 
scheduled.  These secondary routes avoid the FCA somehow.  
Under the FCA capacity windfall, some of those flights may 
now have an opportunity to use the FCA.  If a flight has not 
yet taken off, and it is decided that it can use the FCA, the 
lowest cost way to do this is to re-assign it back to their 
primary route, with some controlled departure time no earlier 
than their scheduled departure time.  If, on the other hand, the 
flight has already taken off, then the only mechanism to allow 
it the use of the FCA is a hybrid route that includes that 
portion (and perhaps more) of the secondary route already 
flown, plus a deviation that traverses the FCA and presumably
rejoins the primary route at some point after the FCA (see 
Figure 2).  A flight that is already en route via its secondary 
route may or may not prefer such a hybrid path, depending on 
the difference in cost (time, fuel, etc.) between doing that and 
continuing on its secondary route.  There may be many 
possible hybrid routes, and perhaps only a limited set of those 
would be acceptable to carriers and air traffic control (ATC). 

Primary Route p

Secondary Route s

Hybrid Route

FCA

Figure 2. Reverting from secondary route back to primary 
route through FCA.

For each possible value of the capacity windfall time, we 
determine the expected locations of all affected flights at that 
time, and also what would be the best change in disposition, if 
any, for each of those flights according to a system 
performance metric.  With this information, we can compute 
the conditional cost associated with flying these flights under 
that realization of the stochastic event.  Ultimately, then, the 
goal of the optimization problem is to minimize the expected 
total cost, given these conditional costs and their probabilities. 

D. Model development 

We start by defining the discrete lattice on which time will be 
represented.  We assume there is an index set { }1, ,TK  of size 

T  that demarcates equally spaced time slots, each of duration 
t∆ .  Each of these represents a possible appointment time 

window at the FCA.  The nominal capacity of the FCA should 
be specified in terms of the maximum number of flights 
permissible during one of these time windows.  The number of 
time slots T  then depends directly on t∆  and the total 
duration of an AFP, perhaps inflated to allow for ending times 
later than the original estimate.  The reference time 1t =  can 
be chosen as the earliest scheduled departure time of all of the 
affected flights.  The actual time indicated by the index t is 
then ( )1 2t t− ∆ . 

The flights affected by the FCA can be determined from the 
filed flight plans for that day, minus known cancellations and 
re-routes at the time the AFP is invoked.  These flights are 
indexed according to the set { }1, , FK .  In the rest of the 

paper, any specific reference to a time period t and flight f
assumes that { }1, 2, ,t T∈ K  and { }1, ,f F∈ K . 

1) First stage (Initial Plan) 

There are two sets of assignment variables that are related to 
decisions about the dispositions of flights.  One set represents 
the initial plan, which are the decisions provided by the model 
that will be enacted immediately once the model is run and the 
AFP is declared.  The second set represents conditional 
decisions (recourse actions) based on the random variable 
representing the time at which the capacity windfall takes 
place, which we do not know at the time of the execution of 
this optimization problem, but that we condition for when 
determining the best initial plan. 
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For the initial plan, we define the following set of binary 
decision variables: 

,

1,  if flight  uses its primary route and

has an appointment time  at the FCA

0, otherwise

1,  if flight  is assigned to its secondary

 route

0, otherwise

p
f t

s
f

f

x t

f

x

⎧
⎪

= ⎨
⎪
⎩

⎧
⎪

= ⎨
⎪
⎩

Every flight f needs to have an assigned disposition under the 
initial plan, thus: 

                   , 1p s
f t f

t

x x f+ = ∀∑ (1)

We require that any flight that is assigned to its primary route 
cannot be given an appointment slot at the FCA that is earlier 
than its scheduled departure time plus the expected en route 
time required to arrive at the FCA.  If fE t∆  represents the en 

route time (from its origin to the FCA) for flight f, and fD t∆

is the scheduled departure time for flight f, then: 

                    ,
1

0
f fD E

p
f t

t

x f
+

=

= ∀∑ (2)

This construction requires that en route times and scheduled 
departure times are represented on the same discrete lattice as 
the FCA appointment times.   

No similar constraint is applied to flights assigned to their 
secondary routes under the initial plan, because they are not 
metered at any point and hence are expected to depart at their 
originally scheduled departure time.  There is no provision in 
the model for a flight to depart early, despite the fact that the 
secondary route takes more time than the primary route (since, 
subject to minor variations, airlines do not allow flights to take 
off before their scheduled departure times). 

It might be the case that for a particular flight f, there is a latest 
slot time fl  at the FCA that the carrier who owns that flight 

would be willing to accept.  Slots later than fl  can be 

prevented via the following constraint: 

                      ,
1

0
f

T
p
f t

t l

x
= +

=∑ (3)

For any flight for which fl  is not explicitly provided, fl  is an 

effective time beyond which it would never make sense not to 
choose the secondary route. 

The initial constrained capacity (maximum number of flights) 
for time window t can now be defined as 0

tC  and the 

constraint to enforce it is:  

                   0
,

p
f t t

f

x C t≤ ∀∑ (4)

2) Second Stage (Revised Plan) 

The variables and constraints defined so far represent the first 
stage of the stochastic program.  It is assumed that these 
decisions will be enacted deterministically immediately after 
the FCA is declared.  Next, we describe the second stage of 
the stochastic program – those variables that represent the 
conditional decisions we expect would be made if any of a 
number of possible capacity windfall times happens to come 
true in the future.  We model the time slot at which this occurs 
as a discrete random variable with domain Ω  and probability 
mass function 

( ) { }PrUf u U u u= = ∀ ∈ Ω

Under a capacity windfall, a flight that was originally assigned 
to its primary route with a controlled departure time might still 
be given the same general disposition, although its departure 
time could be moved earlier if that were beneficial to the 
system goal.  We let 

,

1,  if at the time  of the capacity windfall, 

    flight  is assigned to its primary route with
|

    appointment slot  at the FCA

0, otherwise

p
f t

U u

f
y u

t

=⎧
⎪
⎪

= ⎨
⎪
⎪⎩

We will (shortly) introduce other variables for the other 
possible second stage flight dispositions, and we will require 
that all flights be assigned a disposition under every possible 
realization of the stochastic event U.  For now, we proceed by 
obviating values of , |p

f ty u  that would either be physically 

infeasible or politically imprudent.  Later, structural 
constraints plus pressure from the objective function will lead 
to the best possible selection of second stage dispositions for 
all flights. 

First, it is impossible to assign a flight to a slot that would 
require it to depart before its scheduled departure time: 

{ }, ,| , , 1,...,p p
f ff t f ty u x f u t D E= ∀ ∀ ∈ + (5)

This constraint works with constraint (2) to achieve the 
required result. 

Given the timing U of the capacity windfall, some flights may 
already have taken off.  If they did so via their primary route 
(with a controlled departure time), then their second stage 
disposition should match that of the first stage: 

{ }, ,| , , 1,...,p p
ff t f ty u x f u t u E= ∀ ∀ ∈ + (6)

A closer look at constraint (6) reveals that it also satisfies an 
important requirement for flights that have not yet taken off.  
For any particular flight f and given the capacity windfall time 

u, the collection of primary stage variables { }, 1

ft u Ep
f t t

x
= +

=
 will 

either contain one at exactly one position or it will consist 
entirely of zeros.  In the former case, this means that the flight 
has already taken off, and that situation has been dealt with.  
In the latter case, this is indicative of the fact that these slot 
times are infeasible. Thus, even for flights that have not yet 

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-998



taken off, constraints (2) and (6) insure that they will not be 
assigned, in the second stage, to their primary routes with slot 
times that they cannot achieve. 

Looking at constraints (5) and (6), it is clear that they can be 
combined: 

         ( ){ }| , , 1,...,max ,, ,
p py u x f u t u D Ef ff t f t= ∀ ∀ ∈ +             (7)

On the other hand, for flights that already took off via their 
secondary routes (and therefore at their scheduled departure 
times), the only possible second stage dispositions are 
secondary or hybrid routes, so assignments to primary routes 
for these flights must be prevented: 
       
         , | 1 ,p s

f t f f
t

y u x u f D u≤ − ∀ ∀ ∋ <∑             (8)

In addition, we will not allow a flight whose controlled 
departure time is being moved in the face of a capacity 
windfall to be worse off than it was before this event 
materialized: 
               , ,| , ,p p s

f t f q f
q t

y u x x u f t
≥

≤ + ∀∑                  (9)

Notice that we want to allow for the possibility that flights 
originally assigned to their secondary routes can revert, under 
the appropriate circumstances and if the optimization decides 
this is best, to their primary route if they have not already 
taken off, which is why the variable s

fx  appears in constraint 

(9). 

For flights that were originally assigned to the secondary 
route, the increased capacity at the FCA might allow some of 
these flights to pass through the FCA and thus improve their 
flight path by returning to the primary route at some point 
after the FCA or continuing directly to the destination.  For a 
flight that has not yet departed, one could choose to have the 
same structure apply, but the portions of the total flight path 
spent on the secondary and reverting routes would then have 
to have length zero.  In this paper, as will be shown later, we 
use a different approach.  We define the second-stage decision 
variables for this choice as follows: 

,

1,  if flight  was originally assigned to its 

    secondary route, but under capacity

|     clearing time  has been assigned an

    FCA appointment slot 

0, otherwise

h
f t

f

y u u

t

⎧
⎪
⎪⎪

= ⎨
⎪
⎪
⎪⎩

This decision can only be reached for flights that were 
originally assigned to their secondary routes: 

                 , | , ,h s
f t fy u x u f t≤ ∀ (10)

However, it should be obvious that the objective function will 
enforce this behavior implicitly. 

The flights in question will be on their secondary routes and 
diverting onto a hybrid route that passes through the FCA.   
We need to impose constraints that insure that these flights are 

only assigned to FCA time slots they can feasibly reach.  If a 
flight diverts from its secondary route to its hybrid route at 
time td there will be an earliest time it can reach the FCA.  
Figure 3 illustrates the geometry used to compute the 
parameter used by our model:  

td
f,t  is the time at which f must divert from its secondary route 

so as to use its hybrid route that arrives at the FCA at time t. 

Figure 3. Possible diversion from secondary to hybrid route. 

The following constraint prevents a flight from diverting to its 
hybrid route before the weather is actually cleared. 

uttufuy d
tf

h
tf ≤∀∀= ,, ,,0    (11)

In addition, the time slot assignment cannot be later than the 
latest time for which it would be reasonable to accept an 
assignment at the FCA considering the geometry of its 
secondary route: 

                , | 0 , ,h
f t fy u f u t l= ∀ ∀ >     (12)

The final option possible, if the capacity increase occurs at 
time u, is to leave a flight that was originally assigned to its 
secondary route on that route, with the same (scheduled) 
departure time: 

1,  if flight  was originally assigned to its

    secondary route, and if, under AFP stop
|

   time , that decision remains unchanged

0 otherwise

s
f

f

y u
u

⎧
⎪
⎪

= ⎨
⎪
⎪⎩

Practically speaking, it would never make sense to assign a 
flight to its secondary route under the recourse if it had not 
also been given the same assignment in the initial plan.  It 
might seem, therefore, that the following constraint is 
necessary: 

                   | ,s s
f fy u x u f≤ ∀ (13)

However, it should be obvious that the objective function will 
enforce this behavior implicitly.  If it was cost effective to 
assign a flight to its secondary route under the recourse, it 
would be cost effective to do so under the initial plan.   

t 
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Constraints 10 and 13 can be combined into a single
constraint: 

         , | | , ,h s s
f t f fy u y u x u f t+ ≤ ∀ (14)

It would be possible, given the constraints developed so far, to 
assign a flight to a hybrid route that essentially reverts to the 
primary route immediately.  In other words, this would be an 
assignment that is tantamount to taking off on the primary 
route at the scheduled departure time, which is a more logical 
way to interpret this outcome.  Therefore we introduce the 
following constraint to enforce this behavior: 

             , | 0 ,
f f

h
f D Ey u f u

+
= ∀ (15)

For each time scenario u, every flight f must be assigned to 
one of these dispositions.  Furthermore, if the disposition 
involves being scheduled into a slot appointment at the FCA, 
no more than one slot can be assigned to a given flight.  Given 
that the decision variables are required to be binary, the 
following constraint addresses both of these concerns: 

, ,| | | 1 ,p h s
f t f t f

t t

y u y u y u u f+ + = ∀∑ ∑ (16)

For any value U u= , there will be a new capacity profile 

( )uC t  that agrees with 0( )C t  up to time t u= , but represents 

an increase in capacity beyond that point.  For example, if 
0( )C t  had been a constant vector, then ( )uC t  could be a step 

function that makes a jump at time t u= .  On the other hand, 

if 0( )C t  had been a periodic 0-1 function, then ( )uC t  might 

just have an increased duty cycle after time t u= .  Figure 4 
shows examples of both of these extremes.  A wide variety of 
profiles for ( )uC t  are possible; the only real requirements are 

that it agree with 0 ( )C t  prior to time t u= , and that after that 

time, it supports a higher rate of flow than that was possible 
under the initial plan.  The capacity constraint under the 
scenario U u=  can now be written as: 

, ,| | ,p h u
f t f t t

f f

y u y u C u t+ ≤ ∀∑ ∑ (17)

3)     Objective Function 
Since our model involves the specification of decisions that 
are conditioned random events, the objective function will be 
an expected value.  To emphasize the paradigm of creating a 
plan (our initial plan) together with contingency plans (our 
recourse actions), we represent the objective function as the 
sum of the deterministic cost of the initial plan minus the 
expected savings from recourse actions.    

4

8

20 minsCapacity
(number
of flights) }

timeclearing
time, u

1

2 mins

}

timeclearing
time, u

Capacity
(number
of flights)

Figure 4.  Capacity functions with high (top) and low 
(bottom) throughput before and after clearing.

Therefore the objective function can thus be represented as: 

                   ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−∑

u
uu YSPXCMin     (18)

Or more precisely: 

     ( )4321
uu

u
u zzPzzZMin +−+= ∑            (19)

Where, 
                        p

tf
f t

p
tf xcz ,,

1 ∑∑=     (20)

                                  ∑=
f

s
f

s
f xcz 2                             (21) 

uscuyczz p
tf

f t

s
f

p
tf

f t

p
tfu ,,,

13 ∑ ∑∑ ∑ +−=       (22) 

                      uysvz h
tf

f t

h
tfu ,,

4 ∑∑=
         (23)

where 

cp
f,t  is the cost of assigning flight f to its primary route so that 

it arrives at the FCA at time t. 
cs

f  is the cost of assigning flight f to its secondary route. 
svh

f,t  is the savings incurred if flight f starts out on its 
secondary route but reverts to a hybrid route that arrives at the 
FCA at time t. 
sp

f,t  is a dummy binary variable that works as an indicator. It 
takes value of one when a flight initially assigned to its 

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9100



secondary route is assigned back to its primary route under 
revised plan.  
So; 
                     ( )p

tf
s
f

p
tf yxMins ,, ,= (24)     

IV. COMPUTATIONAL EXPERIMENT 

We conducted a computational experiment to give some 
preliminary evidence as to the computational feasibility of the 
model and its impact on decision making.  We now describe 
the problem data.  Flights, their routes and alternate routes 
were generated artificially based on the airspace geometry 
given in Figure 5.  There were three types of flights: 

Short haul:  length - 60 min: origin-to-FCA – 30 min, FCA-
to-destination – 30 min; reroute angle – 
arctan(30/30). 

Medium haul:  length – 180 min:  origin-to-FCA – 90 min, 
FCA-to-destination – 90 min; reroute angle – 
arctan(30/90). 

Long haul:  length – 300 min:  origin-to-FCA – 150 min, 
FCA-to-destination – 150 min; reroute angle – 
arctan(30/150). 

Figure 5:  Airspace Geometry for Flight Generation 

There were F=200 flights with one flight departing every 1 
minute and departures alternating among the three flight types.  
First flight departed at 2:00 PM.  There were T=200 time slots;  
each slot had a width of t∆ =2 minutes.  Initially, the FCA 
had restricted capacity of 1 flight per every three time slots (10 
flights per hour).  In all cases, the FCA cleared by 7:00 PM so 
that capacity rose to 4 flights per time slot (120 flights per 
hour).  There were four possible early clearance times:  3:00 
PM, 4:20 PM, 5:30 PM, each occurring with probability 0.25.  
In event of early clearance, slot capacity rose from 1/3 to 2 
flights for slots between the clearance time and 7:00 PM.   

Three cases were run: 
All Options:  This was the complete model as defined in the 

paper. 
Reroute but No Recourse:  In this case, the reroute option 

did not include the possibility of recourse, i.e. the yf,t
h

variables are all fixed at zero.  This corresponds to a 
decision making scenario where the possibility of 
rerouting after departure is not taken into account. 

No Reroute:  In the case, no rerouting is allowed.  This 
corresponds to a decision making scenario under 
which the problem is solved only using ground 
delays. 

Table 1 gives the results of our experiments.   The costs of 
various solution components as well as the total expected cost 
are given.  Note that the “All Options” scenario produced 
substantial cost savings over the other cases (particularly the 
No Reroute case).   The fact that the initial plan costs (cost of 
the assigned ground delay C(xp) and cost of complete reroutes 
C(xs)) changed significantly among the cases shows that 
taking the various recourse options into account can 
substantially alter the initial plan. 

Also note that running times are given.  A 2.8 GHz Intel® 
Pentium® based computer was used with 1.99 GB of RAM.  
The IP solver used was XPress MP® vers 2007B.   

Table 1: Computational Results 

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have defined the basics of a stochastic 
optimization model for simultaneously making ground delay 
and reroute decisions in response to en route airspace 
congestion.  We have also given the results of an initial 
computational experiment.  Future steps should include more 
computational experiments and model refinements aimed at 
improving the computational performance of the integer 
program and at exploring the changes in airspace planning the 
model provides.  We anticipate the need to provide many 
refinements and extensions to this model to better address 
practical problem solving.  Further, another vital direction is 
the development of strategies necessary to embed this model 
within CDM processes necessary for the delivery of practical 
air traffic flow management solutions. 
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Abstract—Accurate trajectory prediction is an important issue
for decision support tools in the field of ATM. This paper
presents a new approach that considers trajectories as points in a
functional space. By finding a expansion of observed trajectories
on a suitable basis and truncating the expansion to a finite
number of terms, standard regression algorithms can be used.
Within this framework, full segments of trajectories can be
forecasted up to 10-15 minutes.

I. INTRODUCTION

Functional data analysis is an active branch of statistics

in which relevant objects are mappings belonging to a well

defined space, most of the time an Hilbert space. It has

been proven very efficient for problems where preserving the

functional nature of data is of great importance : curves classi-

fication, functional dependence learning and similar problems

[15]. In the recent literature an increasing attention has been

paid to linear functional regression [2],[6] and some of its

generalization [23],[14]. In this setting, either a scalar value

or a mapping (the response), possibly contaminated by an

independent measure noise is assumed to be linearly dependent

on a mapping (the predictor). In the functional framework,

the equivalent of the slope coefficient in the classical finite

dimensional linear model is a kernel function that has to be

estimated. Solving the associated least square problem leads to

the well known Wiener-Hopf equation that generally admits no

unique solution. One of the main issue in functional regression

is thus to add some extra assumption on the regressor kernel

so that the original ill-posed problem can be solved. On

the other hand, in the field of ATM, the need for accurate

trajectory predictor has appeared as a prerequisite for Decision

Support Tools (DST). Air traffic management research and

development has produced a substantial collection of decision

support tools that provide automated conflict detection and

resolution [4], [1], [22],trial planning [10], controller advi-

sories for metering and sequencing [20], [3], traffic load

forecasting [11], [9], weather impact assessment [8], [19],

[5]. The ability to properly forecast future aircraft trajectories

is central in many of those decision support tools. As a

result, trajectory prediction (TP) and the treatment of trajectory

prediction uncertainty continue as active areas of research and

development (eg [17], [21], [12], [16], [18]. In this paper we

will present an innovative approach based on functional re-

gression for solving the short to mid-term trajectory prediction

(TP) problem. Long-term prediction is yet beyond the scope

of this study, but considering a database of trajectories and

taking into account intents of aircraft through flight plans may

allow an extension of our methodology to encompass it. The

first part of the paper will be devoted to a short compendium

of available trajectory goodness-of-fit metrics, then the main

results on functional regression will be exposed, with the

potential applications and improvements of existing algorithms

for the specific trajectory prediction problem.

II. TRAJECTORY PREDICTION METRICS

When an aircraft flies from a city A to a city B, it has

to be managed by air traffic controllers in order to avoid

collisions with others aircraft. Everyday, about 8000 aircraft

fly in the French airspace, inducing a huge amount of control

workload. Such a workload, is then spread by the mean of the

airspace sectoring. The airspace is divided into geometrical

sectors, each of them being assigned to a controller team.

When a conflict between two (or more) aircraft is detected,

the controller changes their routes (heading, speed, altitude) in

order to keep a minimum distance between them during the

crossing. All flying aircraft are then monitored during their

navigation and so from the departure till the destination.

When a controller observes its traffic on the radar screen, he

tries to identify convergent aircraft which may be in conflict in

a near future, in order to apply manoeuvers that will separate

them. The problem is to estimate where the aircraft will be

located in this near future (5-10-20 minutes); this process is

call trajectory prediction. This prediction may be also very

useful in order to estimate the workload level in control sector

to prevent over capacity event. As a mater of fact, it is

very useful to estimate when an aircraft will enter a sector

in order to compute the associated sector workload and to

apply regulation if necessary. When a sector is expected to

be overloaded, the aircraft involved in such a process will be

speeded up or slow down by the controller in order to adapt

the demand to the actual capacity as much as possible.

The trajectory prediction depends mainly on the residual

noise after filtering which are the weight of the aircraft, the
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temperature and the wind. The residual noise is integrated

with time with a growing covariance matrix indicating that

the estimated position is less and less accurate. The weight

of the aircraft is relevant in the flight dynamics model but is

still a raw data. The engines of aircraft are sensitive to the air

temperature and such a data is very useful to model the trust

of the aircraft but it is also very difficult to measure on real

time. Finally, the wind influences strongly the cinematic of the

aircraft and limits also the trajectory prediction. Based on the

available accuracy, the actual limit of the trajectory prediction

is about 15 minutes for the conflict detection. It means that

after 15 minutes the uncertainty is so big that the estimated

position is no more useful for such application.

One of the issues in trajectory prediction is to measure how

accurately a model will fit to a target trajectory. Unfortunately,

many different metrics can be proposed, each of them focusing

on a specific aspect of accuracy. Most of the time, the proposed

metrics fall into one of these categories [13] :

• Time coincidence. The time difference between a pre-

dicted event and a real event is used as a measure of

TP accuracy. Time coincidence is relevant in applications

where synchronizing is important, like sequencing traffic,

or when the DST uses time information to instruct

controller about the order in which actions have to be

taken.

• Spatial coincidence. Similar to the previous one except

that spatial distance at specified time (or more generally

at events that can be predicted with the knowledge of

aircraft positions up to a given time) between the model

and the real aircraft is computed. Spatial coincidence can

be refined by further splitting into altitude and horizontal

error. Furthermore, for some applications, mainly conflict

predictors and/or solvers, spatial difference is projected

onto a vector normal to the real trajectory (cross-track

error) and onto a vector tangent to the real trajectory

(along-track error).

• 4D coincidence. Trajectories are considered to be 4D

curves, and distance between such curves is computed.

Most of the metrics derived for spatial coincidence can be

extended to the 4D setting, with the benefit of including a

kind of time coincidence, thus generalizing in some sense

the previous two aspects.

• Morphological similarity. Different in nature from the

previous metrics, an intrinsic distance between trajecto-

ries considered as curves in a 3D space can be derived

from Riemannian geometry. Since only the shape of the

trajectory is taken into account, this metric is relevant

mainly for trajectory design tools.

Except for the last one, all those basic metrics can be inte-

grated along trajectories to produce a mean value indicator (the

classical L2 distance is for example obtained by integrating

the standard spatial coincidence metric over time). Within

the frame of functional regression, the standard choice is

to consider L2 distance as goodness-of-fit measure. In the

following, we will use this spatial coincidence metric along

with a specific 4D distance. Investigation of different kind of

accuracy evaluations is planned for future work.

III. FUNCTIONAL REGRESSION

A. The functional nature of the trajectory prediction problem

An aircraft trajectory is by definition a mapping from a time

interval [a, b] to the space R
3 (sometimes, it is convenient

to add speed, so that the resulting expanded state space

is R
6). Such a trajectory is indeed the observed result of

a complex evolution process that involves flight dynamics,

external actions (pilot, ATC) and atmospheric factors (wind,

temperature . . . ). The complete description of the trajectory

using all these factors is generally not possible, because many

influencing factors are unknown (aircraft mass, local wind, etc

. . . ), so a less accurate but tractable model has to be chosen.

For the purpose of short term prediction, a linear controlled

model is accurate enough. The main assumption made is that

the derivative of acceleration is zero (in a weak sense, since

in most models commands are piecewise constant functions).

Based on this observation, we will focus on trajectories belong

to the Sobolev space of square integrable mappings with

square integrable derivatives (in distributional sense) up to

order 3. From now, we will assume that all trajectories belong

to this space.

B. Linear regression with a functional predictor

The linear functional regression problem can be stated as

follows :

• The predictor and the response are square integrable

mappings from respective compact time intervals [a, b],
[c, d] to R

n (resp. R
m).

• The data set consists of pairs (Xi, Yi)i=1...N of predic-

tor/response. It is assumed that the Xi, Yi are sample

trajectories of two underlying smooth Hilbert random

processes (for a general account on these processes, see

[7]), with unknown smooth mean µX , µy and covariance

kernels BX , BY .

• The functional linear model on the predictor X has the

general form :

Ŷ : t �→ f(t) +

∫
[a,b]

K(s, t)X(s)ds

with f : [c, d] → R
n a smooth square integrable mapping

and K : [a, d] × [c, d] → Mm,n(R) a smooth square

integrable (m, n)-matrix valued kernel.

• The solution of the functional regression problem is the

optimal couple (f, K) that minimize the mean square

error between Y and Ŷ .

Most of the time, the related literature on the subject addresses

the problem with n = 1, that is for real valued trajectories.

In our setting, this clearly means that it enforces the fact

that the x, y, z components of a trajectory can be treated

as independents scalar valued mappings. Although we will

see later that functional regression models satisfying some

invariance properties must fall into this category, there is

no reason to limit ourselves to kernels with values in the
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set of diagonal matrices. It worth notice too that the basic

theory makes the assumption that trajectories are continuously

observed, which is clearly not the case of ATC data. The

reference [23] extends the least square criterion to irregularly

spaced samples on predictor and response, providing us with

the right framework for trajectory prediction applications and

will be the starting point of our work. The solution of the

functional regression problem is known to satisfy a Wiener-

Hopf equation :

E[XY ] =

∫
[a,b]

K(s, t)Bx(s, t)ds (1)

Unfortunately, this equation has generally not a unique solu-

tion. Furthermore, solving 1 from sampled trajectories yields

an even more ill-posed problem. Solutions to this problem,

mainly by using regularization, have been proposed in [15].

Most of the time, an expansion of the predictor on an Hilbert

basis is used to solve the functional regression (note that at

some point of the process, all expansion must be truncated

in order to obtain something computable). Several choices

exist for such a basis. In many papers it is recommended to

use Karhunen-Loeve expansion, with the eigenfunctions of the

covariance operator as basis :

ψi(t) = λi

∫
[a,b]

BX(s, t)ψi(s)ds

with λi the eigenvalue corresponding to ψi. Since the co-

variance and mean functions are unknown, there are to be

estimated from the data. The procedure used in [23] is to use

a weighted sum kernel approximation. A complete treatment

can be found in [24]. It has to be noted that this particular

choice is essentially heuristic : since the basis functions

depend only on the predictor and not on the response, it

cannot be guaranteed that the first q eigenfunctions, associated

to the q largest eigenvalues, are the q most predictive (the

integer q represents the truncation index used when solving

the functional regression problem).

C. Solving the functional regression

The framework in this part will be the one chosen in [23].

Under the general assumptions of the previous section, we will

further assume that the data set consists in a finite number

of sparsely sampled predictor/response pairs. Let Xi (resp.

Yi) be the realization of predictor process X (resp. response

process Y ) corresponding to observation i in the data set. Let

Mi (resp. Ni) be the number of samples available for this

observation and let Xi,j , j = 1 . . . Mi (resp. Yi,j , j = 1 . . . Ni)

be the actual samples along trajectories Xi (resp. Yi) with

corresponding sample times τi,j (resp. τ̃ij). The number of

samples Mi, Ni and the sampling times are assumed to be

random variables independent from the processes X, Y . As

mentioned before, the first step towards solving the regression

problem is to find an expansion of the predictor and the re-

sponse on respective (infinite but countable) basis, respectively

(φi)i∈N and (ψi)i∈N. A widely used procedure in the field

of functional data analysis is to find a smooth approximation

to covariance function of X (resp. Y ) then find estimators

of the eigenvalues/eigenvectors of the covariance operators

(such procedure is known as Functional Principal Component

Analysis FPCA). As mentioned before, it is not guaranteed

that this will result in an optimal representation for regression

purpose, but it has proved quite efficient and robust in practice.

However, finding the eigenvalue/eigenvectors from the em-

pirical covariance function obtained from the measurements

is quite a lengthy process. First of all, a smooth estimator

of mean and covariance function has to be obtained. A first

approach is to use a local linear smoother . Given a kernel K
and a bandwidth parameter h, the local linear smoother for the

(t, X) scatterplot is obtained by minimization over a, b of :

n∑
i=1

Mi∑
j=1

K

(
t − τij

h

)
(Xij − a − b(t − τij))

2

with t being a fixed time. The optimal values a, b obtained

for a fixed t give a local linear model, so that the estimated

mean at time t is µ̂X(t) = a. For covariance estimation, the

procedure is roughly the same, but instead of considering the

samples Xij of X , the empirical covariance function :

C ′

X(τi,j1 , τi,j2 ) = (Xi,j1 − µ̂X(τi,j1 ))(Xi,j2 − µ̂X(τi,j2 ))

is used. The corresponding local linear model is bivariate and

corresponds to the minimum over a, b, c of :

n∑
i=1

Mi∑
j=1

Mi∑
k=1,k �=j

K

(
t − τij

h
,
s − τik

h

)
(C ′

X(τi,j , τi,k) − a − b(t − τi,j) − c(s − τi,k))2 (2)

The estimated covariance ĈX(t, s) at time t, s is thus the term

a in the previous expression. Several packages exist for such

estimation. For our purpose, an ad-hoc algorithm has been

developed : the general principle will be described below.

It must be noted that local linear smoother is not the only

usable procedure for fitting a smooth curve or surface to

scatterplot data. Smoothing splines seem to be a good choice

too. The difference in terms of performance between those

two approaches has not been investigated yet, but at first sight

there is no evidence why the first one will be better : it has

been chosen in our application only because of its availability

and some asymptotic approximation results.

Next step is to estimate eigenvalues and eigenvectors of the

covariance function by solving the functional equation :∫
[a,b]

ĈX(t, s)ψ(s)ds = λψ(t)

Several numerical procedures can be found in the numerical

analysis literature for solving such problems. We have ap-

plied a Nyström method on a regular grid for the trajectory

application (see details in the next section). The result is

two finite sets of pairs eigenvalues/eigenvectors (λi, ψi)i=1...P

and (µi, θi)i=1...Q for X and Y respectively. The number of

representing functions (the P and Q integers) has to be chosen
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on either a leave-one-out or an AIC : the later gives good

results in the trajectory case.

Given the eigenvalues/eigenfunctions pairs for X and Y
respectively, it is possible to compute an estimate of the

covariance of X and Y components respectively :

σ̂XY (i, j) =

∫
[c,d]

∫
[a,b]

θj(s)ψi(t)ĈX(t, s)dtds

The resulting optimal kernel solving (approximately) the func-

tional regression problem is then obtained as :

K(t, s) =

P∑
i=1

Q∑
j=1

σ̂XY (i, j)

λi
ψi(t)θj(s)

IV. APPLICATION TO TRAJECTORY PREDICTION

Applying functional regression to trajectories implies :

• Extending all previous estimators to vector valued ones

(thus replacing the covariance function by a 3× 3 matrix

valued function).

• Find the right predictor and response.

A. Principal components in the vector case

Recall that the chosen representation basis is obtained

by functional principal component analysis. For trajectory

prediction purpose, all random processes have values in R
3, so

that canonical procedures have to be extended. Estimation of

mean and covariance functions can be used readily since the

proposed local linear estimator extends componentwise to the

3-dimensional case. It should be noted however that computing

the mean function involve 3 times more computation than for

the scalar case and computational task is scaled by a 6 factor

for the covariance (due to the symmetry of the covariance

matrix). An important step in the design of a linear smoother

is the choice of weighting kernel and bandwidth. The problem

has been addressed in the field of non parametric statistics

and it is known that the kernel has less influence than the

bandwidth. The Epanechnikov kernel :

Ke(t) =
3

4
(1 − t2)1[−1,1](t)

has some interesting optimality properties and is easy to

compute. Another choice is the Gaussian kernel :

Kg(t) =
1

√

2π
exp(−

t2

2
)

For very fast computation, it is still possible to use a uniform

kernel :

Ku(t) =
1

2
1[−1,1](t)

Since the data set is usually large (around 1000 trajectories

sampled at 10s), a compactly supported kernel in the local

linear smoother allows a reduced computational load and an

complexity mostly independent of the number of samples in

a trajectory. The Gaussian kernel is not compactly supported,

but decreases very fast at infinity so that practically it can be

set to 0 outside an compact interval. The optimal bandwidth

can be found in the limit of large samples. If the kernel is

K, and the target function f is supported in the interval [a, b]
then the asymptotically optimal bandwidth is :

h5 =
σ2(b − a)2

∫
K2(x)dx

N
(∫

x2K(x)dx
)2 ∫ b

a
f ′′2(x)dx

with σ2 the variance of the noise, N the number of samples.

Since f is unknown, one has to estimate both σ2 and f ′′. Since

f has to be estimated, it is clear that only some rough guess

on plausible value can be done. A first approach is simply to

increase the order of the model as :

n∑
i=1

Mi∑
j=1

K

(
t − τij

h

)
(Xij − a − b(t − τij) − c(t − τij)

2)2

the c coefficient will then give an estimate of f ′′(τij)/2. This

method is appealing for trajectory modelling since curvature

can be obtained directly from c. However, experiments on

real data show that little is gained since the second order

model itself has a bandwidth that must be set heuristically.

A second approach is simply to compute using a finite

difference operator. It works surprisingly well for such a naive

approach, probably because noise is not dominant in ATM

data. Assuming that the bandwidth is known, solving for the

parameters of the local linear model can be done easily. For

a given vector or matrix valued function X sampled at times

τij with values Aij , the mean value at time t can be obtained

using the following formula :

X̂(t) = −dmX + efX

with :

d =

n∑
i=1

Ni∑
j=1

Ke

(
t − τij

h

)
(t − τij)

2

e =

n∑
i=1

Ni∑
j=1

Ke

(
t − τij

h

)
(t − τij)

and :

mX =

n∑
i=1

Ni∑
j=1

Ke

(
t − τij

h

)
Xij

fX =

n∑
i=1

Ni∑
j=1

Ke

(
t − τij

h

)
(t − τij)Xij

Since Ke is compactly supported (or approximately such), the

inner sum in the previous expression will only involve a num-

ber of terms bounded by a constant so that the computational

task for computing X̂(t) at a given t scales linearly with the

number of trajectories in data set but independent from the size

of the trajectories themselves. Once the covariance functions

have been obtained for both the predictor and the response,

the eigenvalues/eigenfunctions are computed by solving an

homogeneous Fredholm equation of the second kind :∫
[a,b]

C(s, t)φ(s)ds = λφ(t)
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with C the covariance function of interest. Several numerical

methods can be found in the literature for such a problem.

In our setting, the Nyström method based on Gauss-Legendre

quadrature formula has proved very well fitted. The method

proceeds by approximating the integral operator as :

n∑
i=1

wiC(si, t)φ(si)

with wi and si respectively the weights and the abscissa of

the Gauss-Legendre quadrature approximation. For n points,

the abscissa are the roots of the n-th Legendre polynomial Pn

while the weights are computed as :

wi =
2

(1 − s2
i )P

′

i (si)2

with the Legendre polynomials Pi evaluated by the recursion :

(i + 1)Pi+1 = (2i + 1)xPi − iPi−1

with conventionallyP−1 = 0, P0 = 1. The Fredholm equation

of the second kind is approximated by the following eigenval-

ues problem :

n∑
i=1

wiC(si, sj)φ(si) = λφ(sj), j = 1 . . . n

The result is a set of eigenvectors φ(sj , i), j = 1 . . . n, i =
1 . . . n and eigenvalues λi. The approximation to the eigen-

function of the original covariance operator associated to

eigenvalue λi is then :

φi(t) =
1

λi

n∑
i=1

wiC(si, t)φ(si)

(the case λi = 0 will not occur in our application). Since our

original processes X, Y take their values in R
3, all previous

equations are to be taken as vector ones. The main conse-

quence is that the approximate eigenvalue has to be solved

with a full 3n×3n system. Fredholm equation solving is quite

a critical step in the overall algorithm, so attention has been

paid to its accuracy. In fact, Gaussian quadrature is not the only

procedure that can be used, but any quadrature formula based

on samples will work. A comparison has been made between

low accuracy rectangle method for approximating the integral

and the complete Nyström algorithm with Gauss-Legendre

quadrature. For that purpose, the test set has be obtained by

generating trajectories of a simple random process (namely

a square root function with an additive gaussian noise and a

random scaling).

The error obtained with the two methods on the test set is,

as a function of the number of eigenfunctions : Nyström algo-

rithm appears to be more accurate than rectangle quadrature,

at least for small number of eigenfunctions. However, method

tends to yield ill conditioned matrices when a large number

of eigenfunctions is required : this phenomenon explains why

Nyström is outperformed by rectangle quadrature in such

cases. The difference between the two procedures remains

anyway quit low, indicating that a high order quadrature

formula is not of great importance for our purpose.

Fig. 1. Test functions for fredholm equation

Fig. 2. Error comparison

B. Predictor

Finding the right predictor is a critical task in applying

functional regression. For trajectory prediction purpose, it

is natural to consider a part of the observed trajectory as

the predictor, and a part of the future trajectory as target.

The learning database has thus been chosen by selecting

homogeneous segments of 20 radar plots from a day of traffic,

then for each segment cut into two 10 plots pieces. The first

piece will be used as predictor and second one as target. A

total of 3200 trajectories has been considered, with a final

database of 100 segments. In the traffic, a test database with

the same number of segments and similar characteristics has

been selected too. Since the random process associated to

trajectories has no reason to be stationary, the Karhunen-Loeve

basis is a priori different for the predictor and the target. These

two basis will be denoted respectively by (φi)i∈N and (ψi)i∈N.

Let (Xk, Yk)k be the k-th sample from the learning base (that

is Xk is the first half on segment k while Yk is the second

half), the regression problem is to find an optimal K such

that :
N∑

k=1

∫
‖Yk(t) −

∫
K(t, s)Xk(s)ds‖2dt

is minimal. The kernel K can be expressed using basis

(φi)i∈N, (ψi)i∈N as :

K(t, s) =
∑

i

∑
j

Kijψi(t)φj(s)

Using orthogonality of the Karhunen-Loeve eigenfunctions,

the original problem is reduced to find optimal an optimal

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9107



sequence (Kij) minimizing :

N∑
k=1

∫ ∥∥∥∥∥∥
∑

i

ψi(t)

⎛
⎝bik −

∑
j

Kijajk

⎞
⎠

∥∥∥∥∥∥
2

dt

assuming that the expansions of Xk, Yk are :

Xk(s) =
∑

j

ajkφj(s), Yk(t) =
∑

i

bikψk(t)

using the orthonormality of (ψi)i∈N, the minimization problem

reduces further to :

min
(Kij)

N∑
k=1

∑
i

⎛
⎝bik −

∑
j

Kijajk

⎞
⎠2

In practice, expansions are truncated to a fixed rank. Let P be

the corresponding integer. The approximate finite dimensional

mimization problem is :

min
(Kij)

N∑
k=1

P∑
i

⎛
⎝bik −

P∑
j

Kijajk

⎞
⎠2

which is nothing but a linear least mean square problem

that can be solved with the help of normal equations or QR

factorization. The result of prediction for first the test functions

(same as in previous sections) is summarized below :

Fig. 3. Test functions for prediction

Fig. 4. Predicted second half of trajectories

In the case of real traffic, the obtained results are : The

relative error for in the horizontal plane is kept low and

increases as expected with prediction time. In the case of

Fig. 5. Relative prediction error

Fig. 6. Relative prediction error (x-y plane)

Fig. 7. Relative prediction error (z component)

z component, relative error is high, but measurements are

discrete (flight levels), thus there is an intrinsic noise coming

from quantization. For this component, prediction is indeed

built-in with smoothing : a comparison with a smoothed

trajectory yields much lower error.

C. Clustered regression

From now, only the case of trajectories originating from the

same underlying stochastic process has been considered. While

several operational situations fall in this category (especially

when the predictor consists of small parts of trajectories), it is

known that this assumption is false when applied to large areas

of the airspace. To deal with this problem, it may be necessary

to introduce a cluster regression. The data set of trajectories

is partitioned into homogeneous classes (clusters) based on a

relative distance criterion (most of the time, a L2 norm or

a Sobolev norm is used). Once the clustering has been done,
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functional regressors are computed cluster by cluster, assuming

that all trajectories in the same cluster are close enough to

be modeled as samples of the same stochastic process. When

applying functional regression to a new trajectory, the closest

cluster is chosen, then the corresponding regressor is used.

This way of applying functional regression has proved to

be very efficient for inhomogeneous 1D curves ; however,

application to 3D trajectories has not been done yet.

V. CONCLUSION AND FUTURE WORK

The functional regression is a promising approach on sim-

ulated situations. Besides of producing an estimation of the

future positions of aircraft in the short to mid term prediction

range, it is possible to derive confidence regions for the actual

position, thus yielding a better control on the quality of the

produced solution. The computational task involved is heavy,

but has to be done only once : as soon as the Karhunen-

Loeve has been produced, it can be used at low cost. The

future work will be first experiments on selected learning data

sets so that functional regression can be compared with other

methods. A second aspect will be to introduce other kind

of decompositions (namely wavelets and curvlets basis) that

are known to perform much like Karhunen-Loeve but at a

much lower computational cost and to investigate the cluster

functional regression. Furthermore, a functional regression

software adapted to trajectory prediction is currently under

development.
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Abstract—This paper studies the robust flight-level assignment
problem. Our goal is reducing the cost (and more specifically the
delay) induced by airspace congestion through an appropriated
flight level assignment (FLA) taking account of uncertainties. We
investigate a robust optimization framework inspired by Bertsi-
mas and Sim work for linear programs and propose appropriate
models for the robust flight level assignment problem.
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I. INTRODUCTION

Alleviating delays caused by airspace congestion is, and
will continue to be, critical to the operation of the European
air traffic control system. Two kinds of congestion can be
identified corresponding to two different areas of airspace:
terminal congestion (around airports) and en-route congestion
(between airports). We will focus on congestion in the airspace
rather than at airports, and we are interested here in a specific
direction involving flight-level optimization with respect to a
given traffic demand and given routes. In other words, our
goal is to reduce the additional cost (including delay) induced
by conflict resolution procedures through a better assignment
of flight levels. Indeed, in case of en-route conflicts, some
aircraft has to be rerouted, which produces some delay. This
delay can be reduced through increasing the speed of aircraft,
which yields additional energetic cost. We typically consider
here the energetic cost due to conflict resolution, called simply
conflict or energetic cost in the remainder of the paper. With
respect to the FLA problem, we restrict ourselves to only
three possible levels for each flight. Despite this restriction, the
problem remains highly combinatory due to the large number
of simultaneous flights. The flight level assignment problem is
shown to be NP-complete in the strong sense [2], which makes
it hard to solve at optimum even for reduced size instances.
The problem becomes rather more difficult when involving the
uncertainties in ATM. More precisely, an important question
that we raise in this paper is how to include the potential en-
route conflicts associated with each aircraft in the model and
take into account the uncertainties related to it. All this leads to
the robust flight-level assignment problem and the associated
mathematical model, which is the main focus of this work.

A. Related works

Optimization problems in ATM have been widely studied,
and we do not intend to mention all of them. We prefer

to focus on some work related someway to the flight-level
assignment problem. Let us first cite Bertsimas and Stock [7],
[8] who have looked at the Air Traffic Flow Management
Rerouting Problem (TFMRP), considering simultaneously the
time and the route assignment problem through a deterministic
approach. First in [7], they handle the Air Traffic Flow
Management Problem (TFMP) with En-route Capacities, and
then in [8] they show how to optimally control aircraft by
rerouting, delaying, or adjusting the speeds of the aircraft in
the ATC system to avoid airspace regions with reduced capac-
ities due to weather conditions. Delahaye and Odoni in [11],
study the problem of airspace congestion from the stochastic
optimization point of view and propose a genetic algorithm.
Barnier and Brisset (see [10]), consider the problem of level
assignment while using an ideal sector-less environment. The
main idea is to allocate different flight levels to intersecting
routes in order to avoid conflicts. A straight line between an
origin and destination pair represents the path of a flow of
flights between these two airports; in other words, only direct
routes are considered. Then, if two flows are in conflict, they
must be routed on two different levels. The problem becomes
a graph coloring one: given a graph with a set of vertices and
a set of edges, the problem is to color the edges such that any
two intersecting edges (not at their extreme vertices) have two
different colors, and the number of colors used is the lowest
possible. Some other research on this problem, also based on
the graph coloring problem is presented in Letrouit’s thesis
(see [16]). The route assignment problem here is handled
by several tasks. The first task is minimizing the number of
required levels when assigning each route to a level from the
beginning to the end of a flight, and the second task is the
distribution of routes among N levels in order to minimize the
number of intersections between the routes having the same
level. More recently, Constans et al. (see [19]) have studied the
problem from the angle of aircraft speed modification. They
propose minimizing conflict risks by dynamically imposing
feasible modifications on the speeds of the aircraft. Doan et
al. (see [9]) have presented a deterministic model intended to
optimize route and flight-level assignment in a trajectory-based
ATM environment. The aim of the latter study is to address
the problem of airspace congestion, and in particular to reduce
the number of potential en-route conflicts. This work was the
starting point for the study presented here.

Let us recall that our goal is reducing the cost induced by
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potential en-route conflicts. An important question is then how
modeling the induced cost given conflict probabilities. Clearly,
the cost induced by an en-route conflict greatly depends on
the conflict resolution methods and for a majority of cases,
the delay is asymmetrically distributed to the involved aircraft.
Due to uncertainties, it is not possible to determine in advance
if some conflict will occur and which aircraft will be delayed.
All this justifies the need for a robust flight level assignment
as depicted below.

B. Paper organization

This paper is organized as follows. After this introduction,
in Section II we recall briefly works on robust linear pro-
gramming (LP). In Section III, we focus on the FLA problem.
We present binary linear programming models and in Section
IV we discuss its robust versions. Section V is devoted to
some numerical results, including remarks on implementation
and data estimation. Some concluding notes are provided in
Section VI.

II. THE ROBUST BINARY LINEAR PROGRAMMING

PROBLEMS

Robust optimization is one of the common approaches to
take account of uncertainties in optimization problems. We
refer to [18] for a survey in the context of combinatorial
optimization. The usual goal of robust optimization is to
find the best solution which remains feasible for a whole set
of possible events. The main criticism for robust models is
the so-called over-conservatism: the obtained solution will be
feasible for all the possible events, regardless their occurrence
probability. In practice, the worst case may impose a large cost,
while being highly improbable. To remedy this disadvantage,
some works have proposed to relax this worst case condition
[4], [6]. As a result, the solution computed may be feasible
for most of the events, but not all of them.

This is the spirit of the robust model proposed by Bertsimas
and Sim [6], where the feasibility degree of a solution can
be controlled. An important advantage of this model is to
be easily used also with integer variables (see e.g. [5]).
Indeed, the initial integer linear program (without uncertainty)
is transformed into another robust integer linear program. A
similar model has been proposed in [15]. The main interest
of this latter approach lies in the existence of an efficient
solution heuristic. Hence, it can be used on large integer linear
problems.

III. THE FLIGHT LEVEL ASSIGNMENT PROBLEM

In this section we present LP based approaches for both
deterministic and robust variants of the FLA problem.

A. An LP model for the FLA problem

Notation:

• L denotes the set of possible flight-levels l. We denote
with Li the set of preferred flight levels associated with
flight i.

• The set of flights is noted with F . F l groups all flights
allowed to flight to level l.

• xl
i: binary variable (0, 1), takes value 1 when the flight

i, fly on level l and 0 otherwise.
• bl

i: gives the profit associated with flight i when flying
on level l.

• pij : gives the cost penalty associated with aircraft i
when resolving a potential conflict with aircraft j. When
dealing with the robust variant, it will denote a random
variable associated with the additional cost that an aircraft
can have due to some potential conflict.

• P l
i : gives the admissible cumulated cost for a given flight

i and level l.
• Sl

i: gives the set of flights j having a potential conflict
with flight i at level l.

Given the above notation, an LP model associated with the
FLA problem denoted with P is as follows:

max
∑

i∈F,l∈L

bl
ix

l
i (1)

∑
j∈Sl

i

pijx
l
j ≤ M l

i (1 − xl
i) + P l

i , i ∈ F, l ∈ Li, (2)

∑
l∈Li

xl
i = 1, i ∈ F, (3)

xl
i ∈ {0, 1} i ∈ F, l ∈ Li, (4)

where M l
i gives a sufficient large value, (for instance M l

i =∑
j∈Sl

i

pij). Without loss of generality, we assume that for the

given P l
i values there exists a feasible solution for problem P .

The above model is a binary integer LP problem involving a
large number of constraints and variables, which makes it hard
to be solved by exact methods. From mathematical point of
view, it can be seen as a specific case of a multi-dimensional
multiple-choice knapsack problem. We will provide in the fol-
lowing the framework of an approximated method for the FLA
problem. The main idea behind this method is considering the
assignment problem separately for each level. There are two
main bricks: the first one, Step 0, is devoted to maximize
the number of flights assigned to their preferred level. Thus,
we solve a reduced problem involving only flights with their
preferred level and next, fix all assigned flights. The second
brick is concerned with the remaining flights. This problem,
called P l, is slightly different to P ′

l as we use as constants (i.e;,
xi = 1) for all already assigned flights, and we add all other
flights concerned with this level that are not yet assigned. Both
these problems are different to P as we do not need to force
any flight to be assigned to some level, as described below.
It provides the main block to construct the solution approach
outlined below:
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Approximated flight level assignment (ApproxFLA)
Step 0: Proceed with robust flight assignment separately

for each level (Solve problem P l);
Fix the level for flights already assigned.

Step 1: Proceed with robust flight assignment separately
for each level (Solve problem P ′l);
Fix the level for flights already assigned.

Step 2: If all flights are assigned, STOP.
Else, increase the admissible cost for each
non assigned flight and return to Step 1.

The key element of the method is the procedure of flight
assignment (P l and P ′l) associated with a given level of Step
0 and Step 1. We will focus only on P l used in Step 0.
Before detailing the mathematical formulation, let give some
precision on the notation. As there is no need to distinguish
flight levels, the binary variable xl

i is now replaced by xi,
and as before it takes value 1 when the flight i flies on level
l and 0 otherwise. Respectively bl

i and P l
i are now replaced

by bi and Pi. For sake of simplicity we will allow ourselves
to use the same notation for F l as in P , but here it groups
only flights having l as their preferred level. Notice also that
the order of level examination would have an impact on the
obtained solution. We propose to start with the most loaded
levels. Problem P l follows:

max
∑
i∈F l

bixi (5)

∑
j∈Sl

i

pijxj + Mixi ≤ Mi + Pi, i ∈ F l, (6)

xi ∈ {0, 1} i ∈ F l. (7)

The above model has an interesting structure as it corresponds
to a simple multi-dimensional knapsack problem. The problem
P ′l can be written in a similar way except that some con-
straints of type xi = 1 are added and F l groups all concerned
flights.

IV. MODELING AND SOLVING THE ROBUST FLA PROBLEM

Assuming separate probability conditions, the robust
version of the FLA can be formulated with probability
constraints as follows:

max
∑

i∈F l,l∈L

bixi

Pr(
∑
j∈Sl

i

pijxj + Mixi ≤ Mi + Pi) ≥ 1 − ε, ∀i ∈ F l, l ∈ L.

Following the Bertsimas and Sim work, we can deduce the
robust variant of the above ILP problem. This yields still
another ILP problem, which is at least as difficult as the
standard problem. All this justifies heading to approximated
methods to deal with it: we will make use of the framework
approximated method given above for the FLA problem,

except that we consider the robust variant of the P l problem
(called RP l), instead.

The key element of the method is the procedure of robust
flight assignment RP l associated with a given level of Step
0. Let us deduce first its robust variant.

A. Modeling the RP l problem

In the P l we have assumed that pij are some given constants
expressing the potential cost induced by some conflict involv-
ing aircraft i and j. In the following, we assume that pij are
random variables that take values in an interval data already
estimated. This assumption leads us to the robust version
of the P l problem, that is RP l, and subsequentially to the
robust variant of the FLA problem. Naturally, some way to
take into consideration the uncertainties is not to allow all en-
route potential conflicts to count for the total cost estimation.
We have thus a robust version of the FLA problem in the
sense that for a given aircraft only a part of potential en-
route conflicts are assumed to occur and expected to generate
additional costs. First, let us precise the assumptions related
to the robust problem RP l and the ways used to introduce the
uncertainty in the model. Following the Bertsimas and Sim
works on this area, it seems natural to model the uncertainty by
introducing a protection coefficient, which gives the maximum
number of conflicts that can occur for a given flight. In our
model we do not make use of conflict probabilities in a direct
way but consider their consequences, that is the corresponding
additional costs. These potential costs are modeled by intervals
[0, p̄ij ], with p̄ij > 0. Resolving a conflict that involves a
pair of aircraft, yields delay and hence an additional cost, non
necessarily symmetrically distributed among involved aircraft.
This statement leads us to the following assumption: any
flight i will experience (most probably) a reduced number
of potential conflicts during his time flight, (which yields
additional costs to the involved aircraft) and this number
(Γi) varies in [0, |Sl

i |]. Then, we are interested in “best”
solutions that remain feasible for any scenario with at most
Γi coefficients taking the worst value p̄ij . Such a solution is
obtained through the following program:

max
∑
i∈F l

bixi

∑
j∈S

p̄ijxj + Mixi ≤ Mi + Pi, i ∈ F l, S ⊆ Sl
i : |S| = Γi,

xi ∈ {0, 1} i ∈ F l.

The above program contains a large number of constraints
and it is hard to solve at optimum. However, it has been shown
by Bertsimas and Sim that it can be modeled through an ILP
(Integer Linear Programming). The latter program, provided
below, still contains a large number of constraints and variables
and remains hard to be solved by exact methods.

Following the work of Bertsimas and Sim, the robust variant
of problem Pl with respect to a given vector Γ, denoted RPlΓ,
is as follows:
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max
∑
i∈F l

bixi

Γizi +
∑
j∈Sl

i

δijyij + Mixi ≤ Mi + Pi, i ∈ F l,

zi + δijyij ≥ δijxj i ∈ F l, j ∈ Sl
i

xi ∈ {0, 1}, zi ≥ 0, yij ≥ 0 i ∈ F l, j ∈ Sl
i.

Hence, we have opted to use another (alternative) robust
model of above, following the one introduced in [15]. The
following model uses a parameter vector γ ∈ [0, 1]|F

l
| instead

of the vector Γ:

max
∑
i∈F l

bixi

Mixi + min

⎧⎨
⎩∑

j∈Sl
i

p̄ijxj , γi.
∑
j∈Sl

i

p̄ij

⎫⎬
⎭ ≤ Mi + Pi i ∈ F l,

xi ∈ {0, 1}, i ∈ F l.

The above model is denoted below RPlγ . This formulation
can be simplified a lot. Let us focus on the robust constraint i.
Either we consider the worst case (maximum conflict induced
costs), or we have a constraint: Mixi + γi.

∑
j∈Sl

i

p̄ij ≤

Mi + Pi. In this latter case, two sub-cases occur: when
γi.

∑
j∈Sl

i

p̄ij > Pi, then xi = 0 ; when γi.
∑

j∈Sl
i

p̄ij ≤ Pi,
we have a dummy constraint which can be ignored.

Hence, this robust model leads to three different configura-
tions:

• either xi = 0: the flight i does not use level l;
• or xi = 1 and no constraint is associated to flight i: this

means that flight i uses level l with zero conflict costs;
• or xi = 1 and the worst case is taken into account: the

flight i uses level l with maximal conflict costs.

These three cases are in fact summarized in the two following
ones:

• either flight i has zero conflict costs;
• or flight i is associated maximal conflict costs.

Hence, the analysis of the above robust model leads to a
new one, which is very simple. Let Ic ⊆ F l be a subset of
flights:

max
∑
i∈F l

bixi

Mixi +
∑
j∈Sl

i

p̄ijxj ≤ Mi + Pi i ∈ Ic,

xi ∈ {0, 1}, i ∈ F l.

The parameter enabling to tune robustness is the subset Ic,
and we denote the problem by RP l(Ic).

B. Solving the RP l problem

In the precedent section we have described how an instance
of the robust FLA problem can be modeled by ILP. Let recall
that we are interested in robust solutions that remain feasible

in a large part of scenarios, that is, which has a high enough
feasibility probability. Obviously, if we take γi = 1, for all i
in F l (which gives Ic = F l), we obtain feasible solution for
all scenarios. One idea is to start with Ic = φ and to make
it grow gradually until a solution with the desired feasibility
probability is achieved. Such ideas have already been exploited
in [14], [15]. The algorithm can be depicted as follows:

A fast heuristic approach for solving RP l

Step 0: Set Ic = φ.
Select an index i ∈ F l such that:

i = arg min{Pi − E[
∑

j∈Sl
i

pij ]}

Set Ic ← Ic ∪ {i}.
Step 1: Solve RP l(Ic).

Let x̄ be the solution found.
Step 2: If feasibility probability of x̄ is high enough,

STOP.
Else, select an index i ∈ F l

\ Ic such that:
i = arg min{Pi − E[

∑
j∈Sl

i

pij x̄j ]}

Set Ic ← Ic ∪ {i}; Return to Step 1:.

As it can be seen from the algorithm, during Step 0 we look
for a strongly constrained constraint to introduce in Ic. The
solution will admit all flights in this level except the flight i
or a few constraining the selected flight i (it depends on the
associated benefits). At this stage, the above solution is most
probably not feasible and we need to pursue with other steps
in order to further constrain the set of flights to be assigned
at this level. An immediate way to accelerate the algorithm is
to introduce at step 0 in Ic a larger number of constraints. For
more details on the general framework of the algorithm and a
deeper study on its theoretical properties, we refer to [15].

Notice also that the above algorithm doesn’t ensure the
optimality of the obtained solution. An important element of
the resolution scheme given above is measuring the probability
of the obtained solution. There are two ways to estimate the
feasibility probability associated with some solution.

1) First method: The main idea behind the first method
is using the Hoeffding’s inequality [12], which is a result in
probability theory that gives an upper bound on the probability
for the sum of random variables to deviate from its expected
value. This yields general results but it could be pertinent since
variables pij can be assumed independents in our model. Let
us recall first this fundamental result (see [12] for details):

Let X1, . . . , Xn be independent random variables. Assume
that the Xi are almost surely bounded; that is, assume for
1 ≤ i ≤ n that Pr(Xi ∈ [ai, bi]) = 1. Let be S =

∑n
i Xi and

E[S] its expected value. Then, we have the inequality

Pr(S − E[S] ≥ nt) ≤ exp

(
−

2 n2 t2∑
n

i=1
(bi−ai)

2

)
,

which is valid for positive values of t.
To apply this result to our problem, we first need to compute
the expected value for each random variable. For doing this,
let us try to express these variables in a more formal way.
Recall that the random variable pij corresponds to the cost
induced by some resolution conflict procedure. Then, it de-
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pends to two factors: first, if some conflict is occurring, and
second, the resolution procedure engaged by the air traffic
controllers. Hence, the first event is an en-route conflict1

modeled below with a random variable cij , which follows
a Bernoulli distribution (Pr(cij = 1) = qij , and Pr(cij =
0) = 1 − qij). In case of conflict, the cost induced to
the involved aircraft, represented by random variables p′ij ,
is assumed identically distributed in the interval [0, p̄ij ]. We
have: pij = p′ij .cij . Then, E[pij ] = E[p′ij .cij ]. Since the
random variables p′ij and cij are stochastically independent:
E[pij ] = E[p′ij ].E[cij ] =

p̄ij

2
qij . Clearly for a given vector x,

we obtain E[pijxj ] =
p̄ij

2
qijxj .

Considering that the FLA problem has separated probability
constraints, we need to ensure that for each constraint the
following probability condition is satisfied:
Pr(

∑
j∈Sl

i

pijxj + Mixi ≤ Mi + Pi) ≥ 1 − ε. As
Pr(

∑
j∈Sl

i

pijxj + Mixi ≤ Mi + Pi) ≥

Pr(
∑

j∈Sl
i

pijxj ≤ Pi),
we restrict ourselves in ensuring that
Pr(

∑
j∈Sl

i

pijxj ≤ Pi) ≥ 1 − ε for all xi = 1.
Applying the Hoeffding’s inequality we have:
Pr(

∑
j∈Sl

i

pijxj ≥ Pi) =

Pr(
∑

j∈Sl
i

pijxj−E[
∑

j∈Sl
i

pijxj ] ≥ Pi−E[
∑

j∈Sl
i

pijxj ]) ≤

exp

(
−

2 (Pi−

∑
j∈Sl

i

p̄ij

2
qijxj)

2∑
j∈Sl

i

p̄2

ij
xj

)
= ε′i.

Notice that the interval of values for variable pijxj is given by
[0, p̄ij ], which explains the above formula. Clearly, we have
reached a feasible robust solution x when for all i in F l with
xi = 1, we have ε′i ≤ ε.

The method is attractive and does not need restrictive
probability conditions but it could lead to costly solutions as
the probability bounds are quite general and could be weak. To
remedy this, a natural idea is to use Monte-Carlo simulation.

Remarque. It is possible to formulate an ILP model for
computing a robust solution with the desired feasibility prob-
ability. For this, we need to combine the search for some robust
solution x with some additional conditions that a feasible
solution must satisfy. As shown in [15], it yields an ILP model
involving additional variables and constraints.

2) Second method: The second way to handle the feasibility
probability computation is using Monte-Carlo simulation. The
main idea behind is simulating the departures times for all
flights, simulating next the most convenient resolution en-
route procedure, and estimating the induced cost. Once all
coefficients of the model estimated, we check the feasibility
of our solution for the given scenario. We repeat this a
large number of times, and deduce the feasibility probability
associated with the robust solution.

V. NUMERICAL TESTS

Our approach for the robust FLA problem is implemented
in C++ using CPLEX 10.0. Let us give some details on the

1The conflict probability associated with a pair of aircraft can be computed
following the method given in [3].

TABLE I
TEST INSTANCE

Network Number of Flights Used Airports Used WayPoints
NET FR 1377 134 769

implementation approach: we start by considering levels one
by one, from the most loaded to the least one. For each
level, we start with a set of a reduced number of flights.
More precisely, we initiate the RP l problem with about 5%
of concerned flights. We choose the most constrained ones,
that is in increasing order of {Pi − E[

∑
j∈Sl

i

pij ]} values.
Further iterations could be necessary to ensure the probability
feasibility of the obtained solution. Hence, for a given solution
x, we add in the RP l problem a few new flights in decreasing
order of ε′i(> ε) values.

For our tests we use collected data on departure and arrival
times, aircraft type, velocities, trajectory crossing angle and
flight levels for a set of flights. Next, for each flight we
will compute the en-route conflict probability following the
guidelines given in [3]. The test data corresponds to French air
traffic of August 12th 1999. Table I presents the characteristics
of test data. All the tests were run on a machine with the
following configuration: Windows XP, 1 processors Pentium
4 2.4GHz, 1 Gb of RAM.

At this stage, the first difficulty encountered when imple-
menting the model, is concerned with providing the right
parameters p̄ij and Pi. Indeed, the best choice would be to
estimate the interval [0, p̄ij ] as a function of crossing angle,
and type of aircraft, and last, estimate the P l

i as a few percent
of the energetic cost of the flight. In this first series of tests,
essentially because of lack of data and time, we have set
the same unitary cost for all conflicts. Thus, we have set
Pi = max α, c ∗ (duration − 1) + α, where duration gives
the flight duration, c and α are both constants. For instance,
for any flight with duration less than 1 hour, we have fixed
Pi to α = 3, while for the others we also take into account
the duration of the flight according to the above formula with
c = 0.1. Our goal is to measure the impact of robustness on the
number of flights assigned to their preferred level comparing
to these that have to be changed. We have also varied the
level of robustness parameter ε. To measure the feasibility of
the solution, we have used the Hoeffding’s formula. In table II
are shown some results obtained with the above parameters for
three different values of ε, which gives the allowed infeasibility
probability. The second column, (“Number of changed levels”)
gives the number of flights not assigned to their preferred
levels and accommodated to adjacent levels because of en-
route conflicts. The last column (“Gap Robust/Deterministic”)
gives the percentage of additional flights assigned to their
preferred levels thanks to robustness in comparison with the
deterministic model. These results show that when using the
robust model we can have some increase in the capacity of
accommodating flights in their preferred levels with very high
probability feasibility comparing to the standard problem when
considering the worst case. This latter case is computed by
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TABLE II
NUMERICAL RESULTS

ε Number of changed levels Gap Robust/Deterministic
0.05 170 6.5%
0.10 163 10.4%
0.15 139 23.6%
0.20 135 25.8%
0.25 126 30.7%

adding all constraints corresponding to flights in the problem.
We do not need at all to do any computation on the probability
feasibility: the obtained solution is feasible for any case and all
constraints are satisfied. For our deterministic problem using
the above set of parameters we have obtained 182 flights not
assigned to their preferred levels.
In our computations, most of remained flights not assigned
to their preferred levels are accommodated to adjacent levels,
while for some of them we have needed to increment their cu-
mulated allowed cost as indicated in Step 2 of the ApproxFLA
Algorithm described in Section III.

Indeed, we expected to have a larger difference between the
deterministic and the probabilistic model. We believe that this
is because of using the Hoeffding bound which is somehow
weak. To remedy this, two directions need to be followed:
first, using a better parameterizing of the model, and next
switching to Monte-Carlo simulations, better suited to this
kind of problems. This work is in progress.

VI. CONCLUDING REMARKS

In this paper we have provided a mathematical model for
the robust FLA problem. We have first discussed the model
following the Bertsimas and Sim [5] approach and focus on
a second one inspired from [15], for which an approximated
tractable iterative approach is available. We have adapted this
later work in the context of ATM for solving the robust FLA
problem. This work is a first stage to achieve a thorough
study on the robust flight level assignment problem. As
remarked above, the obtained results rises the problem of how
parameterizing the model. Another point, in addition to those
shown above, is related with the assumption of considering
only en-route conflicts between aircraft flying horizontally in
the same level. We are actually thinking in considering air
conflicts that involve crossing aircraft flying on different levels,
for instance when one of them is climbing or descending. This
assumption will also allow a better modeling of the problem
and can contribute in avoiding the above limitations of the
robust model. Further investigations are needed.
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Abstract— In this paper we consider the problem of predicting 
the demand for en route airspace sectors considering uncertain 
flight departure time and en route conditions. Flight, airport, 
and airline conditions that lead to greater variance in 
departure time prediction errors are examined and used to 
develop kernel-smoothed empirical probability density 
functions for flight departure time predictions. The structure 
of the departure time prediction errors is found to vary across 
the departing airport type. A similar analysis is performed for 
the en route airspace to characterize the random component of 
airspace sector traversal time. Variance of en route sector 
traversal times is found to increase for shorter duration 
planned sector traversal times. A method that combines these 
sources of uncertainty is presented and applied to two days of 
historical traffic conditions for east coast U.S. airspace sectors. 
Results of this analysis indicate that the mean absolute 
prediction error of the airspace demand can be reduced by 
20% when using the probabilistic method as compared to a 
deterministic procedure. Similarly, standard deviation of the 
error in airspace demand is reduced by 23 to 25% also 
indicating a reduced spread in the demand estimation. 

Keywords-en route; airspace; traffic flow management; 
demand; probabilisic 

I. INTRODUCTION

In 2006 aircraft operating in the National Airspace 
System (NAS) experienced in excess of five hundred 
thousand aircraft hours of airborne delay [1]. The number 
and duration of delays are expected to worsen during a 
projected growth of 47.5 million to 67.7 million flights 
operating under instrument flight rules (IFR) from 2006 to 
2017 respectively [2]. A combination of improved traffic 
flow management practices and an increase in airspace 
capacity would be required to mitigate these expected delays. 
The Next Generation Air Transportation System (NextGen) 
program is one such current initiative [3]. 

The focus of this work is to demonstrate how stochastic 
models can support en route traffic flow management 
decision-making under uncertainty. Current traffic flow 
management practice is based on the deterministic Enhanced 
Traffic Management System (ETMS) and the experience of 
air traffic controllers and managers [4]. ETMS provides 
forecasts of airport departures and arrivals, sector entry and 
exits, airway entry and exits, and waypoint crossings [5]. The 

drawback of these forecasts is the inability to consider a 
range of potential scenarios so that traffic flow managers 
must be more conservative in their decision-making. 
Conversely, the deterministic forecast may under represent 
the congestion potential during volatile conditions, such as 
severe convective weather, leading to capacity overload.  

There is a body of work in the recent literature focusing 
on quantifying and modeling stochastic elements of the NAS 
en route airspace. The estimated time of departure is the 
single largest source of uncertainty for flights that have not 
departed from the origin airport [6]. The work on pre-
departure uncertainty has focused on quantifying variance 
and confidence bounds under various weather and flight-
specific attributes at a range of look-ahead times [7-9].  

The prediction of departure time is one component in the 
estimation of en route airspace sector demand. Meyn details 
a method to estimate sector and airport demand from arrival 
probability distributions and sector traversal time [10]. Only 
a single source of uncertainty is modeled at an unspecified 
look-ahead time. Mueller et al. note that departure time, wind 
forecasting errors, deviations from the flight plan, and 
aircraft performance and weight uncertainty can lead to 
errors in sector demand prediction [11]. The climb phase of 
flight, especially step climbs that are mandated by air traffic 
controllers in congested airspace, is identified as the source 
of the highest trajectory performance prediction errors with 
empirical results presented.  

Flow models are another proposed approach to improve 
the estimation of sector demand by considering air traffic 
demand at a high level. Many of the current models are 
deterministic though well-suited to metering traffic flows to 
an arrival fix at a busy airport [12-15]. Probabilistic versions 
have also been developed but at the more macroscopic center 
level [16]. An attempt to establish a relationship between 
planned and observed sector counts is discussed in [17]. 

The following sections describe extensions to current 
stochastic airspace demand models to include pre-departure 
uncertainty, en route traversal uncertainty, and route 
uncertainty. A method to combine departure time uncertainty 
and en route traversal time uncertainty is presented and 
applied to one day of historical airspace conditions to 
quantify the benefit of a probabilistic approach. 
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II. DEPARTURE UNCERTAINTY

Previous work in the area of sector demand estimation 
has noted several factors that lead to errors in sector demand 
[6-8]. The work presented here will focus on pre-departure, 
sector traversal, and route uncertainty. Pre-departure 
uncertainty is the difference between the proposed wheels-
off time at the origin airport and the measured departure time 
as recorded in ETMS. The ETMS system does not provide 
the most accurate historical prediction of wheels-off time, 
however errors of a few minutes are considered negligible in 
the context of this analysis.  

The quantity of interest is the departure prediction error 
and not deviation from the schedule so the lateness of a flight 
is not what is being measured. The following is a partial list 
of factors that can result in poor estimations of departure 
time: aircraft arriving late from a previous leg, unavailable 
gates from the previous leg, crew arriving late, aircraft 
servicing, de-icing operations, runway direction reversals, 
taxiway availability, etc. 

The procedure to calculate departure uncertainty begins 
by collecting all relevant messages from the ETMS historical 
data including the flight schedule (FS), flight plan (FZ), 
flight amendment (AF), control departure time (CTRL), and 
flight cancellation (RZ) messages. The analysis days for this 
study are shown in Table I from which 1,238,730 departure 
observations are extracted. Information from the previous 
day is also used to obtain full flight plan and schedule 
information. Gate push-back times are obtained from the 
FAA Airline Service Quality Performance (ASQP) database 
[18]. Definitions for departure time are shown in Table II. 

Messages are then sorted by time of entry into the ETMS 
system. For each message a modeled departure time may be 
recorded at 0, 15, 30, 60, and 120 minute look-ahead times. 
A modeled departure time is not recorded if a more recent 
message is received prior to one of the look-ahead times.  

TABLE I. STUDY ANALYSIS DAYS.

Day Year(s) Day Year(s) 
February 19 2000-2005 September 26 2000-2004 

May 10 2000-2005 October 23 2004 
June 11 2004-2005 December 1 2001-2002 
June 27 2004 December 3 2000 
July 14 2005 November 28 2004 
July 27 2000-2004 November 30 2003 

TABLE II. DEPARTURE TIME DEFINITIONS.

Notation Definition 
ETMS modeled departure 
time 

Gate pushback time + ETMS modeled taxi 
time 

ETMS modeled taxi time 
Moving average of last five taxi times for 
that flight 

Wheels-off time 
Estimated runway-off time for flight from 
ETMS message 

Departure time prediction 
error 

Wheels-off time – ETMS modeled 
departure time 

Look-ahead time 
ETMS modeled departure time – current 
time 

For example if a flight plan message is received at 0200Z 
with a modeled departure time of 0330Z, then a subsequent 
flight amendment is received at 0250Z then only an error 
observation corresponding to a 60 minute look-ahead time is 
recorded for the 0200Z message. 

The analysis proceeds by attempting to find structural 
variance in the prediction error data. Exploratory analysis 
strongly suggests the existence of non-constant variance 
across variables, otherwise known as heteroscedasticity. A 
modified least squares regression procedure is used since 
errors are non-normal and right-skewed even under a 
logarithmic transformation. Another method that accounts 
for non-constant variance is the class of generalized 
autoregressive conditional heteroscedasticity (GARCH) 
models most suitable to time series analysis but with limited 
applicability to this problem [19]. 

The modified regression procedure is as follows. The 
regression form of Error! Reference source not found.
shows a response variable Y to be a function of two 
independent random variables X and ϵ and a coefficient 
matrix β.

(1) 

If the variance is constant then  is 
independent of X. This model is extended by allowing the 
variance to be a function of X as shown in  and  [20]. An 
exponential link function is used in this analysis but others 
may be substituted. 

) (2) 

(3) 

This type of regression on the variance does not eliminate 
the non-normality problem but it does allow an investigation 
into the conditions that lead to larger variance. A total of 26 
explanatory variables are considered representing flight, 
airline, airport, and weather conditions.  

The model is calibrated using SAS [21] with coefficients 
for the 14 selected variables presented in Table III. The 
exponential of the coefficients is also shown since the 
coefficients must be transformed back and used as a 
multiplier effect. All variables are significant at the 5% level 
though the test for statistical significance is somewhat 
questionable in this case. A logarithmic transform of the 
error response at a 30 minute look-ahead time (ELAT30) is 
used to better approximate normality . 

(4) 

Since the error could not be completely transformed to 
normality a categorical analysis of the distribution of errors 
is considered based on the results of the regression analysis. 
The first of the groupings uses the departing airport type of 
the flight. A box-and-whisker diagram of the errors (Fig. 1) 
shows the 25th percentile, median, and 75th percentile of the 
errors as a box. The difference between the 75th percentile 
and the 25th percentile is known as the interquartile range 
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(IQR) and is used to mark the largest and smallest observations that are “valid” as whiskers. A data point is

TABLE III. REGRESSION COEFFICIENTS FOR MEAN AND VARIANCE OF DEPARTURE TIME PREDICTION ERROR AT A 30 MINUTE LOOK-AHEAD TIME.

Coefficient for Mean Estimate Coefficient for Variance Estimate 
S.E.a S.E.a

Intercept 4.175 65.040 0.0009 0.277 1.319 0.0005 
Depart from a large hub 0.014 1.014 0.0009 -0.019 0.981 0.0051 
Depart from a medium hub -0.004 0.996 0.0011 0.038 1.039 0.0060 
Depart from a small hub -0.064 0.938 0.0013 -0.303 0.739 0.0059 
Depart from a non-hub -0.004 0.996 0.0011 -0.170 0.844 0.0066 
Departing airport operating under instrument conditions (IMC) 0 1  0.284 1.328 0.0025 
A large carrier (top 25 by operations) departing from a large hub airport 0 1  -0.367 0.693 0.0030 
A large carrier (top 25 by operations) departing from a medium hub airport 0 1  -0.681 0.506 0.0048 
A large carrier (top 25 by operations) departing from a non-hub airport 0 1  -0.048 0.953 0.0088 
A large carrier (top 25 by operations) departing from a foreign airport 0 1  -0.313 0.731 0.0061 
A small carrier (not top 25 by operations) departing from a small airport 
and arriving to a large hub 

0 1  0.379 1.461 0.0048 

If flight plan is amended 0 1  0.100 1.105 0.0018 
If convection is forecasted to impact this flight (origin airport, en route, 
destination airport) 

0 1  0.047 1.048 0.0022 

If flight has been cancelled and reactivated 0 1  0.198 1.219 0.0039 
If flight has been both amended and cancelled and reactivated 0 1  0.408 1.504 0.0052 
Sample size 1,130,874 
Log Likelihood -83,918.2 
a

Standard Error

considered valid if it is less than 1.5(IQR) from the box. 
Outliers are indicated by a “+”. The notable characteristics of 
the diagram are that the median is relatively constant 
between airport types, all the distributions are right-skewed 
(positively skewed), variance increases as airport size 
decreases, and there are numerous outliers for each 
distribution, which is the reason for the solid red line. Large 
variance for smaller airports may seem counter-intuitive but 
the type of airline operating at these airports has an impact. 

 A categorical grouping that includes factors in 
addition to departing airport size is shown in Fig. 2 with a 
corresponding box-and-whisker plot in Fig. 3. The clustering 
procedure covers all cases and the order is generally as 
follows: amendment, cancelled, forecasted convection, 
airport type, if the carrier is one of the top 25 carriers by 
operations, and arriving airport size. Clusters are ranked by 
mean error then by variance so that cluster 1 has the lowest 
mean and variance while cluster 10 has the highest mean and 
variance. The highest variance is for flights that have 
amendments or that have been cancelled and reactivated. By 
separating smaller carriers from larger carriers this analysis 
shows that larger carriers have lower variance than smaller 
carriers and smaller airports have lower variance than larger 
airports when corrected for carrier type. However, since 
smaller carriers dominate smaller airports we get the results 
shown in Fig. 1. 

An attempt is made to generalize the errors to a 
probability distribution. However, since the error is right-
skewed and peaked around 0 the standard distributions are 
poor approximations (Fig. 4). Histograms are constructed 
and compared to the lognormal for each of the two groupings 
considered here: airport type and clustered data. For each of 
these histograms the lognormal approximations are 
significantly different from the observed empirical 
distribution.  

In kernel smoothing a probability mass, such as a normal 
or other symmetric density function, is placed at each data 
point. The equations to place the probability mass are 
straightforward. Begin by specifying a kernel that satisfies 
(5). In this case the standard normal distribution is chosen 
K(x) ~ N(0,1). The density at each value is estimated by 
summing all kernels as detailed in  where n is the number 
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Figure 1. Box-and-whisker diagram for departure time prediction errors at 
30 minute look-ahead times by departing airport type. 
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Figure 2. Tree diagram for clustering. 
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Figure 3. Box-and-whisker diagram for departure time prediction errors at 
30 minute look-ahead times by cluster. 
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Figure 4. Histogram of departure time prediction errors at a 30 minute 
look-ahead time frame for large hub airports for 30 days in 2000-2005. A 

lognormal approximation and kernel smoothed distribution are also 
displayed illustrating a poor and good fit respectively. 

of samples and h is the bandwidth. The optimal bandwidth 
parameter is a function of sample size and variation of the 
distribution. Larger sample sizes permit a smaller bandwidth 
while larger variances require increased bandwidth. The 
kernel smoothing parameter estimation results are excluded 
for brevity. 

(5)

(6) 

III. SECTOR TRAVERSAL TIME VARIATION

Another source of randomness in the estimation of sector 
demand is the traversal time through the sector. Controller 
actions such as: speed changes, vectoring, issuing a holding 
pattern, or the clearance of a more direct route may cause the 
flight to spend more or less time in the sector than planned. 
The approach used compares the planned sector flight time 
obtained through simulation to the observed sector traversal 
time from the processed ETMS radar track data (TZ). The 
scope of the analysis includes the following east coast air 
route traffic control centers (ARTCCs): Chicago (ZAU), 

Indianapolis (ZID), Atlanta (ZTL), Jacksonville (ZJX), 
Miami (ZMA), Washington (ZDC), Cleveland (ZOB), New 
York (ZNY), and Boston (ZBW). 

 To obtain planned sector traversal times the most 
recent flight plan or amendment before the actual departure 
is extracted from ETMS data. The flight plan data is 
converted into a format suitable for the RAMS Plus airspace 
simulation software [22]. Other information including 
aircraft performance, airport locations, navigational aids 
(NAVAIDs), fixes, airways, standard terminal arrivals 
(STARs), and departure paths are also converted to the 
RAMS format. Aircraft performance uses 
EUROCONTROL’s Base of Aircraft DAta (BADA) [23] 
which is different from the ETMS system aircraft 
performance models [5]. The largest source of uncertainty in 
aircraft performance modeling is the prediction of aircraft 
weight. In this analysis we assume a nominal, or average, 
weight for each flight based on the three aircraft mass 
categories contained in BADA: low, nominal, and high. Each 
of the flight plans are then simulated to obtain the time of 
sector entry, time of sector exit, and sector traversal time. 
The air traffic controller functionality of RAMS is turned off 
so there is no conflict resolution for flights predicted to 
violate minimum separation standards. 

The ratio of observed sector traversal time to planned 
sector traversal time, which is obtained from processing the 
RAMS output files, is examined for structure. A plot of the 
standard deviation of the ratio of observed to planned sector 
traversal times by planned sector traversal time and observed 
airspace density (Fig. 5) shows that the planned traversal 
time through the sector has a larger effect than the observed 
airspace density. This does not mean to suggest that airspace 
density has no effect since sectors with shorter traversal 
times are typically more congested than those with longer 
traversal times. The assertion here is that flown traversal 
time is mostly impacted by planned time for a flight to cross 
a sector. 

Based on this observation a series of kernel-smoothed 
densities are developed for planned traversal times (tp) as 
follows: {tp| 0 < tp ≤ 4 minutes}, {tp| 4 < tp ≤ 8 minutes}, {tp|
8 < tp ≤ 12 minutes}, {tp| 12 < tp ≤ 16 minutes}, {tp| 16 
minutes < tp}. A sample kernel-smoothed ratio for the 4 to 8 
minute planned traversal time interval is shown in Fig. 6. 

Alternatively, an error distribution that considers the 
relative difference between the observed and planned 
traversal times is also considered but not selected (i.e. error 
distribution = observed traversal time – planned traversal 
time). Due to the difference between the high and low range, 
e.g. 4 to 8 minutes in Fig. 6, a negative sector traversal time 
may be implied from the resulting error distribution. The 
ratio distribution is more appropriate in this case since 
traversal times are always positive and relative to the 
planned traversal time. 

IV. SECTOR HIT RATE

The last source of uncertainty considered in this analysis is 
the sector hit rate which is defined as the rate at which the 
planned sectors for a flight plan match the observed or flown 
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sequence of sectors. It is a combined consideration of the 
route and altitude forecast accuracy. Consider ordered sets of 
planned sectors P and flown sectors F. A hit is defined if the 
planned and flown sectors match and is then used to 
calculate the overall hit rate . Note that it is possible for a 
flight to enter the same sector more than once so by this 
definition the hit rate is restricted to be ≤ 1. 

(7) 

The simulation and playback results from the sector 
traversal analysis in RAMS are also used to calculate the hit 
rate. The results of the hit rate analysis show an overall 
average hit rate of 73%. Conditions that lead to re-routing 
such as severe weather and airspace congestion were not 
included here. Further work that could find a relationship to 
predict sector hit rate probabilities under various conditions 
would be beneficial. 

Figure 5. Standard deviation of ratio of observed to planned sector 
traversal time by planned sector traversal time and observed airspace 

density in the sector. 
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Figure 6. Ratio of observed to planned sector traversal time for a planned 
traversal time of 4 to 8 minutes. 

V. PROBABILISTIC SECTOR DEMAND

We now use the departure uncertainty and sector traversal 
variability models to develop sector demand at 10, 30, and 
60 minute look-ahead times to sector entry. We are interested 
in the probability for a given flight to occupy a sector as a 
function of time (Fig. 7). The resulting distribution is not a 
probability density function since the area under the curve 
does not equal 1. This distribution would then be used in the 
calculation of sector demand by time period. 

The equations in this section represent the application of 
standard statistical methods, such as the convolution theorem 
[24], and conventions used in calculations. The following 
nomenclature is used throughout this section: 

= Expected count, or demand, for 
sector i, during time period t

= Distribution of errors in predicting a 
flights departure time as calculated 
in Section II for the flight traversing 
the sector at position i under 
consideration 

= Distribution of flight traversal time 
through sector at position i
considering the stochastic en route 
component 

= Probabilistic demand distribution for 
sector at position i considering both 
departure and en route sources of 
randomness 

= Distribution of ratio r for sector k as 
calculated in Section III 

F =
Set  of 
sectors traversed using the flight’s 
flown trajectory 

i,j = Position indices where position 1 is 
the first sector after the departing 
airport and positions m,n are the last 
sector before the arrival airport 

k = Sector index for ratio distribution 

= Look-ahead time to departure 
(wheels-off) 

= Look-ahead time to sector entry 

m,n = Number of sectors that a flight 
crosses when following the flown 
(m) or planned (n) trajectory 

= Probability that the flight under 
consideration arrives to a sector i
during time period t

= Probability that the flight under 
consideration does not arrive to a 
sector i during time period t
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=
Set  of 
sectors in the flight plan  

r =
Ratio of observed    to 

planned  traversal times 

= Sector in position i in the flight plan 

= Sector at position j in the set of 
flown sectors F

= Planned time of entry into a sector at 
position i

= Planned time of entry into a sector at 
position i at look-ahead time LAT

= Planned traversal time through a 
sector at position i

= Flown, or observed, time of entry 
into a sector at position j

= Flown, or observed, traversal time 
through a sector at position j

= Variable used to convert from a ratio 
distribution to a relative error 
distribution 

The analysis of historical ETMS data presented is sector 
based so to generate demand each sector in a flight plan is 
examined. To start we consider a single flight, its associated 
flight plan, and one of the sectors that the flight traverses 
when it follows its flight plan.  

There are two cases to be considered for demand 
prediction for en route flights. There are additional 
considerations for flights that have not departed that are 
discussed later in this section. In the first case we find a 
flown sector that satisfies the conditions listed in (8-10). The 
first of these conditions is that the flown sector must also be 
included in the set of planned sectors . As shown in Section 
IV there are cases where the flown sector does not appear in 
the flight plan. The second condition ensures that the flown 
sector is at least the look-ahead time away from the planned 
sector . The third condition specifies that there is no closer 
flown sector .  

So if a sector is found that satisfies the three conditions in 
(8-10) an improved estimate of the estimated sector entry 
time is calculated . Otherwise, for the second case where 

Figure 7. Distribution of probabilistic sector demand. 

no sector is found that satisfies (8-10) the uncorrected 
planned time of entry into a sector is used which is the 
second condition in . 

(8) 

(9) 

(10) 

(11) 

The next step is to determine the set of sectors for which 
traversal time ratio distributions will be considered and 
included in the analysis. If a flown sector is found that 
satisfies (8-10) then all sectors after and including the flown 
sector are included, otherwise all sectors are used to update 
the uncertainty distribution starting from the origin airport 
(12). Each of these sectors is matched with an appropriate 
ratio distribution that is described in Section III and 
categorized by the ratio of observed to planned sector 
traversal times (13). Since we are interested in the time 
relative to the corrected sector entry time calculated in  we 
convert the basis of the distribution in . Planned traversal 
times are subtracted for all sectors excluding the planned 
sector under consideration so that all distributions are error 
distributions except the planned sector under consideration. 
For the planned sector under consideration the expected 
traversal time is included in the distribution to achieve a 
correct demand value. 

(12) 

(13) 

(14) 

The distributions are summed by the standard 
convolution (i.e. the * operator) method of taking the 
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discrete Fast Fourier Transform  of each of the 
distributions, performing an element-by-element 
multiplication, then transforming back using the Inverse Fast 
Fourier Transform  [24]. The general case is shown in  

for distributions  and  and in  for the distributions 
considered here. If a sector is found satisfying (8-10) then 
the result of  is the density function relative to the corrected 
sector entry time to be added to the sector demand. 
Otherwise the departure time prediction error is also 
considered. 

If the departure time prediction error needs to be 
considered then the look-ahead time for the departure 
uncertainty is calculated using the look-ahead time to the 
sector, the planned entry time into the sector, and the planned 
flight departure . The departure look-ahead time is rounded  
up  to  one  of  the  available  departure  look-ahead 

(15) 

(16) 

times of {0, 15, 30, 60, 120 minutes} and used to select a 
departure uncertainty distribution. The departure uncertainty 
distribution is combined with the en route uncertainty 
distribution to arrive at a total uncertainty distribution . 

(17) 

(18) 

To estimate the demand for the planned sector under 
consideration during any time period a summation of the 
discrete total error distributions is performed . If a 
distribution of demand for a sector is required rather than just 
the expected count then a discrete probability density 
function is constructed for each flight consisting of the 
probability that the flight arrives during a time period   or 
does not arrive  . A series of convolution operators for 
each flight similar to that shown in  may be used to derive a 
distribution of sector counts for the purpose of obtaining 
confidence bounds. 

(19) 

(20) 

(21) 

The method presented in this section implicitly assumes 
statistical independence for the departure and en route error 
distributions. Though this assertion is not strictly true it does 
allow for efficient demand uncertainty calculations. Methods 
that consider the covariance between the sector-based 
uncertainty distributions would also need to be 
computationally efficient to be useful for strategic traffic 
flow management. 

VI. PERFORMANCE OF PROBABILISTIC SECTOR DEMAND 

MODEL

The historical traffic conditions on the date of August 29, 
2005 is used to compare the performance of the probabilistic 
model for sector demand to a deterministic model at 10, 30, 
and 60 minute look-ahead times to sector entry in 1-minute 
intervals. Recall from the departure uncertainty section that 
two groupings are considered: one based on departing airport 
type and one based on a clustering that considers additional 
factors. Overall comparisons are made by considering the 
standard deviation of the demand prediction error and the 
mean absolute value of the prediction error (Table IV). The 
standard deviation of the error is reduced by 25% and the 
prediction error reduced by 20% when using the probabilistic 
methods as compared to the deterministic method. Results 
indicate that the cluster grouping method that considers 
additional factors offers little improvement on the method 
that only considers airport type in the departure uncertainty. 
Both methods also consider the en route random component 
as described in . A histogram detailing the distribution of the 
prediction error at a 30 minute look-ahead time to sector 
entry is shown in Fig. 8. This deterministic to probabilistic 
comparison is challenged by the fact that deterministic errors 
are discrete whereas the probabilistic errors may take on any 
real value. 

Analysis of a second day of traffic data is performed for 
the date of July 27, 2005. The mean absolute prediction error 
for sector demand is reduced by 20% and the standard 
deviation by 23%, similar to the first day analysis results. 

VII. CONCLUSIONS AND FUTURE WORK

In this paper departure time and en route sources of 
uncertainty are quantified. Airport size and sector traversal 
time are key indicators of the level of uncertainty expected 
for a flight. A probabilistic method is presented that 
combines airport and en route sources of uncertainty to 
produce improved estimates for sector demand. These more 
robust sector demand estimates have the potential to more 
efficiently use available airspace and identify volatile 
conditions that lead to higher controller workload. The 
probabilistic method is validated using historical traffic 
conditions for airspace sectors on the east coast of the U.S. 
for two days. Results indicate that the probabilistic method 
has the potential to reduce the standard deviation of the 
prediction error by 23 to 25% and the mean absolute 
prediction error by 20%. The sector hit rate, which is the rate 
that the planned sectors match the observed sectors, is a 
significant source of uncertainty for developing airspace 
sector demand estimates. Future work that can predict 
changes to the hit rate would be useful in improving sector 
demand estimates. Other future work could include 
identifying structure in the departure time and en route travel 
time error distributions. 
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Figure 8. Histogram comparison of the distribution of sector count errors 
at a 30 minute look-ahead time on August 29, 2005 for deterministic and 

probabilistic (airport grouping) methods. 

TABLE IV. COMPARISON OF DETERMINISTIC AND PROBABILISTIC 
METHODS FOR SECTOR COUNTS USING DATA FROM AUGUST 29, 2005. 

Deterministic 
Demand 

Probabilistic 
Demand 
(Airport 

Grouping) 

Probabilistic 
Demand 
(Cluster 

Grouping) 

S.D.a 10 min.c 1.909 1.487 1.485 

S.D.a 30 min.c 1.971 1.499 1.497 

S.D.a 60 min.c 2.003 1.508 1.507 

M.A.P.E.b 10 min.c 1.109 0.900 0.899 

M.A.P.E.b 30 min.c 1.144 0.909 0.907 

M.A.P.E.b 60 min.c 1.159 0.914 0.913 
a

Standard deviation of the prediction error.
b

Mean absolute value of the prediction error.
c

Look-ahead time in minutes
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Abstract— Traffic Management Advisor (TMA) is a decision 

support tool developed to assist Traffic Management Units 

(TMU) in metering and sequencing arrival traffic. This study 

examines the use and impact of TMA during its early stages of 

deployment at Chicago Center (ZAU). Determining impacts of 

use presents a methodological challenge because usage may 

depend on weather and traffic conditions, possibly leading to 

spurious results if simple with/without comparisons are made. In 

an effort to isolate the impact of TMA, this study therefore 

employs an alternate method. A preliminary understanding of 

TMA use is established through summary statistics. This enables 

the development and use of detailed statistical models to isolate 

the impact of TMA at ZAU. We find evidence through these 

detailed models that TMA use increased capacity in specific 

conditions and capacity variability was reduced in all scenarios. 

A simulation of these results on delay at Chicago O’Hare 

International Airport (ORD) showed that TMA use can decrease 

delay by 33%.  

Keywords: Air Traffic Management, Capacity, Traffic 

Management Advisor 

I. INTRODUCTION

The Federal Aviation Administration (FAA) developed the 
Free Flight Phase 1 (FFP1) program with the goal of 
automating certain functions of air traffic control to improve 
performance of the National Airspace System (NAS).  The 
FFP1 program established metrics used to evaluate system 
deployments, which assisted the FAA in performing tests and 
evaluations before undertaking widespread deployment of the 
tools.  Tools analyzed in recent years include User Request 
Evaluation Tool (URET) and Traffic Management Advisor 
(TMA), which is the focus of this paper.  TMA is part of a suite 
of tools that was planned to increase the efficiency of flight 
operations in all five domains of the NAS [1].  

As discussed by Hansen [2], air traffic control system 
evaluations present a unique challenge. Because the NAS is 
affected by many diverse factors, such as weather and demand, 
isolating the impact of a specific air traffic control 
enhancement is complicated. The challenge is even more 
difficult during early stages of deployment when the tool is 

used only in selected time periods, which may be different 
from non-use periods in some systematic ways. In this study, to 
isolate the impact of TMA on airport operational capacity, we 
extend an econometric modeling method developed in [3] that 
considers capacity as a random variable. Our work contributes 
to the development of consistent and credible evaluation 
methods for automation tools, which will become increasingly 
important as NAS modernization proceeds. 

Section II of this paper provides background on TMA, 
describes its functionality, and discusses previous benefit 
studies.  Section III introduces summary statistics to aid in 
understanding how TMA is used, and describes the data used 
in the analysis.  Section IV defines an econometric model used 
to determine the impacts of TMA implementation and presents 
estimation results.  Section V isolates the capacity and variance 
of capacity effects of TMA to determine a change in delay 
from TMA use.  Section VI concludes the research with 
discussion and recommendations.  

II. TMA BACKGROUND

The role of TMA is to coordinate the transition between 
center and control airspace for arrivals.  TMA was designed for 
decision support for the metering position of the Traffic 
Management Coordinators (TMC).  However, as discussed by 
Bolic [4], the adaptation, or actual use instead of intended use, 
of systems developed for air traffic controllers (ATC) and 
traffic management coordinators (TMC) often diverges from 
the intended purpose.  For example, at Los Angeles center, 
TMA was initially used to display traffic in a larger area than 
was previously available [2].  This increased “shared 
situational awareness” generated considerable operational 
benefit even when the decision support functionality was not in 
use.

TMA began initial daily use (IDU) at ZAU in June 2005.  
Adaptation also took place at ZAU, as TMA was used 
exclusively to facilitate the release of internal departures – 
those bound for an airport within the same Air Route Traffic 
Control Center (ARTCC) airspace.  The TMA display screen is 
well suited to this function because of a detailed arrival 
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schedule for the major airports in the Chicago TRACON—
ORD and Chicago Midway. 

Implementation at ZAU followed the successful 
implementation of TMA at eight ARTCCs, with the first 
implementation in 1996 at Fort Worth.  Later implementations 
were supported by studies finding benefits from TMA 
implementations at Fort Worth and other centers.  These 
benefit studies relied on before and after analysis, including 
summary statistics and regression modeling.  Two examples of 
such studies are below. 

A.  TMA at Minneapolis Center (ZMP) 

Through a comparative analysis of airport acceptance rates 
(AAR) before and after TMA deployment, the FFP1 program 
office determined that TMA increased AAR at ZMP.  A 
regression analysis was then performed to isolate the impact of 
TMA.  By defining AAR as a function of TMA, metrological 
condition, and runway interaction, it was found that the 
increase in the AAR mean was not statistically significant.  
This regression treated TMA as a dummy variable which was 
set to 1 to signify a time period after TMA was deployed.   

A similar study was performed regarding the total 
operations rate, or the sum of the airport acceptance and airport 
departure rates.  This analysis found a statistically significant 
increase in the operations rate after TMA was deployed.  It was 
concluded that optimized arrivals flows under TMA allowed 
the controllers to release more aircraft [5].   

B. TMA at Los Angeles Center (ZLA) 

The impact of TMA on internal release departures to LAX 
from other airports within ZLA was examined after the June 
2001 TMA implementation.  Similar to ZAU, TMA allowed 
the Traffic Management Unit (TMU) at ZLA to optimize the 
release of these departures by fitting them in to the arrival 
stream without causing delays.  By calculating the mean delay 
before and after the deployment of TMA, it was found that 
both gate and airborne delay decreased after TMA deployment. 
It was concluded that because other airports experienced 
increases in gate and airborne delay for the same time period, 
TMA was able to reduce delay at LAX [6].  This study did not 
include a regression analysis and did not consider other factors 
which could have contributed to a decrease in delay, such as 
changes in demand.   

III. EXPLORATORY TMA ANALYSIS  

For the purpose of modeling the impact of TMA on airport 
runway capacity, the operational impact at Chicago O’Hare 
International Airport (ORD) was chosen for case study.  Data 
were collected for the study period of July 2005, immediately 
after IDU of TMA, to mid-March 2006.1  Data were gathered 
from the FAA’s Aviation System Performance Metrics 
(ASPM) database.  The “Airport Efficiency” portion of this 
database provides variables on quarterly-hour arrival and 
departure count and “demand” at ORD, which will be explored 
in greater detail in Section IV.  Each entry includes 
corresponding information about the meteorological condition 

                                                          
1 The period from December 19 to 25 was excluded, because 
schedules and operations are substantially changed by large volumes 
of holiday travel. 

(MC), other weather related information, and runway 
configuration. 

A TMA usage log was collected from ZAU to match the 
periods in ASPM with the periods when TMA was explicitly 
being used by the TMCs.  During the study period, TMA was 
powered on and available for use from 6AM to 8PM daily.  
However, TMA was referred to sporadically by the TMCs; the 
times when TMA was assisting TMCs was recorded in a usage 
log [7].  To combine these data with ASPM data, time stamps 
on each of the data sets were matched.   

A. TMA Use at ZAU 

The following summarizes TMA usage data with the goal 
of gaining a general understanding of the factors affecting use 
of TMA during the study period.  Discussions with TMCs, 
managers, and consultants supporting TMA implementation at 
ZAU revealed the policies and procedures affecting TMA use 
was sporadic; therefore, this study will focus on TMA usage 
periods rather than before and after TMA deployment periods.  
To determine the best model formulation, correlations between 
TMA use, meteorological conditions, and runway 
configuration are explored.  

1)  Meteorological Conditions  
Table I summarizes TMA use in terms of visibility 

conditions at ORD.  The three meteorological conditions 
classified are visual meteorological conditions (VMC), 
marginal visual meteorological conditions (MVMC), and 
instrumental meteorological conditions (IMC) [8]. Each 
quarter-hour data entry in ASPM is identified as either VMC or 
IMC.  We further subdivided VMC into MVMC and “full” 
VMC, based on visibility criteria defined in [8]. 

TABLE I. CEILING AND VISIBILITY AVERAGES,  BY METEOROLOGICAL 
CONDITIONS AND TMA USE

IMC MVMC VMC

OFF ON OFF ON OFF ON

Celiling
(100's Ft) 8.95 16.02 19.96 27.64 12.92 13.2 

Visibility
(statute mi) 3.14 2.06 7.93 7.94 9.57 9.71 

no of obs. 
with TMA 54 165 1254
total no of 
obs.  1694 2445 19362 

From Table I it can be seen that during the study period 
there were very few observations of TMA use under IMC.  Out 
of the 1473 periods that TMA was used, only 3.67% (54 
periods) were during IMC.  For those few periods when TMA 
was used during IMC, it was typically during high ceiling 
conditions.  The average ceiling condition under IMC and 
TMA use was almost double that of the average ceiling 
condition under IMC with no TMA use.  Conditions under 
MVMC and VMC when TMA was and was not in use are 
more similar, although under MVMC the ceiling is 
considerably higher when TMA is in use.   
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2) Runway Configurations 
Chicago O’Hare International Airport has 6 active runways 

in 3 pairs of parallel runways.  There are a number of possible 
runway configurations at ORD for arrivals and departures that 
can be used at any given time.  The five most frequently used 
runway configurations for arrivals and departures are shown 
Table II, along with the proportion of time each is used and 
proportion of TMA use.  The configuration 4R, 9L, 9R | 4L, 
9L, 32L, 32R is known as the default configuration for VMC 
and MVMC.  

TABLE II. FIVE MOST COMMON RUNWAY CONFIGURATIONS AT ORD 

Configuration

% of Periods 

Configuration

Used

% of periods 

TMA Used 

22R, 27L, 27R | 22L, 32L, 
32R 40.19 6.64 

4R, 9L, 9R | 4L, 9L, 32L, 
32R 36.22 6.95 

22R, 27L | 22L, 32L, 32R 6.96 10.49 

14R, 22L, 22R | 9L, 22L, 27L 13.07 3.39 

9R, 14L, 14R | 4L, 9L, 22L 3.56 1.61 

During the study period, TMA was “certified” on two 
runway configurations: 22R, 27L, 27R | 22L, 32L, 32R and 
4R, 9L, 9R | 4L, 9L, 32L, 32R (referred to as configuration 1 
and 2, respectively). This means that for these configurations 
TMA predicts the time when flights reach ORD entry fixes 
with sufficient accuracy.  TMA was most likely used for these 
configurations and for 22R, 27L | 22L, 32L, 32R. This two 
arrival runway configuration was favored for two possible 
reasons.  First it is very similar to the certified configuration 1. 
Second, TMCs  noted that TMA did not “recognize” the third 
runway in configuration 22R, 27L, 27R | 22L, 32L, 32R when 
scheduling internal departures, a problem that did not arise 
when just two arrival runways were in use.  

IV. ECONOMETRIC MODELING OF CAPACITY UNDER TMA

The following section introduces the econometric modeling 
technique used to model and determine the impact of TMA on 
operational capacity at ORD.  This technique is based on the 
model developed by Hansen [3] to determine the capacity 
impact of new runway development.  

A. Count and Demand Data Analysis  

To accurately determine the capacity impact of TMA, the 
operations rate (operation count per unit time) is compared 
with operation demand per unit time.  The data are divided into 
two groups based on TMA use; data for periods when TMA 
was in use are separated from data collected when TMA was 
not in use.  

Data from ASPM were used for this analysis.  The variable 
arrival (departure) count in the ASPM database indicates the 
number of arrivals (departures) in a time period (defined as a 
15 minute interval).  The variable arrival (departure) demand 
represents the number of aircraft scheduled to arrive (depart) in 
a specific time period.  While demand for an operation often 

leads to that operation occurring, scenarios exist where the 
arrival (departure) demand exceeds the arrival (departure) 
capacity, or the maximum number of aircraft that can perform 
the operation in a given period.  In this case, some aircraft will 
be queued.  Aircraft counting toward the demand in a given 
period that do not actually arrive (depart) in that period are 
counted toward demand in the subsequent period. Thus the 
difference between count and demand in a given period is 
essentially the size of the queue at the end of that period.  

To measure demand, ASPM determines the expected 
arrival time of an aircraft by adding the en-route time to the 
wheels-off time.  An arrival in a time period before the 
calculated time is counted towards the demand in the earlier 
period in which it arrives; an arrival at the calculated time is 
counted toward the demand for that period; and an arrival after 
the calculated time is counted toward the demand in all time 
periods between the calculated arrival and the actual arrival 
time. Departure demand is calculated similarly, based on the 
actual pushback time plus an airport-specific unimpeded taxi 
time, or when a flight is subject to a ground delay program 
(GDP), the estimated time when the flight will be cleared for 
departure under the GDP. 

The model developed for this study will use the data to 
determine the change in capacity for arrivals only due to TMA 
use.  A model is constructed which treats capacity as a random 
variable, by calculating capacity as a function whose 
distribution depends on weather, runway configuration, 
demand, and TMA use.  This methodology uses statistical 
procedures that estimate the relationship between these factors 
and capacity. 

To isolate the impact of TMA, the capacity function 
includes a dummy variable which is set to 1 if TMA is in use in 
time period t, and it is set to zero otherwise.  The parameter of 
primary importance is the coefficient on the dummy variable 
representing TMA use.  This parameter is the contribution to 
capacity of TMA.  If the coefficient is negative, it can be 
concluded that TMA reduces capacity; if it is positive, it can be 
concluded that TMA increases capacity.  This coefficient for 
operation type O (where O= arrivals only for this study) will 
be termed 0.

The example in Fig. 1 depicts 0.  The solid curve is a 
sample probability distribution of runway capacity.  The 
second dashed curve is a sample probability distribution for 
runway capacity when TMA is in use, but when other 
conditions (weather, etc.) are similar.  The difference in the 
mean values of these curves, represented by the curve peaks, is 

0.  Fig. 1 depicts a case when TMA use affects only the mean 
of the capacity distribution. TMA use may also affect the 
variance of the capacity distribution by consistently feeding 
traffic to the airport at a more consistent rate.  Both effects are 
considered below in section B.  
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Figure 1. Depiction of 0, the contribution of TMA to capacity. 

B. Operational Impact: Censored Regression Model  

The model to be used in this section is a censored 
regression, or tobit, model, which measures the difference in 
capacity due to TMA use.  A censored regression model is 
appropriate because it is impossible for a count value to exceed 
a demand value.  Throughput, or runway operations per unit 
time, is therefore censored by demand.   

The tobit model formulation is below.  The model will 
calculate the capacity based on the known operation demand 
and the known operation count.  To isolate the impact of 
runway configuration and meteorological condition, there are 
separate models for each configuration and condition.  We 
estimated the model for 4 different data sets.  Models were 
estimated for VMC and MVMC and for runway configurations 
1 (22R, 27L, 27R | 22L, 32L, 32R) and 2 (4R, 9L, 9R | 4L, 9L, 
32L, 32R).  Each model considers capacity as a function of 
demand, windspeed, and TMA use.  Each model also captures 
the variance of capacity, and analyzes the impact of TMA on 
this variance.

The model specification is below. 

The model is estimated using a maximum likelihood 
method, which will find the parameters that best fit the data. 
Mainly, we are interested in 0 and 0, the effects of TMA on 
the mean and the variance of the capacity distribution.  The 
detailed model estimation technique is discussed in great depth 
by Hansen [3].  

1) Illustration of Censored Regression Model Results 
For illustrative purposes, the full model results for one data 

set will be described in detail.  We chose the model for VMC 
conditions and runway configuration 1 for this illustration. 
Estimation results appear in Table III. 

TABLE III. CENSORED REGRESSION MODEL RESULTS 

Parameter Symbol 

Estimate 

(Standard Error) 

T-Statistic

Intercept o

26.164 

(0.333) 

78.517 

Effect of TMA on 
capacity o

1.720 

(0.412) 

4.17214 

Effect of Windspeed o

-0.201 

(0.026) 

-7.797 

Effect of Demand o

0.000 
(0.000) 
-0.055 

Variance
2
0

5.994 

(0.101) 

59.338 

Effect of TMA on 
Capacity Variance o

-1.267 

(0.310) 

-4.089 

The model results show that the baseline quarter-hour 
capacity for arrivals at ORD is 26.164 arrivals, which is the 
equivalent of 104.656 arrivals per hour.  This is very close to 
the benchmarked 100 arrivals per hour determined by the FAA 
[9]. The results also show that when TMA is being used by the 
TMCs, arrival capacity is increased by 1.720 arrivals per 
quarter hour, or 6.880 arrivals per hour. This is equivalent to a 
6.6% capacity increase.  The results show that windspeed 
decreases arrival capacity by -.201 arrivals per quarter hour, 
and that demand has no impact on capacity.  The estimated 
variance is 5.994 arrivals per quarter hour squared, which is 
decreased by -1.267 when TMA is in use.  All parameters 
except demand are significant at the 0.05 level (denoted by the 
boldface type).

ooooooo

ooo

tDtWtAtC

tCtDtQ

)()()()(

))(),(min()(
(1) 

Where: 

)(tQo
is the count for operation of type o 
(either arrivals or departures) in 
15-minute time period t; 

)(tDo
is the demand for operations of 
type o in time period t; 

)(tC o
is the ORD capacity for operations 
of type o in time period t; 

)(tA is equal to 1 if TMA is in use in 
time period t and 0 otherwise; 

)(tW is the windspeed in time period t; 
2) Model Results for the Impact of TMA on Arrival 

Capacity and Variance of Capacity  
  The impact of TMA on the capacity mean, measured by 

0, and capacity variance, 0, for the four sets of MC and 
runway configuration are shown in Table IV.  

is a stochastic error term, assumed 
to be IID normal with mean 0 and 

variance 
2
o + oA(t); 

o

o

o

oo

o

,

,,

,,

2

are parameters to be estimated. 

0
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TABLE IV. THE EFFECT OF TMA ON CAPACITY MEAN AND CAPACITY 
VARIANCE

MC & RW 

Configuration

o  Values

(Standard Error) 

T-Statistic

o Values

(Standard Error) 

T-Statistic

VMC, RW 1 

1.720       

(0.412)  

4.172

-1.267     

 (0.310) 

-2.976 

VMC, RW 2 

.302       
 (.357)       
.846 

-1.892      

 (.345) 

-5.479      

MVMC, RW 1 

.822        
(.914)        
.899 

-1.554      

 (.642) 

-2.420

MVMC, RW 2 

-1.318      
 (.961) 
-1.372 

-1.784       

(.718) 

-2.485

The 0 values are not significant in three of four 
meteorological conditions and runway configuration cases.  
Under VMC and runway configuration 1, capacity mean is 
significantly higher due to TMA.  There is a possible “self-
selection” bias in this case because it represents favorable 
conditions, which could encourage TMA use.  

The 0 values indicate the estimated change in capacity 
variance when TMA is in use.  The results suggest that arrival 
capacity variance did decline when TMA was in use.  We also 
note that these results are consistent with the FFP1 LAX study 
[6], which found less dispersion between arrival counts and 
throughput after TMA was implemented. 

If TMA usage at ZAU did in fact reduce arrival capacity 
variance, this would have an important benefit.  It would 
reduce delay, because a negative capacity deviation is more 
likely to have an adverse effect than is positive deviation to 
have a beneficial effect.  In many cases, positive deviations 
cannot be fully exploited because there is insufficient demand.  
While a negative deviation can also be inconsequential, it is 
more likely to contribute to a queue going into the next period.  

The following section explores how the use of TMA can 
affect delay due to its capacity and variance impacts.  

V. DELAY IMPACT ESTIMATION

To illustrate the potential of TMA use to save minutes of 
flight delay, a simulation was employed. The operational count 
if TMA was in use 100% of the time was simulated and 
compared with operational count if TMA had never been in use 
during the study period.  To further isolate the capacity and 
variance effects of TMA, two potential operational count 
scenarios were calculated: one with the capacity effect of TMA 
calculated alone ( 0=0), and another with both the capacity and 
capacity variance effect.  Operational demand was kept 
constant over all scenarios to fully illustrate the delay changes 
due to TMA.  

A. Delay Calcuation without TMA 

Using demand and count data for all quarter hour periods at 
ORD collected for January 2006, a cumulative count curve was 
constructed. A cumulative curve in this case is a plot of 

cumulative operational count on the y-axis and time on the x-
axis.  In the first period, cumulative operational count (n1) is 
equal to the count of operations in period one (n1’). In the 
second period, cumulative operational count (n2) is the count in 
period two (n2’), plus the count in period one (n1’). Therefore 
the cumulative operational count in period two is n2=n1+n2’. 
The count in period three is n3=n2+ n3’, and so on for all 
remaining periods. Cumulative demand is determined 
similarly.  

The horizontal distance between any two points on the 
curves is equal to the wait time in queue that an operation 
(arrival) was delayed. The area between the two curves is the 
delay in flight-minutes for the time period of study.  

To illustrate how this method can be used to determine the 
delay savings potential of TMA, the study period of January 6, 
2006 from 13:15-21:15 was chosen. The first step was to 
construct the curves of cumulative demand and cumulative 
count in the “without TMA” scenario for this period. These 
curves can be seen in Fig. 2. 

Figure 2. Cumulative Demand and Count: Without TMA Scenario 

The area between the two curves, or the study period delay 
in flight-hours, is equal to 225.9 flight-hours.   

B. Delay Calcuation with TMA 

To simulate and isolate the capacity effect and the variance 
of capacity effect of TMA, cumulative curves were constructed 
for the two scenarios.  The estimated parameters of the capacity 
function from (1) were used to calculate the new capacity. The 
parameters of the best fit models are in Table V. 
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TABLE V. CAPACITY ESTIMATION EQUATION PARAMETERS 

The following sections describe how the capacity effect and 
the variance of capacity effect were determined.  

1) Simulation of TMA Capacity Effect 
To isolate the effect on capacity of TMA, capacity was 

calculated as a function of the parameters in Table V 
depending on the MC and runway configuration. Capacity in 
each period was assumed to be normally distributed with mean  

µC= 0+ 0A(t)+ 0W(t)+ 0D0(t)

and variance 2 + 0, where 0 = 0. Capacities for each quarter 
hour period in the study period were then drawn from this 
distribution.  Next, as in (1), the operational count was 
calculated as the minimum of the capacity and the operational 
demand.  The unserved operations in any period were added to 
the operational demand of the next period.  

The simulated cumulative operational count curve 
represents the operational count that would have been achieved 
if TMA was in use during the entire study period, but only the 
capacity effect of TMA was realized. The cumulative count of 
operations with the TMA capacity effect is shown below in 
Fig. 3, along with the cumulative count without TMA and the 
cumulative demand.   

Figure 3. Cumulative Demand and Count: TMA Capacity Effect Only 
Scenario

The delay calculated for the TMA capacity effect only 
scenario was 147.7 flight-hours which is a delay savings of 
78.1 flight-hours over the scenario when TMA is never in use. 

2) Simulation of TMA Variance of Capacity Effect 
To simulate the variance of capacity effect, the capacity 

effect along with the variance of capacity effect was calculated. 
The same method was used as for the TMA capacity effect 
only scenario. Capacity was assumed to be normally 
distributed with mean µC and variance 2 + 0, where 0 is the 
associated value for each MC and runway configuration from 
Table V. The cumulative operational count for the TMA 
capacity and capacity variance scenario can be seen in Fig. 4.  

Figure 4. Cumulative Demand and Count: TMA Capacity Variance Effect 

The delay for the TMA capacity and capacity variance 
effect was 121.0 flight-hours, which is a savings of 26.7 flight-
hours as compared with the TMA capacity effect only scenario 
and an overall delay savings of 104.9 flight-hours.  

Using the same method for the entire month of January 
2006, if TMA had been in use 100% of the time, TMA would 
have saved 750 flight-hours of delay for arrivals compared to 
the “without TMA” scenario. Of these 750 flight-hours, 500 
flight-hours of savings were due to capacity effect, and 250 
flight-hours of savings were due to variance effect. This 
finding generalizes to a savings in delay of 9,000 flight-hours 
per year and about 10 seconds per flight.  

VI. CONCLUSIONS 

This study found that the use of TMA for releasing internal 
departures appears to have decreased capacity variance and in 
some cases increased capacity mean. Using the model results, 
it was found that increased use of TMA could lead to decreased 
delay of about 10 seconds per flight.  

Additionally, we have furthered the use of censored 
regression applied to ASPM data as an evaluation method for 
ATM tools. In particular, we have shown how this method can 
be used to investigate the effect of new tools on the variance of 
capacity as well as its mean. In our particular case, we find that 
TMA use, even though it was restricted to releasing internal 
departures, had a measurable impact on arrival capacity 
variance at ORD.

Further study is necessary to assess the impact of TMA 
when it is used for time based metering. Time based metering 
went into effect in June 2007 at ZAU, and could decrease the 
variance in capacity by allowing controllers to effectively 

Capacity Mean Capacity Variance 

0
2

0

VMC, 1 26.164 1.720 -0.201 0.000 5.994 -1.267 

VMC, 2 21.696 0.302 0.114 0.112 6.333 -1.892 

MVMC, 1 28.151 0.822 -0.560 -0.021 6.028 -1.554 

MVMC, 2 25.949 -1.318 -0.126 -0.054 5.740 -1.784 

(2) 
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manage capacity especially during high traffic periods.  
Understanding the impact of TMA on capacity and capacity 
variance due to time based metering, and comparing these 
findings with those in this study, would provide insight into the 
benefits of TMA when it is employed for its full range of uses 
rather than used only for more limited, adapted purposed.  
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ETH Zürich
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Abstract—An air traffic control concept under the name
of Subliminal Control has been introduced. In this approach,
an automated system, commanding minor speed adjustments
imperceptible by the Air Traffic Controller, tries to keep the
Air Traffic Controller’s risk perception low, emulating a “lucky
traffic”. In this paper, we investigate the limits of this air
traffic control approach. We test a proposed subliminal controller
against several encounter geometries for level flights. A stochastic
environment using wind forecast uncertainties is used for this
purpose. The results demonstrate the cases where subliminal
control can potentially reduce the workload of the ATC.

I. INTRODUCTION

The current Air Traffic Management (ATM) system is to a
large extent based on a rigidly structured airspace and a mostly
human-operated system architecture [1], [2]. For the separation
assurance between aircraft, Air Traffic Controllers (ATC) have
to make decisions under a highly uncertain and complex
environment. To do so, they have to estimate the future
positions of aircraft and intervene whenever they perceive a
high risk of loss of separation. It is obvious that the projected
traffic increase [3], [4] demands an increase in the number of
aircraft per sector. This will result in more stress on the ATC.
To alleviate some of this workload, several potential solutions
have been proposed, including conflict detection and resolution
algorithms (for a thorough overview and classification of the
literature, the reader is referred to [5]).

An alternative solution was proposed in [6] under the
name Subliminal Control. The premise is that minor speed
adjustments, commanded by an automated system running in
parallel with the ATC, can convert a potentially conflicting
situation into a “lucky traffic” for the ATC, in the sense,
that the trajectories turn out to ensure safe separation at an
early stage, reducing the ATC’s monitoring workload. These
speed adjustments have to be as small as possible in order
to remain imperceptible by the ATC. In this approach the
human is still kept in the loop, and automation is introduced
in a user-friendly way. Crück and Lygeros in [7] presented a
mathematical framework for subliminal control, while in [8],
a hybrid dynamical game is proposed in which the control has
to minimize a cost representing the risk perceived by air-traffic
controllers despite the uncertainty of trajectory prediction.

In this paper, we investigate the limits of subliminal control
method for Air Traffic Control. Subliminal control is tested
against several conflict encounters under stochastic environ-
ment, due to the presence of wind forecast uncertainty.

The paper is organized as follows: Section II briefly in-
troduces the subliminal control concept, Section III describes
the modeling of the risk perception of the ATC, Section IV
discusses the flight simulation model, Section V presents the
simulations results of this study and Section VI states the
conclusions of this work.

II. SUBLIMINAL CONTROL

The main idea of subliminal control is to turn ATC’s
uncertainty about traffic evolution into an advantage. It has
been shown that small adjustments of speeds commanded
early enough can prevent a large percentage of conflicts [9].
Here we consider speed resets small enough to be within
the uncertainty margin of the ATC (and hence, in principle,
imperceptible). Results from the experiments of the European
project ERASMUS [10] indicate that speed variations up to
12% may go unnoticed by the ATC.

For the subliminal control concept, instead of detecting
conflicts and then resolving them, the problem considered is:

1) Predict the risk the ATC will perceive in the near future,
when faced with a given traffic situation.

2) Reduce (if necessary) the risk perception by applying
unnoticeable speed changes.

The function we use to compute the risk perception is
described in Section III. Given this function, we assume that
the automated system can predict the traffic with sufficient
accuracy for a time horizon significantly longer than the ATC’s
“prediction horizon”, i.e. the time ahead the ATC can foresee
a dangerous situation. Then the task of the system will be to
minimize the risk perception along all possible set of aircraft
trajectories.

It should be emphasized here, that in our subliminal control
setting, the system consists of two separate models: the model
of the ATC, representing the risk perception at each time
step and the aircraft/environment model, which is used for an
accurate trajectory prediction. Thus, the model of the ATC’s
risk perception is used for the computation of the cost and the
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aircraft/environment model for computing the control com-
mands. Furthermore, the ATC’s model introduces additional
constraints for the maximum (in number and magnitude) speed
change commands.

The system operates in a dynamic environment. Aircraft
may enter or leave the sector of interest, deviate from their
expected trajectory, etc. Due to the high uncertainties involved,
it would be unrealistic to compute an optimal control valid
for a very long time. Instead, we employ a receding horizon
control approach, solving at each time step a finite horizon
optimal control problem and re-compute a new optimal control
law at each time step (or possibly whenever an event takes
place, e.g. a probability of high risk perception is high).

III. RISK PERCEPTION OF THE ATC

The risk perception model we use is along the lines of
the one proposed in [8]. The risk function for a given traffic
situation is defined as:

VATC,n : X1 × X2 × · · · × Xn −→ [0, 7],

where Xi denotes the state of aircraft i and n is the total
number of aircraft in the traffic situation. The range of values
[0, 7] has been set in reference to the experimental setting in
[11].

In the general situation of n aircraft, if a pair of them gen-
erates a high risk, then the whole situation will be perceived
as a high risk situation. Of course, as the number of aircraft
increases, the situation becomes more complex, influencing the
risk perception of the ATC. Thus, we set for the risk function:

VATC,n(X1, . . . , Xn) = λ(n) max
i,j,i �=j

VATC,2(Xi, Xj),

where λ(n) is a complexity coefficient associated with a
n-aircraft situation. Since there is very few relevant data
available to validate this approach, we do not pursue this
aspect any further and concentrate on pairwise risk perception
VATC,2(Xi, Xj).

The risk function for 2 aircraft is defined for the planar case
as follows [8]:

VATC,2(X1, X2) =
b

max{Sep(X1, X2) + cTgo(X1, X2), d∆}
,

where Sep(X1, X2) is the minimum separation between the
aircraft that the ATC expects to happen in the worst case inside
his prediction horizon. Tgo is the time at which this minimum
separation occurs, ∆ is the minimum prescribed separation
(for the situation to remain conflict free) and b, c, d are design
parameters.

Since ATC do not have a very good perception of the speeds
of the aircraft, we assume they extrapolate trajectories using
constant estimated speeds V̂1, V̂2 and an uncertainty margin α.
The model that we use to represent their trajectory prediction
process is

(SATC)

{
ẋ1(t) ∈ (1 + [−α, α])V̂1

ẋ2(t) ∈ (1 + [−α, α])V̂2

(1)

with initial conditions x1(0), x2(0) (the current aircraft posi-
tions).

IV. AIRCRAFT/FLIGHT ENVIRONMENT MODEL

We use the model developed in [12] to perform the sim-
ulations. This model allows one to capture multiple flights
taking place at the same time. Each flight has an associated
flight plan, aircraft dynamics and a Flight Management System
(FMS). The evolution of flights is affected by the wind speed.
The wind speed is modeled as a sum of a nominal and a
stochastic part. The stochastic component is assumed to be
correlated in time and space, i.e.the wind experienced by each
aircraft at a given time is correlated to the wind experienced
by all other aircraft at the same time and the wind experienced
by all aircraft at earlier times [13]. The authors have shown in
[14] that ignoring this correlation structure can result in high
conflict probability estimation errors, when simulating more
than one aircraft. Therefore, the evolutions of different flights
are coupled to one another through the wind model.

The model is stochastic (because of the wind uncertainty)
and hybrid, since it comprises both continuous and discrete
dynamics; the former arise from the aircraft’s physical motion,
while the latter from the flight plans and the FMS.

A. Aircraft dynamics

The aircraft is modeled using a Point Mass Model (PMM),
based on the Base of Aircraft Data (BADA) database [15].
The continuous dynamics for the aircraft motion are exten-
sively described in [12]. Apart from the continuous dynamics,
discrete dynamics also arise in our model, mainly because of
the FMS and the flight plan.

The flight plan consists of a sequence of way-points
{O(i)}M

i=0, in three dimensions, O(i) ∈ R
3. The sequence of

the way-points defines a sequence of straight lines joining each
way-point to the next. In our experiments, Requested Time of
Arrival (RTA) for each way point is not implemented. As a
result, the aircraft only corrects cross track deviations from
the reference path, while along track errors are ignored. This
assumption reflects what is known as a 3D FMS, which is is
currently the standard for most commercial aircraft.

The FMS can be thought of as a controller, which, by
measuring the state and using it together with the flight plan,
determines the values for the inputs. The control is to some
extent continuous, but some parameters and set points of the
controllers depend on the discrete dynamics of the FMS [12].

B. Stochastic environment

The stochasticity of our model arises because of uncertainty
about the wind velocity. The wind velocity is modeled as a
sum of two terms: a deterministic (nominal) component, repre-
senting the meteorological predictions available to ATC and a
stochastic component, representing inaccuracy and uncertainty
in these predictions. Since the meteorological predictions are
known and available to the ATC before a flight takes place,
the flight plans are adjusted taking them into consideration.
Thus, the way the nominal wind affects aircraft trajectories is
deterministic and known a priori. For simplicity reasons, we
set the deterministic part of the wind to zero.
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Fig. 1. Conflict scenario

The stochastic wind component is modeled as a random
field w : R×R

3
→ R

3, where w(t, P ) represents the wind at
point P ∈ R

3 and at time t ∈ R. We assume that w(t, P ) is
a Gaussian random variable with zero mean. Recall that the
wind experienced by each aircraft at a given time is correlated
to the wind experienced by all other aircraft at the same time
and the wind experienced by all aircraft at earlier times [13].
As discussed in [14], [16], this correlation structure cannot
be ignored for accuracy reasons when simulating more than
one aircraft. A detailed procedure for extracting wind samples
with given spatio-temporal correlation can be found in [12].

V. SIMULATION RESULTS

Since subliminal control involves only speed alterations for
the conflicting aircraft, it is reasonable to restrict ourselves in
level flight scenarios. We consider two aircraft flying level at
the same altitude, in straight lines, at constant airspeeds (see
Fig. 1) without applying subliminal control. In the absence of
a wind field, the minimum distance the two aircraft approach
each other is denoted δmin and the time this event occurs
tconflict (time to minimum separation).

We construct flight plans to code this encounter geometry
that intersect at O(0, 0). P1(t) = (x1(t), 0) and P2(t) =
(x2(t), x2(t) tan θ) denote the positions of the aircraft at time
t. For the simulation purposes, we use the nominal speed for
an Airbus 321 cruising at 33000ft, which is 454knots [15].

We use four different values for the minimum separa-
tion δmin: 0nm (where a mid-air collision would happen),
5nm, 10nm and 15nm. Three different crossing angles θ =
(45◦, 90◦, 135◦) and 25 different values for nominal time to
minimum separation tconflict = (1, 2, . . . , 25 minutes) are
considered. Even though nominally the aircraft would follow
exactly their flight plans, uncertainty in aircraft motion forces
them to a different minimum separation at a different time.

Concerning the risk perception model, we use α = 0.1,
b = 49, c = 0, d = 1.4 and ∆ = 5nm. All distances are
expresses in nautical miles. For prediction horizon, we assume
that the ATC can predict up to 8 minutes ahead. We then say
we have a high risk situation if VATC,2(X1, X2) = 7, a medium
risk situation if 3.5 ≤ VATC,2(X1, X2) < 7, and a low risk
situation otherwise.

To investigate the limits of the subliminal control, in all
simulations, we apply the maximum speed change not per-
ceived by the ATC (i.e. -12% or +6%) as early as possible
(i.e. in the beginning of the simulation). Thus, we will try
to determine how soon before an incident a speed change
command has to be sent to the FMS of the aircraft. The aircraft
FMS is assumed to immediately accept and implement the
command. Since our system is stochastic, we perform Monte
Carlo simulations to estimate the risk perceived by the ATC
and the conflict probability of the aircraft by performing 1000
simulations and computing the fraction of them that enters
conflict. By the term conflict we define a situation where two
aircraft violate required minimum separation standards, in our
case 5nm.

A. Simulations for δmin = 0nm

Simulation results are shown in Figures 2-5. Figure 2 shows
the probability of conflict for the three different crossing
angles as a function of the time to minimum separation
tconflict. Solid lines correspond to θ = 45◦, dotted lines to
θ = 90◦ and dashed lines to θ = 135◦. The simulations where
no speed changes are sent to the aircraft are plotted with blue
color, while red color corresponds to speed change sent to
only one aircraft and the simulations with speed clearances
sent to both aircraft are plotted in green. One can observe
that subliminal control is a good technique to solve potential
conflicts up to 15 minutes before the time they would appear,
sending speed clearances to both aircraft.

Figures 3-5 show the levels of the perceived risk of the ATC
for the three crossing angles. Solid lines correspond to a high
risk perception by the ATC (i.e. cases when the ATC would
issue a conflict resolution command), dotted lines correspond
to a medium risk perception (i.e. cases when the ATC would
monitor the situation closely, waiting to see if it evolves into a
high risk or a low risk situation) and dashed lines correspond to
low risk situations (i.e. cases when the ATC would not expect
the situation to evolve into an unsafe one). We observe that
even though no conflict actually occurs, the risk perception
of the ATC is low only in the case of θ = 45◦ and if the
the subliminal controller issues speed clearance commands to
both aircraft 25 minutes ahead of the expected time of the
conflict. In all other cases, ATC’s risk perception cannot be
kept low applying subliminal control.

B. Simulations for δmin = 5nm

Figures 6-9 illustrate the results for the simulations. This
time, the conflict resolution can be easily handled by the sub-
liminal controller, as changing the speed of only one aircraft
is enough to resolve any conflict, even if the speed command
is issued as late as only a minute before the conflict. The
algorithm though is unable to keep the ATC confident that the
traffic will not evolve into a conflict, unless the speed change
command is issued (to both aircraft) no later than 23 minutes
before the expected time of minimum separation. Thus, no
flexibility for optimization between different possible solutions
of the subliminal controller is left, since the controller has to
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command the largest speed changes that are allowed to both
aircraft.

C. Simulations for δmin = 10nm

This case is quite different from the previous ones, since the
nominal minimum distance between the aircraft is adequate
to almost ensure that no conflict will occur except for the
case when aircraft are very far away and the remaining
uncertainty is big (Figure 10). As expected, subliminal control
guarantees in this case, too, no conflict between the aircraft.
Figures 11-13 show that if a speed adjustment is sent to both
aircraft at least 17 minutes before the expected occurrence
of the minimum separation, the ATC will not perceive the
situation as potentially dangerous. It is still required for both
aircraft to adjust their speeds accordingly to avoid a medium
risk situation, that would keep the ATC busy monitoring the
situation, but on the other hand, an early enough decision
can leave a small window for optimization depending on each
aircraft’s priorities (i.e. small speed adjustment vs. late speed
adjustment).

D. Simulations for δmin = 15nm

As in the previous case, conflict avoidance is ensured in all
cases, even when no speed control is applied to the aircraft (see
Figure 14). This is not the case for the risk perception of the
ATC though (see Figures 15-17), since a high risk perception
is only avoided when the expected time to minimum separation
is 5 minutes or less, which reduces the ATC uncertainty
window. The risk perception can be kept low however, even
by applying only one speed change, provided that it is applied
around 17 minutes ahead of the expected time of the minimum
separation. If both aircraft adjust their speeds, the commands
can be issued just 8 minutes before the expected time of the
minimum separation, leaving a big margin for an optimization
depending on the aircraft’s priorities.

VI. CONCLUSIONS

We have investigated the potential of the use of subliminal
control to alleviate ATC’s workload and monitoring of some
potentially dangerous encounters. The results clearly indicate
that, depending on the geometry, subliminal control can reduce
the workload of the ATCs monitoring situations. Those can
instead be solved early enough with minor speed adjustments,
keeping the risk perception low. In all cases, care needs
to be taken to ensure maneuvers remain subliminal. The
accuracy of the trajectory prediction tools is also important,
since more accurate tools would allow the application of
subliminal control over longer horizons. As envisioned by
the ERASMUS concept [10], a potential solution for this
could be air-based trajectory prediction tool, that avoids radar
measurement errors, and down-links the information to the
ATC.
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Fig. 7. Risk perceived by the ATC for θ = 45
◦
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Fig. 8. Risk perceived by the ATC for θ = 90
◦
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Fig. 11. Risk perceived by the ATC for θ = 45
◦
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Fig. 12. Risk perceived by the ATC for θ = 90
◦
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Fig. 13. Risk perceived by the ATC for θ = 135
◦
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Fig. 14. Conflict Probability for δmin = 15nm
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◦
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Fig. 16. Risk perceived by the ATC for θ = 90
◦
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Fig. 17. Risk perceived by the ATC for θ = 135
◦
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Abstract— The number of aircraft flying in oceanic airspaces is 

growing. To accommodate the traffic growth, the reduction of 

separation minimum for Automatic Dependent Surveillance – 

Contract (ADS-C) aircraft is required. However, the reduction of 

the separation minimum increases the collision risk of aircraft 

and the safety assessment prior to the reduction is expected. The 

probability distribution model of the longitudinal speed 

prediction error is a key parameter of the collision risk formula 

for the longitudinal separation minimum under ADS-C. In this 

paper, the empirical distribution of the longitudinal speed 

prediction error of aircraft in North Pacific routes is provided. 

Using Peak over Threshold (POT) technique, we found the 

distribution model which is appropriate for the risk estimation. 

Keywords-component; Automatic Dependent Surveillance – 
Contract (ADS-C), Longitudinal Speed Prediction Error, Peak Over 

Threshold, Collision Risk 

I. INTRODUCTION

NOPAC (NOrth PACific) route system (Fig.1) is the most 
congested oceanic ATS route system in Fukuoka FIR. The 
number of aircraft flying NOPAC route system is growing. To 
accommodate the traffic growth, the reduction of separation 
minima is expected.  The 50NM longitudinal separation 
minimum for ADS-C (Automatic Dependent Surveillance - 
Contract) aircraft has been implemented sequentially 
beginning from R220 and R580. In near future, the 30NM 
longitudinal separation minimum will be implemented. 

Figure 1. NOPAC route system 

An aircraft under ADS-C circumstance transmits their 
position periodically. In Fukuoka FIR, the reporting interval is 
1600 seconds in usual and 320 seconds in the case of strategic 
lateral offset. Under radar surveillance, position information is 
available in the order of seconds. Since the position 
information is rarely available under ADS-C circumstance, the 
prediction of trajectory is indispensable for surveillance.

For the quantitative estimation of mid-air collision risk of 
aircraft, the expected number of fatal accidents is often 
utilized as a risk indicator. It is called a collision risk. When 
the estimated collision risk does not exceed the target level of 
safety which is determined prior to the safety assessment, the 
situation is considered to be safe. When the separation minima 
are reduced, the collision risk increases. Hence, the safety 
assessment is required to confirm that the airspaces remain 
safe even under the reduced separation minima. (See [1].) 

An aircraft pair collides if and only if they overlap in 
longitudinal, lateral and vertical dimension. Hence, the 
longitudinal overlap probability which is the probability that a 
pair of aircraft overlap in the longitudinal dimension should be 
estimated in the safety assessment of reduced longitudinal 
separation minimum. It is calculated using the probability 
distribution of aircraft position error due to aircraft navigation 
capability and the probability distribution of speed prediction 
error which causes from the position prediction performance 
of on-board systems and the interpolation performance of 
ground systems. (See [2] and [3].) 

This paper gives the empirical distribution of longitudinal 
speed prediction error and the curve fitted to the empirical 
distribution applying POT (Peak over Threshold) technique in 
Extreme Value Theory. (See [4].) 

II. CONCEPT OF ADS -C

Under ADS-C circumstance, ground stations transmit a 
message which tells the required type of downlink messages 
and the frequency of downlinks. It is called a contract message. 
An ADS-C aircraft downlink the required messages 
automatically as it is indicated in the contract messages. 
Downlink is executed periodically (periodic report), when the 
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event (lateral deviation, vertical rate change, waypoint change, 
altitude range change) occurs (event report), or a one-time-
only report required by ATC (demand report). Downlink ADS 
messages are classified into basic messages and the other 
optional messages. A basic message contains stamped time, 
current position etc. Optional messages, for instance, provide 
the ground speed and direction at the reporting time, the 
location of the next waypoint and its estimated time of arrival  
and the predicted position at some future time instance. A 
ground ATC system, which is called ODP (Oceanic Data 
Processing system) in Japan, interpolates (and extrapolates) to 
predict the aircraft position from the optional messages till it 
receives next report. 

In Japanese system, predicted route group messages, 
intermediate projected intended group messages and fixed 
projected intent group messages are utilized for the prediction 
of aircraft position at the ground system. The first message 
provides the location of the next waypoint over which the 
aircraft is passing and the estimated time of arrival. The third 
gives the predicted position at some future instance. Japanese 
system requires ADS aircraft to send the predicted position 37 
minutes later. When an aircraft intends to change its speed or 
direction within 37 minutes, intermediate project intended 
group messages are coupled to inform when and where the 
speed and direction are changed.  

III. DERIVATION OF EMPRICAL MODEL

A. Identification of ADS-C messages of aircraft on NOPAC 

An ADS message includes a position report and the 
predicted position of aircraft. However, it does not contain the 
route name on which the aircraft intended to fly. To identify 
which route each aircraft flies on, FDPS (Flight Data 
Processing System) data set was utilized. 

All flights in Fukuoka FIR are saved in FDPS data with their 
call signs, aircraft types, the departure and destination airports, 
the original flight plans, the waypoints over which the aircraft 
flew, the time instance when aircraft flew over the waypoints 
etc. All flights of NOPAC routes are identified by FDPS data 
set.

The ADS-C and ATS Facilities Notification (AFN) data set 
during September 1st 2005 to August 31st 2006 in the format of 
[5], [6] and [7] were provided by Kobe Aeronautical Satellite 
Center (the data on November 18th 2005 and from January 17th

2006 to February 9th 2006 could not be collected). The FDPS 
data set in the same period was provided by ATM Center. 

The AFN procedure enables an ATS facility to become 
aware of an aircraft’s data link capability and provides an 
exchange of address information. AFN messages are 
transmitted when an aircraft enters into a region where a data 
link service is provided by a service provider and when an 
aircraft is placed under the control of an adjacent ATS facility. 
All ADS-C messages transmitted in one flight are wedged by 

AFN messages and ADS-C disconnect messages in 
chronological order. Since the AFN message contains the 
aircraft registration number, for every ADS-C message, the 
registration number of aircraft which transmits the ADS-C 
message is identified. 

In many cases, the registration number of aircraft which 
was utilized in a flight is included in FDPS data. The 
corresponding ADS-C messages were identified using the 
registration number as the search key. However, in the case 
where no registration number of an ADS aircraft flying 
NOPAC is saved in FDPS data, we found the corresponding 
ADS messages manually with the help of self-developed GUI. 
(Fig. 2) 

Figure 2. Display of GUI  
(Black dots means the periodic reports and  

colored dots means the event-driven position reports) 

B. Definition of Longitudinal Speed Prediction Errors 

t1
t2

Position reported by 
the second report

Predicted path

Position Prediction Error 
(Vector)

time

Speed Prediction Error =
Position Prediction Error

t2-t1

Position reported by 
the first report

Position at t2
predicted from  the 
first report 

Figure 3. Definition of Speed Prediction Error

Consider successive two ADS-C messages transmitted by a 
single aircraft. Let t1 be the time instance when the first 
message was transmitted and let t2 be the time instance when 
the second message was transmitted. The position prediction 
error is defined as the difference of the reported position at t2
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from the predicted position at t2 estimated from the ADS-C 
message transmitted at t1. The speed prediction error is the 
position prediction error divided by (t2-t1). The longitudinal 
speed prediction error is the projection of the speed prediction 
error onto the route direction. (Fig. 3) 

C. Definition of Longitudinal Speed Prediction Errors 

1) Assumption used for the prediction 

We briefly state the assumption which is utilized in the 
calculation of the predicted position. 

In the observation period, the basic messages, the predicted 
route group messages and the fixed projected intent group 
messages were utilized for the position prediction in ODP. 
ODP assumes that an aircraft is headed to the point indicated 
in the predicted route group messages or the fixed projected 
intent group messages, whose estimated time of arrival is 
earlier, and in the next step, the aircraft headed to the other 
point indicated in the messages. We assume the same 
assumption in this paper. 

The earth is assumed to be a sphere and an aircraft is 
assumed to fly on the great circle in this paper. This is also 
assumed in ODP. 

2) Calculation of the estimated position 

We introduce the mathematical algorithm to calculate the 
predicted position T at M hours later given the reported 
position P and the predicted position Q at N hours later. 
Remark that the mathematical algorithm described below is 
not identical to the one used in ODP. 

Let O be the center of the sphere. The aircraft flies with a 
constant speed on the cross section of the sphere by the plane 
OPQ. An aircraft which flies dS(P,Q) by distance in N hours 
flies M dS(P,Q)/N by distance in M hours. Here dS(P,Q)
denotes the distance between points P and Q on the sphere 
given by  

)2/),((sin2),( dim3
1 RQPdRQPdS

  (1) 

The notation R is the radius of the sphere and d3-dim(P,Q) is the 
Euclid distance in the 3-dimensional space. 
Let  be the angle made by half lines OP and OT. By the 

definition of T, we get the following equation. 

),(),( QPd
N

M
TPdR SS

  (2) 

Let H be the foot of perpendicular of the point O on the line 
PQ. Let S be the crossing point of the line PQ with the line OT. 
(Fig. 4) Let  be the angle made by half lines OP and OQ, then 
it is given by 

)2/),((sin2 dim3
1 RQPd   (3) 

Even if the pint is on the segment PH, HQ or right of Q in Fig. 
4, the following equation holds true. 

d3-dim(P,S)= Rsin( /2)+ Rcos( /2)tan( - /2) (4) 

R
R

O

P Q

T

SH

Figure 4. Geometrical Description I  

Let P(xP, yP, zP), Q(xQ, yQ, zQ), S(xS, yS, zS) and T(xT, yT, zT)
be the coordinates. Then, the following equations are 
obviously satisfied. 
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By (2) - (6), we get the coordinate of the point T. 

3) Calculation of the longitudinal position errors 

Let A be the reported position at some time instance and let 
B be the predicted position at the same time estimated in the 
methodology described in the previous subsection. Using the 
coordinates of waypoints, we find the equation of the plane W 
containing the center O and the route. The author used 
Gaussian Elimination to find the equation. Let 

ax+by+cz=0   (7) 
be the equation. 

route

Px

O

A

B

C

D

H

Fig. 5. Geometrical Description II  
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We introduce how to find the coordinate of ‘the foot C of 
perpendicular from A on the route.’ Let H be the foot of 
perpendicular on the plane W. The coordinate of the point H is 
given by 
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 (8) 

Hence the coordinate of the point C is given by 
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We can find the coordinate of ‘the foot D of perpendicular 
from B on the route’ in the same way. We define the 
longitudinal speed prediction error by 

Px=dS(C,D)   (10) 
if the point C and D line up in the traveling direction of the 
aircraft, otherwise, it is defined by 

Px= dS(C,D)   (11) 

D. Results 

We study the longitudinal speed prediction error in the case 
where aircraft fly ‘straight and at a constant speed.’ When the 
event report is transmitted, the aircraft assumes to change its 
speed, heading or its vertical speed. Hence we only consider 
the successive ADS reports such that both of them are 
assumed to be periodic reports. (The basic group report 
following the contract message is assumed to be a demand 
report, when the contract message for a demand message is 
transmitted.) 

Fig. 6 shows the time interval of successive periodic reports 
of aircraft flying in the NOPAC route system. Since the 
reporting time interval indicated in the contract message is 320 
sec and 1600 sec, there are peaks at 6 min and 27 min. 
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Figure 6. Distribution of intervals of periodic reports  
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Figure 7. Trajectory of an aircraft with large longitudinal speed prediction 
error 

In the rest of this paper, we only consider the periodic report 
pairs whose time interval is greater than 26 min and less than 
or equal to 27 min (right peak of Fig. 6). A few ADS-C reports 
in this data set are not coupled with fixed intent group. In the 
case where the estimated time of arrival at the next waypoint 
described in the predicted route group message is close to the 
stamped time of the basic message, the longitudinal prediction 
error is sometimes large in magnitude. 

Fig. 7 shows the trajectory of an aircraft flying on R220 in 
the NOPAC route system. The dots show the position reported 
via ADS-C. The longitudinal speed prediction error of reports 
which were transmitted at 17:40 and 18:06 was -668 (knots). It 
turned out that the basic group transmitted at 17:40 is not 
coupled with ‘fixed projected intent group’ and estimated time 
of arrival given in ‘predicted route group’ is 10 sec later from 
the stamped time. The ‘predicted route group’ reports that the 
next waypoint is in the east of the reported position in spite of 
the westbound aircraft. It seems that the aircraft flies by the 
waypoint; however, the on-board system does not update the 
next waypoint. Hence the ground system possibly considers 
that the aircraft is flying in the opposite direction. If a fixed 
projected intend group is coupled in this case, a system might 
misunderstand the aircraft heading in a short period. However, 
the system makes an appropriate prediction based on the fixed 
projected intent group after a few seconds. 

0.034% of basic reports are not coupled with ‘fixed 
projected intent group’ and 0.017% of basic reports are 
coupled with neither ‘fixed projected intent group’ nor 
‘predicted route group’. 

Fig. 8 shows the empirical distribution of the longitudinal 
speed prediction errors of periodic report pairs which are 
coupled with both fixed projected intent group and predicted 
route group and whose reporting time interval is greater than 
26 min and less than or equal to 27 min. There are no 
incredibly large longitudinal speed prediction errors any more. 
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Figure 8. Empirical distribution of longitudinal speed prediction errors 
(Data omitted, NOPAC) 

IV. DISTRIBUTION MODEL

On first sight, the empirical distribution given in Fig. 8 
follows a normal distribution. Fig 9 shows the QQ-plot 
(quantile-quantile plot) for normal distribution. If the 
empirical distribution follows a normal distribution, the dots in 
Fig. 9 are on the red straight line. When ‘sample quantiles’ is 
larger than -20 and smaller than 20, the dots seem to be on the 
straight line, however, it is not the case for the data set outside 
of [-20, 20]. 

The average and standard deviation of restriction of the 
empirical distribution on [-20,20] are -0.1142 and 7.757, 
respectively. The histogram in Fig. 10 shows the empirical 
distribution and the graph of the probability density function 
of the normal distribution with average = -0.1142 and standard 
deviation = 7.757. Fig.10 shows that this normal distribution 
fits the empirical distribution well. 

Figure 9. QQ-Plot of Fig.8 for normal distribution 

Longitudinal speed prediction error (knots)

Figure 10. QQ-Plot of Fig.8 for normal distribution 

The author applied POT technique to the data set. Extreme 
value theory claims that the conditional probability 
Pr{Y<y|Y>u} of distributions satisfying some technical 
assumptions approximately follows a generalized Pareto 
distribution when u is large enough. (More precisely, for any 
distribution which is in the domain of attraction, 
Pr{Y<y|Y>u} weakly converge to the generalized Pareto 
distributions as u .) The cumulative distribution function 
of a generalized Pareto distribution is given by 

0/1,11)(
/1

y
y

yH . (12) 

When the shape parameter <0, the generalized Pareto 
distributions are Beta distributions. (0<y<- / ) In =0, they 
are exponential distributions and they are Pareto distribution 
in the case where >0. (See [4] and other related papers for 
more detail.) 

The author analyzed the both-side tails of Fig. 8 using POT 
technique. The R-package extRemes [8] is utilized for the 
analysis. (R is a free statistical software for data analysis.) For 
the right tail, we set the threshold u = 20 considering the 
stability of estimated shape parameter  and scale parameter .
The number of excesses of thresholds is 687 (2.85% of the 
whole data set). By maximum likelihood method, we found 
= 0.0426 and 95% confidence interval is [-0.03419, 0.13204]. 

 = 7.63 and its standard error is 0.4342. Fig. 11 and Fig. 12 
show the QQ-plot and the density plot of this model, 
respectively. Since almost all dots are on the diagonal line in 
the QQ-plot diagram, the generalized Pareto distribution fits 
the right tail of the empirical distribution well. The fact 
=0.0426 suggests that the right tail is slightly thicker than an 

exponential distribution. 
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Figure 11. QQ-Plot of generalized Pareto distribution for the right tail of Fig. 
8

Figure 12. Density plot of generalized Pareto distribution for the right tail of 
Fig. 8 

The same analysis was conducted for the left tail. We set the 
threshold u = 34. The number of excesses of thresholds is 47 
(0.195%). = -0.4484 with 95% confidence interval [-0.61369, 
-0.08794]. =12.22 and its standard error is 2.374. Fig. 13 and 
Fig. 14 show the QQ-plot and the density plot of this model, 
respectively. Because of small amount of data set, the 
estimated parameter has large standard deviation and some 
dots are apart from the diagonal line in QQ-plot diagram. 
Hence we cannot apply POT technique to determine the shape 
of left tail. One way to find the shape of right tail is to assume 
that both left and right tails follow the exactly same 
distribution.

Figure 13. QQ-Plot of generalized Pareto distribution for the left tail of Fig. 
8

Figure 14. Density plot of generalized Pareto distribution for the left tail of 
Fig. 8 

Under the assumption that both left and right tails follow the 
same distribution, we applied POT technique to find the shape 
of the tail. In this case, we have only to analyze the tail of the 
absolute value of empirical data. We set the threshold u = 20. 
The number of excesses of thresholds is 1161 (5.26%). =
0.0386 with 95% confidence interval [-0.01962, 0.10373].  = 
7.093 and its standard error is 0.3048. Fig. 15 and Fig. 16 
show the QQ-plot and the density plot of this model, 
respectively. The generalized Pareto distribution fits the tail of 
the empirical distribution well judging from QQ-plot diagram. 

Figure 15. QQ-Plot of generalized Pareto distribution for the both tails of 
Fig. 8 

Figure 16. Density plot of generalized Pareto distribution for the both tails 

x (knots) 

x (knots) 

x (knots) 
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of Fig. 8 

Let (x) be the standard normal cumulative distribution 
function, namely, 

x

du
u

x
2

)2/exp(
)(

2

.  (13) 

Then the cumulative distribution function F(x) of 
longitudinal speed prediction errors, x in knots, is given by  
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The simplified form is given by 
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(15) 
The analysis of both-side tails suggests that the tail of the 

empirical distribution of longitudinal speed prediction errors 
follows a Pareto distribution which has slightly thicker tails 
than exponential distributions. It is hard to calculate the 
longitudinal overlap probability if the tail follows a Pareto 
distribution. Even if the tail of empirical distribution is thicker 
than the exponential distribution, the shape parameter  is so 
small that we may assume that the tail follows an exponential 
distribution in many cases. 

We can assume that |longitudinal speed prediction 
error|[20, )-20 follows an exponential distribution whose 
probability density function is exp(-x/ )/ . Here |longitudinal 
speed prediction error|[20, ) denotes the restriction of the 
absolute value of longitudinal speed prediction error on [20, ). 
The maximum likelihood estimator of  is the average of the 
empirical data set of |longitudinal speed prediction error|[20, )-
20. It is 7.439. Hence we get the following probability density 
function of a model of longitudinal speed prediction errors. 
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(16) 

V. CONCLUSION

This paper first reviews the basic concept of ADS-C and 
summarizes the methodology to find the longitudinal speed 
prediction errors of ADS-C.  

A few ADS-C reports, which are not coupled with the fixed 
intent group and the estimated time of arrival at the next 
waypoint is close to the stamped time, have large longitudinal 
prediction errors in magnitude. (Max. 668 knots) 

Fig. 8 shows the empirical distribution of the longitudinal 
speed prediction errors of periodic report pairs which are 
coupled with both fixed projected intent group and predicted 
route group and whose reporting time interval is greater than 
26 min and less than or equal to 27 min. By QQ-plot, it turns 
out that this distribution on [-20, 20] follows the normal 
distribution whose average is -0.1142 and whose standard 
deviation is 7.757. POT (Peak over Threshold) technique of 
Extreme Value Theory was applied to find the shape of the tail 
of Fig. 8. The tails (outside -20 and 20) follow the generalized 
Pareto distribution whose shape parameter = 0.0386 and the 
scale parameter  = 7.093. Equation (15) gives the explicit 
description of the cumulative distribution function. 

The density function of the distribution in (16) is also given 
under the assumption that the tails follow an exponential 
distribution.
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Abstract—Self-spacing is a solution for the runway capacity 

reduction that is intertwined with the use of continuous descent 

approaches in the current air traffic management system to 

reduce aircraft noise. In case of self-spacing the separation task is 

transferred from the air traffic controller to the pilot. The Three-

Degree Decelerating Approach (TDDA) can be executed in a 

distance- or time-based self-spacing environment while yielding a 

noise reduction. A fast-time simulation tool has been developed to 

simulate arrival streams of different aircraft types executing the 

TDDA in both self-spacing scenarios under actual wind 

conditions. The tool was used to quantify the performance 

differences between distance- and time-based self-spacing in 

terms of capacity, noise reduction, and loss of separation. In the 

time-based scenario no effects of preceding aircraft on trailing 

aircraft could be identified. However, an increase in separation 

with a negative effect on the airport capacity in order to assure 

safe separation was required. In the distance-based self-spacing 

scenario a slow-down effect was observed that led to a decrease in 

the noise reduction towards the end of the arrival stream. This 

was solved by altering the initial separation between aircraft in 

the arrival stream. In the distance-based self-spacing scenario no 

negative effect on the runway capacity or safety has been 

identified.

Index Terms -- Continuous Descent Approach, capacity, self-

spacing

I. INTRODUCTION

To accommodate the forecasted further growth of aviation 
without increasing the noise impact measures must be taken 
[1-3]. Promising procedures are Continuous Descent 
Approaches (CDAs) but are infeasible in the current air traffic 
management system because of the negative effect on the 
runway capacity. During the approach Air Traffic Control 

(ATC) issues speed, altitude, and heading instructions to keep 
aircraft safely separated. During a CDA ATC can no longer 
give instructions; otherwise the aircraft are not able to follow 
their optimum descent path. Moreover it is unknown what the 
descent paths of the aircraft will be. The aircraft performance, 
pilot control strategy, and wind condition significantly affect 
the descent path. [3][4] Therefore Air Traffic Control (ATC) 
introduces additional spacing between aircraft to assure that 
the separation minima are respected, though at the cost of 
runway capacity. The capacity reduction prevents the CDA 
from being introduced at a large scale at the major airports in 
the world to reduce the noise nuisance in the vicinity of the 
airport.

The Three-Degree Decelerating Approach (TDDA) is a 
CDA capable of realizing a significant noise reduction.  The 
procedure lies within the boundaries of present approach 
procedure limitations and can be implemented in a short term 
[4-6]. Major difference with the current ATM system and the 
key to application of a CDA without a drop in the runway 
capacity is the use of self-spacing. The spacing task is 
transferred from the air traffic controller to the pilot. The 
maneuverability of an aircraft while executing a CDA is 
limited and largely driven by the aircraft performance, wind 
conditions, and the control strategy of the pilot. The aircraft 
performance information is readily available in the cockpit 
rather than on the ground. A pilot can plan and execute, with 
the help of onboard systems, a CDA to remain safely 
separated and exploit the noise reduction potential of the CDA 
[5][6]. Previous research focused on the design of the 
procedure, and the required systems [4-6]. This paper 
discusses the feasibility of implementing the TDDA at high 
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traffic density airports in a distance- or time-based self-
spacing environment. It also introduces intent-based trajectory 
predictions to prevent transient motions from occurring in an 
arrival stream of aircraft. As will be discussed later, the slinky 
effect can only occur when relying on distance-based self-
spacing.

Along Track Distance
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Figure  1. The TDDA Trajectory

Section II addresses the TDDA procedure in a distance-
based and time-based the self-spacing environment. Section
III focuses on the intent-based trajectory prediction applied
when using distance-based self-spacing. Use of the TDDA in
arrival streams imposes constraints on the initial separation
between aircraft; this issue is addressed in Section IV. The
fast-time simulation tool used to simulate arrival streams of
different aircraft executing the TDDA in both self-spacing
scenarios under actual wind conditions is presented in Section
V. The performance of the TDDA in a distance- or time-based
self-spacing environment is presented in Section VI. Section
VII contains the conclusion.

II. THREE-DEGREE DECELERATING APPROACH

A. Description of Procedure

The TDDA is a straight-in approach along a fixed descent
path with a  -3° path angle as illustrated in Figure 1. [4-7]. The
descent path coincides with the Instrument Landing System’s
(ILS) glide slope, except the aircraft intercepts the descent
path at an altitude that lies well above the altitude the aircraft
normally intercepts the ILS glide slope and starts with the
final 3° descent. The aircraft descends with a constant IAS to a 
point where the engines are set to idle, this is point is referred
to as the point of thrust cutback (TCB). Due to the
aerodynamic drag the aircraft decelerates, during the
deceleration the flaps and gear are extended. For safety
reasons most operators require aircraft to be in a stabilized
landing configuration before descending below 1000 ft. This is
incorporated in the TDDA procedure by demanding the
aircraft to be stabilized at the reference altitude, href, which is 
located at 1000 ft. To accomplish this, the flap extension
speeds are such that the final approach speed VAPP is reached
at href in a stabilized landing configuration. The flap extension
speeds together form the flap schedule of the aircraft. Below
href the aircraft maintains VAPP by reapplying thrust and
continues the approach until touchdown.

The moment of thrust cutback and the flap schedule are the
only controls the pilot has to reach VAPP (noise goal) at the
reference altitude. In addition the pilot has the responsibility to
remain safely separated (separation goal) with the preceding
aircraft or arrive at the commanded RTA (time goal). The
applicable goals depend on the form of self-spacing that is
used in the arrival stream.

Research showed that it is difficult for a pilot to determine
the correct TCB altitude and a flap schedule [4][5]. Therefore
the pilot is supported by a number of optimization and
scheduling algorithms fed by wind and trajectory prediction
algorithms to meet the noise goal, and separation or time goal
[4-6]. Which optimization and scheduling algorithms are 
active depends on the part of the TDDA the aircraft is in. As 
soon as the aircraft intercepts the 3° descent path Thrust
CutBack (TCB) altitude optimization starts for both the noise
and separation/time goal. The algorithm determines the
maximum TCB altitude using a binary search method.

When flying below the TCB altitude the Flap Scheduler
Algorithm monitors whether the applicable goals will be met.
The implemented flap scheduler is based on the scheduler
originally described in [5]. If one of the goals is not met and
scheduling is possible the flap scheduler updates the schedule.
The updated schedule is determined using a binary search
algorithm. Optimization of the noise goal is only performed if
the time or separation goal is met. Below href no scheduling
takes place. 

B. Two Self-Spacing Scenarios

Because of wake turbulence trailing aircraft must maintain
a minimum separation with respect to the preceding aircraft.
In the scenario proposed in this research the spacing task is
transferred from the air traffic controller to the pilot to carry
out CDAs without adverse affecting the runway capacity. Self-
spacing can be either distance-based or time-based. Distance-
based self-spacing using the relative state of the preceding
aircraft might give rise to transient motions in the arrival
stream (the slinky effect) resulting in separation violations [8].
Therefore time-based self-spacing was implemented in the
TDDA [4]. Time-based spacing concepts proved best for in-
trail self-spacing but are hard to implement into the current
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spatial working environment of pilots and controllers. Pilots 
indicated to prefer distance-based over time-based procedures 
[7]. 

C. TDDA using Distance-based Self-Spacing 

In case of distance-based self-spacing it is the task of the 
pilot to assure that the separation minimum is never violated. 
Based on a prediction of the leading aircraft trajectory the own 
TDDA is planned such that the actual minimum separation lies 
close to the minimum allowable separation to achieve the 
highest airport capacity. Figure 2 shows the structure of the 
TDDA algorithm under distance-based self-spacing. The 
algorithm computes the separation between the aircraft based 
on trajectory predictions of the own and the preceding aircraft. 
The prediction of the own trajectory is also used to determine 
whether the noise goal will be met. If necessary an 
optimization of the TCB altitude or flap schedules takes place. 
TCB altitude optimization takes place when the aircraft is 
flying above the last computed TCB altitude. When the thust 
cutback has taken place and the aircraft has not reached the 
final approach speed, flap schedule optimization takes place. 

Figure 2. TDDA Algorithm for Distance-Based Self-Spacing 

D. TDDA using Distance-based Self-Spacing 

Time-based self-spacing makes the on-board leading 
aircraft trajectory prediction superfluous, instead thereof each 
aircraft is supplied with an RTA. This does not imply that the 
separation minima do not have to be obeyed. Determination of 
RTAs that do not lead to separation violation will be 
addressed later. The task of the pilot is to arrive at the 
threshold at the RTA. The resulting TDDA should meet both 
the noise and time goal. The structure of the TDDA algorithm 
is identical to the structure under distance-based spacing. The 
RTA block replaces the lead prediction and separation blocks, 
see Figure 2. 

III. AIRCRAFT INTENT-BASED TRAJECORY PREDICTION

A. Using Aircraft Intent for Trajectory Prediction 

Distance-based self-separation requires a precise trajectory 
prediction of the preceding aircraft. An aircraft intent based 
prediction algorithm is proposed here. Aircraft intent is an 
unambiguous description of how the aircraft has to be 
operated within a given timeframe. The intent information is 
the input to a trajectory predictor [10]. 

Captured in the intent is the outcome of optimization of the 
trajectory by the TDDA algorithms on-board the leading 
aircraft. If an aircraft’s descent profile is disturbed, for 
instance by a wind change or delayed pilot action, the TDDA 
algorithm optimizes the trajectory. The new trajectory is 
described in aircraft intent that is not in principal the same as 
the previous intent because of the optimization process. In 
predictions based on previous states no credit is given to the 
ongoing optimization process. This can cause unnecessary 
control actions from the trailing aircraft that can propagate 
through the arrival stream resulting in the slinky effect. 

Ref. [11] shows that a trajectory prediction of the last 
constant speed segment of the TDDA is sufficient to 
determine the minimum separation. The change of the 
separation between two aircraft generally has closing 
characteristics. Based on the performance characteristics of a 
number of aircraft and the applicable separation minima it was 
concluded that the moment of minimum separation will take 
place when the leading aircraft is flying below the reference 
altitude.

B. Intent-Based Lead Aircraft Prediction 

Prediction of the last constant speed segment is sufficient to 
determine the minimum separation. This segment can be 
predicted independent of the other segments using the ETA, 
VAPP, and descent path angle as illustrated in Figure 3. 
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Figure 3. Intent-Based Trajectory Prediction

The speed and flight path angle are kept constant during the 
last stage of the final approach. No states of the preceding 
aircraft are used to predict the leading aircraft trajectory, only 
aircraft intent information is needed. The predictor starts at the 
runway threshold where the aircraft is at the ETA with speed 
VAPP   and computes the trajectory up to the reference altitude. 
No knowledge about the aerodynamic performance is 
required, because the airspeed and path angle remain constant. 
The prevailing wind is the only unknown and is estimated 
using a wind predictor as described in [11]. 

IV. TDDAS IN ARRIVAL STREAMS

An arrival stream of aircraft consists of one leading aircraft 
and a number of trailing aircraft. The aircraft in the stream 
may vary in type and weight and have different deceleration 
profiles. The aircraft in the stream can be separated by time- 
or distance-based self-spacing. The leading aircraft is always 
supplied with an RTA and optimizes its TCB altitude and flap 
schedule to arrive at the RTA and meet the noise goal. The 
trailing aircraft, depending on the self-spacing concept, tries to 
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meet their separation or time goal and the noise goal. The 
control space of the TDDA is limited, only if the separation or 
time goal falls within the control space a TDDA exploiting the 
noise reduction potential without a capacity loss is possible. 

A. TDDA Control Space Impacting Factors 

The TDDA control space boundaries are a function of the 
aircraft type, weight and prevailing wind conditions. The 
boundaries are set by the TDDA with the shortest and longest 
duration. To get the shortest duration all flaps are extended at 
their maximum speed yielding a fast but late deceleration and 
the lowest possible TCB altitude. The longest duration is 
achieved by extending flaps at their minimum speed resulting 
in a slow and early deceleration and the highest possible TCB 
altitude. Aircraft weight lowers the TCB altitude, shortens the 
time-to-fly, and reduces the control space. A headwind 
increases the duration of the TDDA and lowers the TCB 
altitudes, but also makes the control space smaller. The 
opposite occurs in case of a tailwind. The variance in TCB 
altitude and time-to-fly for each type and weight combination 
reflect the uncertainty in the descent profile of each aircraft 
ATC has to deal with causing the increase in separation. The 
impact of the wind conditions justifies the need of a wind 
predictor. 

B. Initial Separation Constraints 

To fly a TDDA that does not reduce runway capacity and 
meets the noise goal, the separation or time goal should fall in 
the control space. This imposes constraints on the initial 
separation with respect to the preceding aircraft or entry time. 
The constraints follow from the control space and leading 
aircraft trajectory (prediction) and type, and RTA if 
applicable. 

C. Initial Separation - Distance-Based Self-Spacing 

The initial separation under distance-based self-spacing is 
determined as shown in Figure 4. The separation goal implies 
that the minimum separation should equal the minimum safe 
separation. The separation goal is visualized by offsetting the 
lead’s trajectory prediction over the required separation away 

allowable distance to the threshold when the lead aircraft is 
still flying is indicated by the separation boundary. By 
positioning the control space boundaries such that the 
minimum separation equals the minimum safe separation the 
minimum and maximum initial separation expressed in time or 
distance are determined. 

D. Initial Separation - Tim

from the runway (separation boundary). The minimum 

e-Based Self-Spacing 

spacing are 
det

he initial separation constraints are determined based on 
pre

. Initial Trajectory Optimization 

etermined the control space 
is r

The constraints in case of time-based 
ermined in a similar way. The time of arrival of both 

control space boundaries is set equal to the RTA from where 
the entry time interval is determined, see Figure 5. For 
reference the separation boundary is drawn, the minimum 
separation between both aircraft cannot be violated. 

30

T
dictions of the own control space and lead trajectory that 

have an uncertainty or are subject to changes due to variable 
wind conditions. An initial separation located in the middle of 
the interval minimizes the risk that the separation or time goal 
drops out of the control space resulting in spacing gaps or 
failure to meet the noise goal. The TCB altitudes of the control 
space boundaries are the highest and lowest TCB altitude 
achievable. An initial separation close to the boundary leads to 
a relatively high or low TCB altitude.  

E

If the initial separation is well d
educed by the preceding aircraft as shown in Figure 6. The 

own aircraft’s trajectory should lie as close to the separation 
boundary as possible. The TCB optimization and flap 
scheduler search for trajectory with the maximum TCB 
altitude while still meeting all the goals. 
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If the separation boundary crosses the lower control space 
boundary a TDDA that meets the noise goal is impossible 
without violation of the separation minima. If the separation 
boundary lies above the control space, execution of the TDDA 
leads to a spacing gap with an adverse effect on the airport 
capacity.

V. FAST-TIME TDDA SIMULATION TOOL

The fast-time simulation tool simulates arrival streams of 
aircraft executing the TDDA in a distance- or time-based self-
spacing environment under actual wind conditions. 
Implemented in the simulator is the TDDA with the 
optimization and scheduling algorithms depicted in Figure 2. 
For the aircraft trajectory computation and prediction use is 
made of point mass models approximating the following 
aircraft: Boeing 747-400, 777-300, 737-800, 737-400, and the 
Airbus 321. Randomness in the pilot response time is modeled 
using the Pilot Response Delay Model described in Ref. [12]. 

VI. DISTANCE-BASED VS. TIME-BASED SELF-SPACING

Using the simulation tool 5000 arrival streams from eight 
aircraft in each self-spacing scenario have been generated. The 
aircraft type and weight were determined randomly. The 
following aircraft are present in the arrival streams: Boeing 
747-400, 777-300, 737-800, 737-400, and the Airbus 321. Per 
type three different weights were assigned to the aircraft: the 
Operating Empty Weight (OEW), the Maximum Landing 
Weight (MLW), and the mean of the OEW and MLW. 
Weather observations have been used to create 54 time-
varying wind profiles. To determine the initial separation 
interval a 0.2 nm buffer was added to the separation minima to 
account for uncertainties in the predictions and wind changes. 
The entry time into the arrival stream was set such that the 
aircraft were in the middle of their control space computed 10 
minutes before the preceding aircraft starts his TDDA. The 
characteristics of the TDDA are summarized in Table 1.  

TABLE I. TDDA CHARACTERISTICS

Aspect Value

Top of Descent (TOD) 7000 ft 

Initial IAS 230 kts 
Reference Altitude (href) 1000 ft
Approach Speed (VAPP) 1.3Vstall + 10 kts 
Minimum Flap Speed 1.3Vstall

Maximum Flap Speed VFE
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The performance and feasibility of implementing the 
TDDA at a high traffic density airport in the two self-spacing 
scenarios was assessed using the formulated noise, separation, 
time goal, and the runway capacity.  

A. Noise Goal Performance 

 The noise goal is met if VAPP is reached at href. In case VAPP

is reached above href, engine thrust needs to be reapplied above 
href resulting in more engine noise. From a safety point of view 
it is also not desired that the aircraft reaches VAPP below href.
Figure 7 shows the average altitude where VAPP was reached, 
hereafter referred to as hVAPP, per position in the arrival stream. 
As expected for the time-based scenario no trend between the 
position of the aircraft and hVAPP could be identified (R = 0.006, 

p = 0.287, Pearson 2-tailed). On average hVAPP lies 20 ft above 
href. When taking into account the 25 ft tolerance used during 
flap scheduling and TCB optimization it is concluded that on 
average the noise goal is met. For the distance-based scenario 
a positive correlation between hVAPP and the position in the 
stream can be identified (R = 0.145, p < 0.001, Pearson 2-

tailed). The noise reduction deteriorates towards the end of the 
arrival stream. 

 Deterioration of the noise reduction is caused by 

accumulation of delays (slowdown effect) in the arrival 
stream. The TDDA is susceptible to time delays. If there is a 
delay in the arrival stream all trailing aircraft in the stream are 
affected by this delay. Aircraft further back in the arrival 
stream are confronted with longer delays than the aircraft in 
the beginning of the arrival stream, see Figure 8. To remain 
safely separated, aircraft increase the TCB altitude to the 
upper bound of their control space. If the aircraft still lose 
separation flap extension is advanced but this will result in 
failure to meet the noise goal. In case of a delayed arrival there 
is a significant correlation between href and the magnitude of 
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the delay (R = 0.672, p < 0.001, Pearson 2-tailed).  Arrivals 
earlier than expected have no effect on the noise goal (R = 
0.057, p < 0.001, Pearson 2-tailed).

 Deterioration of the noise reduction due to accumulating 
time delays was suppressed by increasing the initial separation 
between the aircraft in the end of the arrival stream. In the 
simulation this has been accomplished by increasing the 
separation buffer from 0.2 nm to 0.5 nm. In case of a delay the 
aircraft reduce the spacing to the allowed minimum and still 
reach VAPP at href. The increase in time delay flattens and a 
positive correlation between hVAPP and the position can no 
longer be identified (R = 0.040, p < 0.001, Pearson 2-tailed).

B. Separation 

 Under distance-based spacing a separation goal is 
formulated. The flap and TCB scheduling should be such that 
the minimum separation equals the minimum safe separation. 
Although there is no separation goal in the time-based 
scenario the minimum separation cannot be violated. 
Separation should be assured by adhering to the RTA. 99% of 
the aircraft arrive within 6.5 s of the RTA at the threshold. 
Table 2 lists the mean and median excess separation between 
aircraft and percentage of aircraft with a loss of separation 
with respect to the preceding aircraft. In case of time-based 
separation four times more separation violations occur. A part 
of the violations in both scenarios would obviously have led to 
a go-around. Go-arounds do occur during current approaches; 
London Gatwick reported go-around percentages varying 
between 0.29% and 0.47% [13]. The percentage achieved in 
the distance-based scenario falls in this range. To achieve the 
same result for time-based spacing, the only available measure 
is addition of separation on top of the minimal separation used 
for the computation of the RTAs. Based on the separation 
margin distribution, 0.5 nm additional separation was applied 
(+0.3 nm). The separation violation percentage dropped to 
0.27%. 

TABLE II. SEPARATION GOAL PERFORMANCE

Descriptive

Self Spacing Mean  Median  Separation Loss 

Time-Based 0.47 nm 0.22 nm 1.42% 
Distance-Based 0.37 nm 0.31 nm 0.32% 

C. Runway Capacity 

 In this section the realized runway capacity is evaluated. 
For the distance-based self-spacing use is made of the arrival 
stream initially described in Section VI with a correction for 
the slowdown effect. In the time-based scenario use is made of 
the same arrival stream as initially described with 0.5 nm 
additional spacing applied on top of the separation minima to 
compute the RTAs. The capacity figures are based on 5000 
randomly created arrival streams per self-spacing scenario. 
The runway capacity is a function of the traffic mix, because 
the traffic mix (on average: 40% heavy, 60% large) is 
determined randomly, variation in the runway capacity can be 
expected, see Figure 9. Table 3 lists descriptive statistics. 
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TABLE III. RUNWAY CAPACITY STATICTICS

Descriptive [AC/H] 

Self-Spacing Mean Median Std. Min Max Range

Time-Based 35.7 35.3 3.3 26.7 49.7 23.0 
Distance-Based 39.2 38.8 3.6 30.9 53.3 22.3 

Time-based spacing results in a lower runway capacity than 
distance-based spacing.  An ANOVA indicates that the 
difference is significant. (F = 2560.04, p < 0.001).

 To compare the realized runway capacity with the 
theoretical maximum capacity a ‘packing factor’ is used: 
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where k is the number the aircraft in the arrival stream, Sactual is 
the actual separation minimum between two aircraft, and 
Sallowed the minimum safe separation. Separation violations are 
not included in the PF calculation. If PF = 1 the runway 
capacity is equal to the theoretical maximum. As expected the 
PF for distance-based spacing is higher than for time-based 
spacing, 0.90 and 0.81 respectively. In case of time-based 
separation it is clear that there is a significant reduction in 
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capacity. Distance-based self-spacing outperforms time-based 
spacing in terms capacity by more than three AC/H. Given the 
changing wind condition and pilot behavior and spacing 
capabilities of ATC the PF for the conventional approach will 
always be lower than one.  

VIII. CONCLUSION

 The aim of this research was to assess the feasibility 
assessment of implementing the TDDA at a high traffic 
density airport in a distance- and time-based self-spacing 
scenario. A fast-time simulation tool was developed and used 
to quantify the performance differences between distance- and 
time-based self-spacing in terms of capacity, noise reduction, 
and loss of separation.

 For the time-based scenario no effects of preceding aircraft 
on trailing aircraft could be identified. However, an increase in 
separation with a negative effect on the airport capacity to 
assure safe separation was required. In the distance-based self-
spacing scenario a slow-down effect was observed leading to a 
decrease in the noise reduction towards the end of the arrival 
stream. The deteriorating noise reduction was solved by 
altering the initial separation between aircraft in the arrival 
stream. 

After making the aforementioned adjustments, distance-based 
and time-based self-spacing perform comparable except for 
the capacity where the distance-based scenario has a three 
AC/H advantage. Capacity is one of the major factors 
restraining the use of NAPs and especially CDAs; in that 
respect distance-based self-spacing is the most promising 
option. 
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Abstract— Separation Minima (SM) is the minimum distance 

a/c need to fly apart from each other at all times to ensure 

safety. This applies to the three axes: Vertical, Lateral and 

Longitudinal Separations Minima (See Figure 1. A/c 

Separation Axes). Many Standards of Separation Minima were 

defined based on expert judgment and technology available at 

the time were laid down them, the leap in technology since then 

makes the SM standards must be updated. However, many of 

them have not been modified to reflect modern technological 

capabilities. Due to how SM have been defined (in many cases) 

makes each region around the world have laid down different 

values for same operational case or separation rules were laid 

down with different criteria and context descriptions. As 

demand is expected to treble by 2020, one of the ATM system 

challenges is to manage the expected increase in air traffic 

demand and, reducing SM becomes a potential solution part 

that would contribute to achieve this challenge, keeping always 

in mind that a/c Separation Standards reduction increases 

airspace capacity but can also reduce safety levels, which must 

be preserved as part of the challenge. 

Vertical
Separation

Longitudinal
Separation

Lateral
Separation

 

Figure 1. A/c Separation Axes 

The best starting point in order to identify which reductions in 

SM could be realized is undertaking a research of the current 

separations minima and their foundations. Answering the 

questions what? and why?, will make it someday possible to 

answer the question how?. The work that the present paper 

originated from was focused on extracting information from 

several international regulations and (ICAO, FAA, British 

Regulations, Australian Regulations, Canadian Regulations 

and Eurocontrol). These regulations/documents include a/c 

separation minima cases, description of SM values classified by 

PoF, a/c operation, direction/tracks/routes, conditions and 

operational context, technology involved, separation axis. In 

addition, identifying aerodynamic factors, human factor, 

hazard/risks, equipment precision, surveillance mode, models 

identification, etc were also investigated. The valuable results 

of this research are unprecedented in their contents and for the 

useful way to they are presented. 

TABLE I. ACRONYMS 

Acronym Meaning 

a/c Aircraft 

ENR En-Route 

FAA Federal Aviation Administration 

ICAO International Civil Aviation Organization 

PoF(s) Phase of Flight(s) 

SM Separation Minima 

SMS Separation Minima Standard 

TMA Terminal Manoeuvering Area 

WV Wake Vortex 

RWY(s) Runway(s) 

 

I. INTRODUCTION 

A. Background 

RESET (Reduced Separation Minima) project, funded by 

the European Commission Directorate General – Transport 

and Energy inside the 6
th

 Framework Program is a project 

lead by AENA and formed by 15 partners around Europe 

with the collaboration of the FAA. 

Within this project efforts to research current separation 

minima status were carried out in Work Package 2 (WP2) 

and their foundations in WP3.1, both WP were lead by Isdefe 

with the collaboration of RESET partners.  
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B. Objectives 

The objective of this paper is to describe the current 

status of SMS laid down (ICAO, Local regulations and 

Eurocontrol) which is further described by the Separation 

Minima List. On this list is possible to check different 

separation minima cases and to identify differences between 

the different standards. The analysis of the current 

regulations and separation minima requirements applicable 

to the different PoFs provides a starting point to make an 

attempt to reduce separation minima. The current status of 

separation minima is the product of WP2 and WP3.1 of 

RESET project. In order to achieve this, several tasks were 

carried out, hard documentary research and productive 

results have been obtained. This document describes the 

objectives pursued, the inputs used, a process description and 

the methodology followed along the research, the output 

obtained and its structure. With the information obtained 

through separation minima research and foundations 

research, a checklist containing the applicable separation 

minima for different PoFs was created. In the list, standards 

will be further categorized and classified, taking into account 

the PoF and the various factors that are considered in each 

particular regulation. This will be delivered as an input to 

studies such as the building a model, prioritization and 

integration of results, dissemination,  and whenever possible, 

areas where such regulations can be improved, in terms of 

minima reduction and best practices used, tasks to be carried 

out inside RESET project. 

II. RESEARCH METHODOLOGY 

A. SMS 

The first activity carried out was getting inputs, searching 

associated documentation for building input repository; the 

input documentation repository used to documentary 

research is listed on TABLE II. PrINCIPAL Documents 

Analysed for SMS identification hereunder. 

TABLE II. PRINCIPAL DOCUMENTS ANALYSED FOR SMS 

IDENTIFICATION 

Source/Autor Code 

ICAO 

Docs: 4444, 9476, 9830, 9426, 9574, 

9613, 9689, 9643, 7030, 9854, Annex 2, 

Annex 11. 

FAA Order 7110.65 

Civil Aviation Authority CAP 493 

TC Civil Aviation Standard 821 

Civil Aviation Safety 

Authority 
CASR Part 172 

 

A template to be completed was laid out according to 

ICAO 4444 document. Information from other ICAO 

documents and regulations from EUROCONTROL and the 

American (FAA), British (BAA), Canadian and Australian 

regulatory bodies were incorporated.  

Next step was a lay-out for being filled with separation 

minima data (Excel worksheet template) defined and based 

on ICAO 4444 document. The separation standards were 

classified in a useful way to facilitate the work to be 

performed by those who consults the Separation Minima 

List. In order to classify the separation standards according 

to the methodology used by ICAO document 4444 it was 

essential that this template, which will be the same one used 

for all other standards and regulations, was agreed among all 

different points of view and contributors to increase 

coherency. The documentary research carried out has 

consisted of analyzing regulations, extracting from these, 

values of separation minima laid down, PoF and operational 

conditions and constrains applicable, as well as merging 

information. This information was added to the output table 

named Separation Minima List.  

Once the input documentation has been obtained, the 

methodological road followed starts with the elaboration of a 

layout of the checklist containing PoFss to classify 

regulations. The structure of the list is in accordance to 

ICAO 4444 document. The list was completed with ICAO 

and non ICAO SMS data, identifying in respective 

documentation: PoF, operational 

conditions/constrains/context and their applicable separation 

minima values. 

It was important to decide which local regulations should 

be included in the list. This study considers British, Canadian 

and Australian regulations. EUROCONTROL regulation 

was also considered to investigate the future regulation 

environment. All separation minima cases analyzed were 

represented by rows in table. Checklists were later refined to 

integrate them in a common one. Finally, a draft poster was 

produced in order to facilitate dissemination work as much as 

possible.  

The current status of SMS is provided by means of 

separation minima cases contained in the output named 

Separation Minima List (located on RESET website 

http://www.reset.aena.es), a self-explanatory table that 

contains information about the standards laid down in 

regulations. The header columns described in the table, 

whose fields were completed with information related to 

each separation minima case, are the following: PoFs, 

Operation, Characteristics, Direction/Tracks/Routes, 

Conditions, Context, Means, Control by, Picture, Separation, 

Based on, Separation Minima laid down, Reference, 

Observations. 

The Separation Minima cases were organized according 

to the above mentioned columns, so the information can be 

sorted by columns, by means of a filter tool, to find the data 

needed or identify the differences among different current 

standards by comparison. Under the qualities of this way to 

present the results there are the following advantages: it 

allows the introduction of new separation minima regulations 

and makes it easy to update the included information. 

B. SMS, Foundation Research 

Once all SMS were identified, next steps resulted into the 

identification of the foundations that support the Separation 

Minima Standard Definition.  
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The applied methodology follows a five stages approach, 

each stage with a specific objective as is described 

hereunder: 

Stage1. Analyze the current foundation of the SMS. 

Stage 2. Identify how current minima separation have 

been quantified. 

Stage 3. Complete and classify the list of factors for the 

selected relevant cases. 

Stage 4. Selection of the SMS that will be analyzed in 

more detail. 

Stage 5. Group the SMS to be studied by “thematic 

areas”. 

The acknowledge of these five stages, should conclude in 

answering the following questions: 

Where was the definition of the Separation Minima 

Standard established?, How were the separation minima 

standard established? How strong are the foundations? and 

which factors contribute to the Separation Minima 

definition?, Which from the identified SMS are most relevant 

to be analyzed in more detail?, Do these SMS have some 

similar characteristics?, Is there a way to study the 

standards by groups?, Is all the information needed to 

analyze each group of Separation Minima Standard 

available? 

The following paragraphs, explains how each step were 

developed, main conclusions and products. 

1) Stage 1. Analysis of current foundations of SMS. 

 

The main objective within this stage was to analyze the 

current foundations of all SMS identified previously. 

To acknowledge that, the SMS Current Status list was 

considered as input and all the main documents were 

distributed in order to start the “looking & finding process” 

of all the foundation for each SMS, or (by default) any clue 

or piece of information that could contribute to the 

understanding of the SMS definition.  

The documents that were analyzed for foundations are 

listed in the table hereunder: 

TABLE III. DOCUMENTS ANALYSED FOR FOUNDATIONS 

Doc 4444, Doc 9426, Doc. 7030/4, Doc 9830, Doc 9643, FAA 

Order 7110.65, Annex 2, Annex 11, British Regulation, 

Australian Regulation, Canadian Regulation, ATISN 93, 

CARE-ASAS 

 

The results of this process were documented in the SMS 

Current Status List in order to guarantee the link of each 

Separation Minima and its Foundations. 

2) Stage 2. Identification of how current SMS have been 

quantified. 

 

This stage aims to qualify the stage 1 results, by a 

complete “auto evaluation” of the research process. To 

accomplish this indicator called Foundation Research 

Assessment (FRA) was created within four possible options: 

Success, Few Possibilities, Uncertainty, Unaware. Each 

researcher was asked to check each SMS with one of the 

options, generating this way common criterion to evaluate 

the foundation strength and availability. 

TABLE IV. FOUNDATION RESEARCH ASSESSMENT, OPTIONS 

Success The foundation was found. 

Few 

Possibilities 

The foundation research was carried out within a lot 

of effort and looking in deeply in a lot of 

information sources but finally the foundation was 

not found. In some cases just some clues were 

recorded. 

Uncertainty 
Within the effort and time allocated it was not 

possible to carry out a deeper foundation research. 

Unaware 
Within the effort and time allocated it was not 

possible to carry out the foundation research. 

 

The results of the Foundation Research Assessment are 

shown in the table hereunder. 

Figure 2. Foundation Research Assessment, Output 

Separation Type (Todas)

.. Phase of Flight

Foundation Research Assessment Aerodrome Arrival (TMA) Departure (TMA) En-route Total general

FEW POSSIBILITIES 80 13 57 156 306
SUCCESS 5 16 14 57 92
UNAWARE 5 1 2 8
UNCERTAINTY 93 19 19 85 216
Total general 183 49 90 300 622 

 

3) Stage 3. Research and Identification of the 

contributing factors to the SMS. 

 

To acknowledge this objective after several discussions, 

brainstorming, etc. some new columns were added to the 

table. These columns contained the following information: 

Identification of Contributing Factors. 

Aerodynamic Effects. Aerodynamics factors and/or 

effects that have influence on the separation case. 

Human Factors. Human factors that have influence on 

the separation case: controllers, pilots, etc. 

Hazards/Risk. Identified the separation minima reduction 

hazards. 

Equipment Precision. Precision of system, equipment or 

device for applying this separation or on which it is based on. 

Surveillance. Considerations about surveillance have an 

influence on the separation application. 

Each Separation Minima Standard was analyzed within 

this factors list in order to identify which of these have 

impact on the SMS definition and once identified it was 

recorded in the SM Current Status List. 
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Product: An excel file with all the SM Standards that 

perform the three established criteria. 

4) Stage 4. Analysis and selection of the SMS to be 

studied in more detail. 

 

The main objective of this stage was to identify the most 

important and/or relevant SMS where reducing some 

separation could have an important impact on 

accomplishment doubling capacity. To acknowledge it 

criteria for the identification of the Separation Minima cases 

more relevant to be study in more detail in future steps was 

created. This criteria was established as it follows.
1
: 

• Standards associated to operations in Europe will be 

preferred to others. 

• Most commonly used standards are preferable. 

• Standards based upon the most advanced technology 

will be preferred to others. 

• All the different PoFs (Airport, TMA/Departures, 

TMA/Departures, ENR) should be covered. 

Starting from these criteria, a Criteria Check Analysis 

was performed for each separation minima standard. Inside 

the Separation Minima List a column called Criteria Check 

Analysis (CRA) was created with two possible options: 

YES/NO. 

After this, and in order to be as much effective as 

possible, it was decide not only to analyze the SMS that were 

considered more relevant to be studied in more detail, but 

also were considered those that have strong foundations and 

those whose contributing factors have been identified. 

Finally the SMS selected to be studied in more detail 

were those which: 

• Have been marked with a YES in the Criteria Check 

Analysis (stage 4 input). 

• Have been marked with a SUCCESS or a FEW 

POSSIBILITIES in the Foundation Research 

Assessment (stage 2 input). 

• Have been it corresponding Contributing Factors 

identified (stage 3 input). 

At the end of this stage the initial Separation Minima List 

of 622 standards were filtered and reduced to 157 standards 

to be studied in future stages. 

Product: An excel file with all the SM Standards that 

match the three established criteria. 

5) Stage 5. Grouping of the SMS by “thematic area”. 

 

The main objective of this step was to group all the ID´s 

that correspond to the same or very similar cases, in other 

words by “thematic area”. 

                                                           
1 

1st technical meeting minutes, section 4 Definition of Criteria 

and selection of Standards for Factors Completion, page 4. 

 

To acknowledge this objective the final customer of this 

grouping needed to be identified. It was agreed that this work 

should focus on the Modeling Phase therefore this grouping 

should address the needs of this phase. 

As the Modeling Phase needed to document and to 

compile all the mathematical models, simulation models, 

collision risk models, formulas or equations, etc. that have 

been used to define the SM Standard, it was agreed to group 

the SM Standards selected in step 4 by “thematic area”. 

Two “step by step” grouping methodologies were defined 

for Aerodrome and TMA/ENR. These methodologies were 

defined as it follows: 

TABLE V. GROUPING METHODOLOGY FOR ENR & TMA 

Five Steps were defined in this methodology 

- First Step: PoF 

- Second Step: Type of Control (Radar/Procedural/ADS) 

- Third Step: Type of Separation (Longitudinal/Lateral/Vertical) 

- Fourth Step: Based on (Time/Distance) 

 Fifth Step: - (RNAV/Navigation aids/WV) 

 

TABLE VI. GROUPING METHODOLOGY FOR AERODROME 

Seven Steps were defined in this methodology: 

 

- First Step: PoF 

- Second Step: Operation (Land/Take off/Interlaced) 

- Third Step: Rwy Configuration (Same/Parallel/Crossing) 

- Fourth Step: Type of Control (Radar/Procedural) 

- Fifth Step: Type of Separation (Longitudinal) 

- Sixth Step: Based on (Time/Distance) 

- Seventh Step: - (WV/Rwy Separation) 

 

 

At the end of this stage the FILTERED Separation 

Minima List of 157 standards were grouped and reduced to 

21 groups of SMS. 

Product: An excel file with all the SM Standards grouped 

by thematic area, and  two PDF files with the methodology 

applied when grouping the SM Standards for TMA/En route 

and Aerodrome phases. 

III. SEPARATIONS MINIMA AND FOUNDATIONS 

CURRENT STATUS 

All Separation Minima and Foundations information 

obtained from this research was integrated in an excel table, 

which is a Separations Minima Data Base (located on 

RESET website). 

A. POFS (PoF) 

During a flight an a/c goes trough different PoFs which 

have different hazards and risks and therefore different 

Separation Minima are applied. RESET research, specifically 

all the foundation assessment was focused on the flight path. 

The four phases defined in RESET were:  

• Aerodrome (including take offs, lands and taxi). 
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• TMA Departures (including climb, same level)). 

• ENR (including same level, climbing and descent). 

• TMA Arrivals (including descent, same level). 

In the lines hereunder these each PoF and their associated 

operations are explained in more detail. 

 

Aerodro m e D epartu re E n-ro u te Arrival A ero drom e

Tax i / Tak e  o ff C lim b / S am e  
le v el

Cru is e / C lim b / De sc ent D es ce nt /  Sa m e 
lev el

Land / Tax i

FL 28 5

 

Figure 3. PoFs 

1) Aerodrome 

 

Once the push back & start up clearance is given to the 

pilot and the a/c has started taxiing to the active rwy its 

interaction with other a/c in both the apron and the taxi ways 

requires the establishment of Separation Minima to guaranty 

the a/c’s safety. This PoF (within RESET project) is defined 

from that event to the take off (including initial climb). 

The research carried out in this PoF identified in a total of 

183 SMS identified. Under this category 3 Operations were 

analyzed: Taxi, Take off and Land. 

 The information that could be found in the RST-WP3-

ISD-004-Separation Minima List regarding this PoF is 

exemplified in the following paragraph: 

ID0062 

This Standard is a longitudinal separation based on 

distance in a radar scenario that is defined by ICAO 

document 9643 in section 2-3 as 3NM between both a/c 

doing a dependent parallel instrument approaches (mode 1) 

or a dependent parallel instruments approaches (mode 2) 

unless more separation is required due to WV influence. 

During the research process on this standard, have been 

identified several contributing factors as aerodynamics 

effects, human effects, and so on and despite a deep research 

was carried out the foundation was not found within the time 

and effort allocated in the project. 

2) TMA/Departure & TMA/Arrival 

 

This PoF was split into two, one from the initial climb to 

FL285 (TMA Departures) and the other one from FL285 to 

the initial approach (TMA Arrival). 

The research carried out within this PoF identified in a 

total of 139 SMS identified, divided in 90 SMS for 

TMA/Departure and 49 for TMA/Arrival. Under this 

category four Operations were analyzed: Climb, Cruise 

(same level), Hold and Descent. 

The information that could be found in the RST-WP3-

ISD-004-Separation Minima List regarding this PoF is 

exemplified in the following paragraph: 

ID0100 

This Standard is a longitudinal separation based on 

distance in a radar scenario that is defined by Canadian 

Regulations in chapter 3 section 3.0 as 6NM between two a/c 

climbing (the preceding heavy and the follower light) in the 

same route due to WV effects. 

During the research process on this standard have been 

identified several contributing factors as equipment 

precision, surveillance, aerodynamics, etc. Regarding the 

foundation, despite a deep research was carried out the 

foundation was not found within the time and effort allocated 

in the project, but it was identified CARS part 8 standard 

8213.1 as possible reference of understanding the SM 

standard definition. 

3) ENR 

 

ENR PoF (within RESET definition) starts once FL285 is 

passed and cruise altitude is reached, and ends when 

descending bellow FL285. 

The research carried out within this PoF identified in a 

total of 300 SMS was identified. Under this category four 

Operations were analyzed: Climb, Cruise (same level), Hold 

and Descent. 

The information that could be found in the RST-WP3-

ISD-004-Separation Minima List regarding this PoF is 

exemplified in the following paragraph: 

ID0542 

This standard is a longitudinal separation based on 

distance in a ADS scenario that is defined by ICAO 

document 4444 in section 5.4.2 as 30NM between two a/c 

flying in the same route and using ADS with a maximum of 

14 minutes of periodic reporting interval and with an 

RNP=4. 

During the research process on this standard have been 

identified several contributing factors as relative a/c position 

and velocities, a/c reaction, environment, WV profile, etc. 

Regarding the foundation within the time and effort allocated 

in the project it was possible to find some foundations based 

on a Collision Risk Model. 

 

 

Figure 4. Summary of SMS & Foundation characteristics per PoF. 
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B. WV Separation: Minima of Minimas 

WV separations analysis was carried out separately due 

to differences in the categorization in each regulation. The 

only way to compare them was by means of the weight (See 

Figure 5. WV category broken down in Weight Range). 
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Figure 5. WV category broken down in Weight Range 

Looking across different regulations brings out nine 

weight ranges; this division amongst regulations allows the 

determination of the smallest minima and a comparison of 

separation minima applicable among standards (See Figure 

6. WV SM laid each regulation down according to weight 

ranges). As shown, SM between one a/c followed by another 

varies many times depending on place (regulation) where the 

a/c operation is being performed. This implies that WV 

separation would be settled in different way for same a/c. For 

instance, one A300 a/c followed by one Saab 340 would be 

separated 6 NM or 5NM depending on if the operations are 

being carrying out in the USA or in another country, where 

ICAO regulations are adopted. Apart from, regulations 

analyzed do not apply to a/c with over 200 tons-MTOW a/c. 

 

 

 

 

 

 

 

Figure 6. WV SM laid each regulation down according to weight ranges 

C. TYPE OF SEPARATION 

 

1) Longitudinal Separation 

 

Around 203 SMS were identified. For the Aerodrome 

PoF, a/c taxiing operation, a 200 meter separation is applied, 

considering a taxi speed of 30 kt. No influence of 

aerodynamics is considered, but with separation contributing 

factors like: Pilot monitoring/situational awareness, Pilot 

response time, Controller/Pilot communication/coordination, 

Controller monitoring/situational awareness, the response 

time of any control function should be less than 0.5 second, 

Controller display target position error, Accuracy of 

measured position after processing, Reporting interval, Radar 

surface. According to Advanced Surveillance Movement 

Guidance an Control System (ICAO 9830). The contribution 

factors to separation contributing are: Atmosphere 

Parameters (temperature, air density, pressure, thermal 

stratification, Eddy dissipation rate, wind direction), 

horizontal and vertical positions and closing angles, vertical 

path separation at crossing point, speed, airplane weight, 

dimensions and geometry, pilot monitoring/situational 

awareness, Controller/Pilot communication, Controller 

monitoring/situational awareness, Controller workload, 

Surveillance (Update rate, Controller display target position 

error, accuracy of measured position after processing, 

reporting interval. The main hazard could be presented are 

WV Encounter (WVE) and possible crew/passenger injury, 

loss of control and/or structural damage. For the Departure 

(TMA) PoF, climbing operation, in ICAO is laid down to be 

separated 2 min, but if separation needs to be maintained or 

increased while vertical separation does not exist, then 5 min 

(while vertical separation does not exist if a departing a/c 

will be flown through the level of a preceding departing a/c 

and both a/c propose to follow the same track). In FAA 

different standards are laid down according to specific 

conditions: 1 min when preceding a/c turns immediately after 

take off, 2 min (within 5 min after take off) or 3 min for 

changing level. Based on distance could be separated 3 NM 

(within 13NM DME/ATD after take off) or 5 NM (between 

DME equipped a/c; RNAV equipped a/c using ATD and 

between DME and ATD a/c provided the DME a/c is either 

10,000 feet or below or outside of 10 miles from the DME 

NAVAID). The main separation contributing factors are: 

Human (Monitoring/ situation awareness, Pilot response 

time, Controller response time Controller workload), there is 

no consideration to on-board equipment and there is no use 

of any surveillance system except visual means. This 

separation is based on the probability of mid-air collision due 

to the leading a/c been caught up by the a/c behind, mainly 

due to a drift in the speed or own position calculation by any 

or both a/c. The hazards could be presented principally are: 

Mid air collision, Lost of longitudinal separation and WV 

encounter and consequently resulting in a lost of control. 

According to Australian regulations WV separation varies 

depending on the following a/c climbing to the higher level 

or following a/c climbing to the lower level, following a/c 

climbing to the same level. This regulation considers 

separation based on distance by means of RNAV, which 

involves equipment precision factors (Navigation sensor 

 
Preceding Following ICAO Canadian Australian FAA UK 4 UK  5

Minima of 

Minimas
162 < W 200 < W 4 NM 4 NM 3 NM 4 NM 4 NM 4 NM 3 NM

162 < W 162 < W < 200 4 NM 4 NM 4 NM 4 NM 4 NM 4 NM 4 NM

162 < W 136 < W < 162 4 NM 4 NM 4 NM 4 NM 4 NM 5 NM 4 NM

162 < W 115,7 < W < 136 5 NM 5 NM 5 NM 4 NM 5 NM 5 NM 4 NM

162 < W 104 < W < 115,7 5 NM 5 NM 5 NM 5 NM 5 NM 5 NM 5 NM

162 < W 40 < W < 104 5 NM 5 NM 5 NM 5 NM 5 NM 5 NM 5 NM

162 < W 18,6 < W < 40 5 NM 5 NM 5 NM 5 NM 6 NM 6 NM 5 NM

162 < W 17 < W <  18,6 5 NM 5 NM 5 NM 6 NM 6 NM 6 NM 5 NM
162 < W 7 < W < 17 5 NM 5 NM 5 NM 6 NM 8 NM 7 NM 5 NM

162 < W W <  7 6 NM 6 NM 6 NM 6 NM 8 NM 7 NM 6 NM

136 < W < 162 162 < W 4 NM 4 NM 4 NM 4 NM 4 NM 4 NM

136 < W < 162 136 < W < 162 4 NM 4 NM 4 NM 4 NM 4 NM 3 NM 3 NM
136 < W < 162 115,7 < W < 136 5 NM 5 NM 5 NM 4 NM 5 NM 3 NM 3 NM

136 < W < 162 104 < W < 115,7 5 NM 5 NM 5 NM 5 NM 5 NM 3 NM 3 NM

136 < W < 162 40 < W < 104 5 NM 5 NM 5 NM 5 NM 5 NM 4 NM 4 NM

136 < W < 162 18,6 < W < 40 5 NM 5 NM 5 NM 5 NM 6 NM 4 NM 4 NM
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error, Airborne receiver error, Flight technical error, 

Navigation reliability, Navigation system integrity, A/c 

certified for RNP-10 or RNP-4). In Canadian regulations is 

laid down in following way, 3 minutes until altitude levels 

are crossed (prior to reaching 15 miles from the departure 

rwy, the following a/c will climb through the altitude of the 

leading a/c, and both a/c will follow the same track until 

vertical separation is established) or 5 min (when the 

following a/c will climb through the altitude of the leading 

a/c and both a/c follow the same track until vertical 

separation is established), and based on distance, 10 NM 

until altitude levels are crossed (the following a/c will climb 

through the altitude of the leading a/c, and both a/c use DME 

and follow the same track to or from the same DME 

NAVAID immediately after take-off). For the Arrival 

(TMA) PoF, descending operation are almost the same as 

climbing operations for changing level, but now for descent. 

For the ENR PoF, cruising and maintaining same level, there 

are many different separation cases, the most homogeneous 

one is control by mach number technique, where all 

regulations coincide. When the preceding a/c is Mach 0.02, 

0.03, 0.04, 0.05 or 0.06 faster than the following a/c, 9, 8, 7, 

6 or 5 minutes separation applies respectively. The human 

factors involved are: Pilot monitoring/situational awareness, 

Pilot response time, Cockpit Resource Management, Crew 

workload, Controller/Pilot communication/coordination, 

Controller monitoring/situational awareness, Controller 

response time, Controller workload, Controller interaction 

with displays / automation / decision aids. Here it is 

important that longitudinal separation minima are based 

upon quality of meteorological information available. For 

this PoF there are so many and diverse specific conditions 

laying down different separation minima cases.  

2) Vertical Separation 

 

Around 37 SMS were identified. For the Aerodrome PoF 

there is not vertical separation. For Departure (TMA), 

Arrival (TMA) and ENR PoFs, for changing level and 

cruising maintaining same level operations, the vertical 

separation minima separation are based on distance and 

regulations are very standardized and aligned. This is due to 

this standard is very well documented in ICAO Doc 9536 - 

Sixth Meeting RGCSP/6 Review of the General Concept of 

Separation Panel - Volumes 1 and 2, and ICAO 9574 - 

Appendix A. The value of 300 meters applies for vertical 

separation below FL 290, between above FL 290 and below 

FL 410 could applies 300 or 600 meters separation (within 

designated airspace), and at or above FL 410 the vertical 

separation is 600 meters. The separation value corresponding 

to Unlawful Interference is 150 meters (500 feet) according 

to Attachment B – ICAO Annex 2. Among contributing 

factors to separation which were considered are 

aerodynamics factors apart from maneuver response 

capabilities, vortices will not normally descend more than 

about 400 – 500 ft they can descend further if there are 

significant downdraughts, or they may be presented due to an 

a/c has climbed or descended. Human factors involved for 

instance are: Controller confidence, Pilot confidence, 

Consensus of the users, Pilot monitoring/situational 

awareness, Pilot response time, Cockpit Resource 

Management, Crew workload, Controller/Pilot 

communication/coordination, Controller 

monitoring/situational awareness, Controller response time, 

Controller workload, Controller interaction with 

displays/automation/decision aids, Training/experience. 

Collision is main risk for this separation, it was calculated 

considering a Target Level Safety (TLS) value of 2.5 × 10-9 

fatal accidents per a/c flight hour. Based on a Collision Risk 

Model (CRM) the risk of collision modeled is that due to the 

loss of procedural vertical separation between a/c flying 

above FL 290 in a given portion of airspace. WV encounter 

is a potential risk due to occasionally vortices will descend 

further and be encountered by a/c flying only 1000ft below 

when Reduced Vertical Separation Minima (RVSM) are in 

operation, vortices will not normally descend more than 

about 400 – 500 ft they can descend further if there are 

significant downdraughts, or they may be present because an 

a/c has climbed or descended. 

3) Lateral Separation 

 

Around 64 SMS were identified. For the Aerodrome PoF, 

different values of separation minima are applied for landing 

and taking off operations, considered among them: 

Independent parallel instrument approaches, Dependent 

parallel instrument approaches, Simultaneous use of parallel 

rwys, Segregated operations on parallel rwys, Separation 

between rwys centre line, Successive departures, 

Simultaneous departures. For these kind of separations 

minima equipments such as ILS and/or MLS are necessary 

on both rwys, suitable surveillance radar available, 

satisfactory two-way radio communication. For the 

Departure PoF (climbing operation) according to Australian 

regulation different values are laid down based on distance 

for several cases such as: for a/c turns of 16 degrees through 

90 degrees, for a/c turns of 91 degrees through 180 degrees, 

in addition to the 14/17 of a mile protected on the over flown 

side of the track. For the En Route PoF (cruising and 

maintaining same level) are laid down separations, some of 

them based on Angle/distance, the contexts described can be 

for instance: for turns of 15º or less, for turns from 16º 

through 90º, for turns from 91º through 180º, oceanic 

procedures, North Atlantic ICAO region, Caribbean ICAO 

region, Pacific ICAO region, North America ICAO region-

Arctic CTA, by requiring a/c to fly on specified tracks which 

are separated by a minimum amount appropriate to the 

navigation aid or method employed, non real time radar 

monitoring or control of the lateral deviation is exercised; 

distance between 2 VOR less than 278 km (150 NM), 

protected on the over flown side of the track.  

IV. CONCLUSIONS 

The first conclusion is that there are so many separations 

minima rules, around 622 cases. Among existing SM 

standards, some differences have been detected between the 

values applied for the same standards by different regulators. 

The regulators should agree and study standards in order to 

improve and standardize SM. For instance, WV separation 

minima analysis reflects several differences among 

regulations based on this conclusion the most restricted one 
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could be extended to the rest of the states or studying if 

minima of minima complies with safety conditions and 

applies it, reducing separations. To make sure the studies of 

what standards are applicable or sensitive to be reduced, it is 

necessary to carry out in depth studies into the foundations 

and the models and principles upon which were they are 

based. The foundations analysis defines the background to 

these rules and enables to know if it is possible to improve or 

reduce separations. 

Foundations were found mainly in Regulations. For the 

600 SMS identified in WP2 a “Foundation Research” was 

carried out starting from International regulation as ICAO, 

EUROCONTROL and then looking at local regulation such 

as: British, Canadian, Australian, FAA. 

From the 622 SMS identified.  

• For 15% of the cases the foundations were found 

• For 49% of the cases the foundation research was 

carried out within a lot of effort and looking in deep 

in a lot of information sources but finally the 

foundation was not found. In some cases just some 

clues were recorded. 

• For 35% of the cases within the effort and time 

allocated it was not possible to do a deeper 

foundation research on these SMS. 

• For the 1% of the cases within the effort and time 

allocated it was not possible to do the foundation 

research on these SMS. 

These figures results on the following answer: 

foundations are not too much strong as they could be, so 

their definition’s improvements could impact directly on the 

Separation Minima Reduction. 

Mainly in the definition of a Separation Minima Standard 

a group of factors is involved. 

 The groups of factors identified on the 600 SMS 

identified were Aerodynamics Effects, Human Factors, 

Hazards & Risk, Equipment Precision, Surveillance.  

Within the effort and time allocated to perform these 

studies, 600 SMS were too many. Therefore it was discussed 

which ones were more relevant to be analysed much more 

deep and it was agreed that: separation minima cases more 

relevant for further studies must acknowledge the following 

criteria: 

• Standards associated to operations in Europe will be 

preferred to others. 

• Most commonly used standards are preferable. 

• Standards based upon the most advanced technology 

will be preferred to others. 

• All the different areas (airport, TMA, en route) 

should be covered. 

• Foundation Research Analysis resulting on SUCCES 

or FEW POSSIBILITIES. 

• At least one Contributing Factors Identified. 

Once this analysis was performed it was result on 157 

SMS that acknowledge within these criteria, in other words, 

that will be study in more detail. 

Several SMS are quite similar by concept, therefore it has 

been analysed and them created a Grouping Methodology 

which main objective was to bring together all the SMS that 

are similar in order to facilitate their further studies. Finally 

21 groups were created for Aerodrome, TMA and ENR 

SMS. 

For these kind of studies “too much information” is not 

enough, specifically for the modeling definition, therefore 

the answer should be no. But in terms of “what we have 

found” the answer is: 

• 25 documents were analyzed (ICAO, FAA, AIAA, 

WakeNet, NLR, Eurocontrol, Cambridge University, 

etc.). 

• 36 references to mathematical models, simulation 

models, collision risk models, SM foundation, etc. 

were captured. 

• The groups with more quantity of references were 

the ones related to Wave vortex. 
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Abstract— Risk and safety are always considered the most 

important operational characteristics of contemporary civil 

aviation. Usually, they refer to the potential occurrence of air 

traffic accidents which might result in loss of life, damage to 

infrastructure and third party property damage. Consequently, 

they have been regarded as externalities in addition to other 

adverse effects such as noise, air pollution, land-use, water/soil 

pollution, waste, and congestion. Due to their inherent very high 

importance, risk and safety have been issues of continuous 

research ranging from purely technical/technological aspects to 

strictly institutional. These issues warrant the setting up of 

adequate regulations on system technology designs and 

operations. This paper deals with a review of part of the research 

on risk and safety modeling in civil aviation. In such a context, 

the basic (generic) concepts and definitions of risk, safety and 

their evaluation are described. A review of the research is 

focused on four categories of methods/models for risk and safety 

assessment: causal for aircraft and air traffic 

control/management (ATC/ATM) operations, collision risk, 

human factor error and third-party risk. The review is carried 

out with respect to their purpose, problems, recommendations 

and relation to new technologies.

Keywords: civil aviation, risk and safety, models/methods, new 
technologies

I. INTRODUCTION 

Nowadays, the air transport system is recognized as one of 
the fastest growing areas within the transport sector as well as 
in overall regional and world economies. According to many 
forecasts this growth will continue at an average rate of 5% in 
passenger and 6% in freight transport demand over the next 
two decades. It will primarily be driven by overall economic 
growth, further globalization of the regional and world’s 
economy, and even further decreasing of airfares thanks to 
among other factors the growth of the low-cost carrier’s market 
share. The system infrastructure – airports and Air Traffic 
Control/Management (ATC/ATM) although in many cases 
acting as temporal “bottlenecks” are expected to be able to 
support such growth safely, efficiently and effectively.

Physically and operationally, the air transport system is a 
rather complex system with the main components - airlines, 
airports and air traffic control services - interacting with each 
other on different hierarchical levels constituting a very 

complicated, highly distributed network of human operators, 
procedures and technical/technological systems. In particular, 
risk of accidents and related safety in such a complex system is 
crucially influenced by interactions between the various 
components and elements. This implies that providing a 
satisfactory level of safety (i.e., low risk of accident) is more 
than making sure that each of the components and elements 
functions safely [1]. Due to such inherent complexity and 
severe consequences of accidents, risk and safety have always 
been considered as issues of the greatest importance for the 
contemporary air transport system [2]. Consequently, they have 
been a matter of continuous research from different aspects and 
perspectives ranging from the purely technical/technological to 
the strictly institutional. In general, the former have dealt with 
design of safe aircraft and other system facilities and 
equipment. The later have implied setting up adequate 
regulations for system design and operations.  

The objective of this paper is to present a review of part of 
the research dealing with risk and safety in the contemporary 
civil aviation system. 

II. CONCEPTS AND DEFINITIONS OF RISK AND SAFETY

For a long time, risk and safety have been differently and 
ambiguously interpreted depending on the system and purpose 
[3]. For technical systems, risk is related to the chance of 
failure of components or of the entire system causing exposure 
to hazard and related consequences. In economic business 
systems, risk is a chance of being exposed to the hazard of 
losing business opportunities and/or money due to making 
decisions under uncertain circumstances. In social systems, risk 
is the chance of being exposed to the hazard of injuries and/or 
losing of life. Consequently, risk could be considered as 
combination of the probability (or frequency of occurrence) 
and the magnitude of consequences (or severity) of a hazardous 
event [4].

In the air transport system, risk and safety have always been 
related to air traffic accidents which resulted in the significant 
loss of life and property (aircraft and the property on the 
ground). Assuming that making an air trip is an individual 
choice and that the system deploys some resources to satisfy 
such choice, four types of risks can be identified in the air 
transport system [2]: i) real risk to an individual (determined on 
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the basis of future circumstances after their full development, 
frequently incorporated in decisions on introduction of new 
aerospace technologies in any system component); ii) statistical 
risk of occurrence of an accident (important for companies 
providing insurance, determined by the available statistical data 
on the incidents and accidents); iii) predicted risk (important 
for air transport authorities while introducing changes in 
technologies and air traffic patterns, determined from 
methodologies using some relevant historical research); and iv) 
perceived risk (important for users of the air transport system 
and determined by the individual’s intuition, feeling and 
perception).  

In addition, air traffic accidents may have some features 
distinguishing them from accidents in other transport modes as 
follows [2]: i) they may occur at any point in time and space 
mainly because flights may take place over large areas; ii) the 
primal target groups exposed to the risk exposure are 
passengers and crew; in addition, individuals on the ground 
may be exposed but generally have a lower probability of 
losing life or property; iii) they are relatively rare events but 
usually with severe consequences; iv) conditionally, each of 
them can be classified as an inherently risky although highly 
unlikely (but still possible) event; and v) risk of an accident is 
inherently present during the flight.  

Risk implies exposure of an individual to the hazard of an 
air traffic accidental event (collision between aircraft, and/or 
collision between the aircraft and terrain). This could result in 
losing life or getting severe injuries both onboard the aircraft 
and/or on the ground, damaging and/or destroying property (the 
aircraft and eventually buildings on the ground), and 
contamination of the environment (water and soil) by burning 
and/or leaking fuel and oil, and hazardous cargo. 

In the above-mentioned context, assessing the risk of 
occurrence of an air traffic accident with the associated 
consequences can be used as a measure of the system safety for 
people, systems and environment. 

III. OVERVIEW OF THE METHODS/MODELS FOR 

ASSESSMENT OF THE RISK AND SAFETY 

Many developments in aviation are initiated as a direct 
result from aircraft accidents. One of them is development of 
risk and safety methods/models at beginning of 1960’s. As a 
reaction on accidents, first causal methods/models are 
developed with aim to find out their main causes in order to 
prevent further accidents. In the same time, collision risk 
methods/models appeared with proactive role in redesigning 
the air traffic system in order to safely accommodate increasing 
traffic demand. Since 1970’s, aviation community become 
more concerned in a human roles in accidents, resulting in 
development of Human factor errors methods/models. Latter 
on, during 1990’s, airports appear to be a bottleneck of an air 
traffic system, so the general public become aware of severity 
of accidents in airports vicinity and their influence on 
surrounding inhabitants and environment. Increased awareness 
was resulting in development of Third-party risk 
methods/models. Causal methods/models for risk and safety 
assessment of aircraft and ATC/ATM operations, in particular, 
deals with failures of particular technical systems and 

components resulting in the aircraft crash or collision. The 
failures can be due to many interrelated causes and happen 
either in the aircraft or at ATC/ATM. Collision risk 
methods/models are dealing with assessment of the risk of 
aircraft collision while airborne and/or on the ground due to 
deterioration of ATC/ATM separation rules. Human factor 
error methods/models deals with risk and safety assessment of 
air traffic incidents and accidents due to human error. Third-
party risk methods/models consider the risk assessment for 
people on the ground, who might be affected by the aircraft 
crash.

The main criterion for selection of particular 
methods/models has been the authors’ judgment about their 
both theoretical importance and practical contribution 
(although authors were well aware of existence of many other 
models and similar previous studies). Also, authors’ are 
focusing on proactive modeling approach, i.e. on 
methods/models which are attempting to anticipate problems 
before accidents occur, presenting their purpose and related 
problems. 

A. Causal methods/models for the risk and safety assessment 

of aircraft and ATC/ATM operations 

Causal methods/models of assessment of risk and safety of 
aircraft and ATM/ATC operations establish the theoretical 
framework of causes that might lead to aircraft accidents. 
These methods/models can be qualitative or quantitative. The 
former provide a diagrammatic or hierarchical description of 
the factors that might cause accidents. They are useful for 
improving understanding of causes of accidents and proposing 
preventive interventions. The later estimate the probability of 
occurrence of each cause and hence estimate the risk of 
accident. They might be restricted to pure statistical analysis 
based on the available data or combine these data with expert 
judgment on the accident causes. In addition, they can estimate 
the relative benefits of different interventions aiming at 
preventing accidents in the future [5], [6]. Some of the 
methods/models are as follows:  

• Fault Tree Analysis (FTA) is method developed by 
Bell Telephone Laboratories, US in 1961 [3] and has been used 
for analyzing events or combinations of events that might lead 
to a hazard or an event with serious consequences. Usually, the 
analysis has been carried out using a fault tree with several 
paths representing different combinations of instant-direct and 
intermediate causes described with logical operators (“and” and 
“or”). At the top of the tree there is a hazard event or a serious 
consequence. Then, for a given tree the minimum cut set has 
been determined, i.e., the minimal set of failures of which if all 
happen causes the top event to happen too. One fault tree might 
have several minimal cut sets, and if only one happens, the top 
event also happens. The probability of occurrence of given 
minimum cut sets is equivalent to the product of probabilities 
of occurrence of each event within the set. Consequently, the 
probability of the occurrence of the top event is equal to the 
sum of probabilities of particular minimum cut sets. The 
method has been frequently applied (as the best recommended) 
to assessment of risk and safety as well as reliability of the 
aircraft and ATC/ATM computer (hardware) components; 
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• Common Cause Analysis (CCA) is the method, which 
can be used for identifying sequences of events leading to an 
aircraft accident. In particular, the method appears useful to 
extract common causes of several aircraft accidents. For such a 
purpose, it “divides” the aircraft into “zones” implying that the 
system and components in each zone are ultimately 
independent. Consequently, it is possible to identify the 
common causes of failures of particular components of such 
independent systems. The NASA has used this method for a 
long time (since 1987) although the method itself is probably 
older then 1975. In addition, it has been recommended for 
assessment of the risk of failures of aircraft systems and 
equipment;  

• Event Tree Analyses (ETA) method is developed in 
1980 and is used for modeling sequences of events arising from 
a single hazard and consequently describe seriousness of the 
outcomes from these events. The hierarchy of presenting a 
hazard, the sequence of events causing failures of the system 
components, and their state in terms of functioning and failure, 
represent the core of the method. Consequently, a tree with 
branches of events and functioning and failing components 
displays probabilities of failures along particular branches. 
These in combination with the probability of the hazardous 
event enable quantification of the probability of the system or 
component failure. This method has shown it is applicable in 
combination with FTA (Fault Tree Analysis) for almost all 
technical systems including the aircraft and ATC/ATM 
components. Bow-Tie Analysis presents a combination of ETA 
and FTA. Origins are from 1970’s and 1980s, but since 1999 
have been popularized as a structured approach for risk 
analysis;  

• TOPAZ accident risk assessment methodology is a 
complex method that uses scenario analysis and a Monte Carlo 
simulation technique for assessment of the risk and safety of 
ATC/ATM operations modeled as a Petri Nets. It has been 
developed by NLR (The Netherlands National Aerospace 
Laboratory) during the 1990’s. The method addresses all types 
of system safety issues such as technical/technological, 
organizational, environmental, and human-related and other 
hazards and their combinations. Risk and safety assessment is 
performed through few steps enabling identification of safety 
bottlenecks. The method has been widely applied to risk 
assessment of ATC/ATM operations [5];  

• Bayesian Belief Networks (BBN) is a method based 
on probability theory, which has been developed to improve 
understanding of the impacts of different causes on the risk of 
aircraft accidents (originating from mid of 1980’s, applied in 
aviation filed at beginning of 2000’s). The method is supposed 
to capture the wide range of failures of aircraft systems both 
qualitatively and quantitatively and thus provide rather 
objective and unambiguous information on the state of system 
safety relevant for the managerial decisions [7], [8], [9]. The 
method has been applied as a decision-support tool to calculate 
effects of specific changes to the aviation system on the overall 
risk as well as support in developing a proactive policy by 
providing an insight into the effects of anticipated system 
changes on risk. 

1) Purpose 
Increasingly interesting causal methods/models have 

mainly been used for: i) better understanding of effects of 
different influencing factors on level of risk; ii) evaluation of 
overall risk, risk communication, and cost-benefit analysis of 
new technologies; iii) training of aviation staff and 
identification of system components that could be improved; 
and iv) identifying “critical” causes of the aircraft accident as 
well as measures for reducing risk. For example, in order to 
decide which measures for risk reduction should be adopted; 
regulators and safety managers need an understanding of 
causes of accidents and an ability to evaluate benefits of 
various interventions. These methods/models can support these 
decisions [6]. All mentioned methods/models are quantitative 
except the CCA. Related to risk types given in Section II, it 
could be mentioned that FTA, ETA and CCA are generally 
used to determine “statistical risk” of occurrence of an accident 
or failures, while Bow-Ties, TOPAZ and BBN - “predicted 
risk” of system changes such as introduction of new 
technologies, procedures, operations, etc. 

2) Problems
The causal methods/models are data driven and highly 

dependant in their quality on the one hand and the expert 
judgment about combinations of particular causal factors of the 
air traffic accidents on the other. Quantification of these 
methods/models has appeared extremely difficult and time 
consuming mainly due to the complexity of combinations of 
causal factors leading to possible accidents. In addition, 
calculation of probabilities and conditional probabilities in 
situations where dependencies between particular causal 
factors have not completely been known further complicates 
quantification of the methods/models. As well, one important 
problem has been the cumulative nature of these 
methods/models, which could make assessment of particular 
probabilities difficult due to the large number of causal factors 
and their combinations [8]. Consequently, in some cases it has 
been rather difficult to express results from these 
methods/models in a transparent and comprehensible way [6]. 

B. Collision risk methods/models  

One of the principal matters of concern in the daily 
operation of civil aviation is preventing conflicts between 
aircraft either while airborne or on the ground, which might 
escalate to collision. Although aircraft collisions have actually 
been very rare events contributing to a very small proportion of 
the total fatalities, they have always caused relatively strong 
impact mainly due to relatively large number of fatalities per 
single event and complete destruction of the aircraft involved. 
In general, separating aircraft using space and time separation 
standards (minima) has prevented conflicts and collisions. 
However, due to reduction of this separation in order to 
increase airspace capacity and thus cope with growing air 
transport demand, assessment of the risk of conflicts and 
collisions under such conditions has been investigated using 
several important methods/models as follows [10], [11]:  

• The Reich-Marks model is developed in early 1960’s 
by Royal Aircraft Establishment, UK [12]. It is based on the 
assumption that there are random deviations of both aircraft 
positions and speeds from the expected.  
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The model was developed to estimate the collision risk for 
flights over the North Atlantic and consequently to specify 
appropriate separation rules for the flight trajectories [11]. The 
model computed the probability of aircraft proximity and the 
conditional probability of collision given the proximity. 
Aircraft were represented as three-dimensional boxes, i.e., 
rectangular parallelepipeds, of given length, width and height 
reflecting the ATC/ATM minimum separation rules. The 
collision might occur whenever any two boxes intersected. As 
well, when one aircraft was represented as the dimensionless 
point, conflict occurred when the point entered the box. In such 
a context the collision risk with the vertical, lateral and 
longitudinal neighbor could be determined independently of 
each other bearing in mind that the position errors of boxes and 
points representing the aircraft along their tracks were random 
variables with zero mean and given standard deviations. 
Consequently, the prescribed lateral distance between aircraft 
could be specified with given probability of violation reflecting 
the acceptable collision risk [10], [13];

• The Machol-Reich model was developed after the 
ICAO had established the NAT SPG (North Atlantic System 
Planning Group) in 1966 with the idea of creating the Reich-
Marks model as the workable tool as well as increase of 
airspace capacity. The modified model using actual data for the 
position error (collected for about 14000 flights) enabled 
prediction with moderate confidence of each of the vertical, 
horizontal and longitudinal collision risks. Consequently, the 
ICAO NAT SPG has adopted the threshold for risk of collision 
of two aircraft due to the loss of planned separation [10], [14]; 

• The intersection models belong to the simplest 
collision risk models. They are based on assumptions that 
aircraft follow pre-determined crossing trajectories at constant 
speeds. The probability of a collision at the crossing point is 
computed using the intensities of traffic flows on each 
trajectory, aircraft speeds, and the airplane geometry [15], [16], 
[17]; 

• The geometric conflict models are similar to the 
intersection models. In these models (developed in 1990’s) the 
speed of any two aircraft is constant, but their initial three-
dimensional positions are random. Based on extrapolating their 
positions in time, it is possible to geometrically describe the set 
of initial locations that eventually lead to a conflict. The 
conflict occurs when two aircraft are closer than the prescribed 
separation rules. After integrating the probability density of the 
initial aircraft positions over the conflicting region, the conflict 
probability can be estimated [18], [19], [20]; 

• Generalized Reich model was developed by removing 
restrictive assumptions of Reich model based on the fact that 
Reich model does not adequately cover some real air traffic 
situations. The model was based on the hybrid-state Markov 
processes, aiming to cover a larger variety of air traffic 
situations. The resulting collision risk equals the probability of 
collision between two aircraft. Such a generalized collision 
model was developed during 1990’s and has been used as part 
of the TOPAZ methodology (mentioned in Section II, A) [1], 
[11], [21], [22], [23], [24]. 

1) Purpose 
The main driving force for developing collision risk 

methods/models during the 1960’s was the need for increasing 

airspace capacity over Atlantic through decreasing aircraft 
separation minima. The methods/models were expected to 
show if reduction of separation and spacing between the flight 
tracks would be sufficiently safe, i.e., determine the appropriate 
spacing between tracks guaranteeing a given level of safety. 
The collision risk methods/models have gradually been 
developed from Marks, Reich and Machol to the latest versions 
used in TOPAZ methodology. The main purpose has always 
remained to support decision-making processes during system 
planning and development through evaluation of the risk and 
safety of proposed changes (either in the existing or new 
system). Methods/models from this category, according to risk 
classification from Section II, generally provide an assessment 
of “predicted risk” and implicitly “real risk to an individual” 
due to the fact that collisions are usually leading to fatalities. 

2) Problems
Despite the collision risk methods/models having been 

successfully used for a long time (more than 40 years), some 
problems, which could make their further use even more 
complex have continued to exist as follows:  

a) Complexity and cost of collecting the enormous amount 
of data on aircraft three-dimensional positions necessary to 
define the related statistical distributions [14], [25];  

b) Inherent complexity of the generic collision risk 
method/model as the result of the modeling approach (closer to 
the reality). New versions of these methods/models such as 
those used in TOPAZ are even more complex because they 
embrace more details when calculating risks, such as possible 
failure of some technical systems (engine, avionics, etc.) or 
flight crew awareness or fatigue; and cover complex 
relationships between elements of the system (flight crew, 
aircraft, ATC/ATM system, other aircraft, etc.) [26];  

c) Inherent danger of misunderstanding or no understanding 
from the average user’s point of view mainly due to 
complexity. This requires of the specialists a long and costly 
familiarization time [27];  

d) The lack of risk-predicting capability with high degree of 
confidence and bias and uncertainty of the obtained results. 
Additional time and expertise for calculation of the credible 
risk intervals are needed [28];  

e) Relying on expert judgment in cases where historical 
data are not available, or when their collection is very 
expensive: the experts are used for setting up the value of 
parameters, value and dispersion of the random variables, and 
the dependence between variables. In such contexts, there is 
always the problem of engaging credible experts, especially in 
cases involving new system concepts;  

f) Complexity in validation particularly of new system 
concepts. In cases of non-existent systems, the ICAO has 
recommended comparison with the reference system and 
evaluating risk against its given threshold value. 

C. Human factor error methods/models 

Investigation of causes of particular air traffic accidents has 
identified “human error” as one of the most frequent causes 
[29]. Human error is considered as an incorrect execution of a 
particular task, which as an event, triggers a series of 
consecutive errors in execution of other tasks, finally resulting 
in serious consequences – an aircraft accident – crash. 

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9172



Therefore, monitoring and modeling of human errors in the 
aircraft and ATC/ATM operations aiming at discovering and 
preventing them have always been high on the research agenda 
of both academics and practitioners dealing with civil aviation. 
Consequently, many methods for detection and prevention of 
“human errors” have been developed; some of them are [5]:  

• HAZOP (Hazard and Operability) method (developed 
in early 1970’s) aims at discovering potential hazards, 
operability problems, and possible deviations of the actual from 
the system intended operational conditions (states) including 
estimating the probability of escalation into a serious event. 
The method was intended to deal with human errors in 
complex technical systems such as chemical and nuclear plants 
having human operator in their control loop. Later on, the UK 
NATS (National Air Traffic Service) applied the method to 
different aspects of planning and assessing hazard in operation 
of the national ATC/ATM, particularly for identification of 
hazards due to human failures that might develop into risk of 
air traffic accidents (HAZOP can provide input to FTA and 
ETA, mentioned in Section III, A); 

• HEART (Human Error Assessment and Reduction 
Techniques) was developed in 1985 for identifying and 
quantifying errors in an operator’s task. It simultaneously 
considers particular ergonomic and other environmental 
factors, which might compromise the required operator’s 
performance. The impact of a particular (each) factor on the 
operator’s error while performing particular tasks can be 
quantified. Then the probability of error in executing a given 
task (or a series of tasks) can be estimated. The method has 
been applied by the UK NATS in combination with other 
methods for identification of the human errors in ATC/ATM; 

• TRACER-Lite (Technique for the Retrospective 
Analysis of Cognitive Errors) was developed in 1999 by 
NATS, for predicting human errors and deriving error 
prevention measures in ATC/ATM. The method is 
retrospective, i.e., it is used for classifying types of errors 
contributing to the air traffic incidents, which have already 
happened. The method has a modular structure with three 
modules: the context; the error discovery; and the error 
recovery. Hierarchical Task Analysis enabling identification of 
the “set of critical” tasks, critically influencing safety, usually 
classifies the human errors; 

• HERA (Human Error in ATM) is the retrospective 
method providing insight into ATC/ATM controllers’ cognitive 
processes while dealing with air traffic incidents (developed at 
EUROCONTROL at beginning of 2000’s). The method 
consists of two parts: a retrospective part for the incident 
analysis; and a prospective part using the information collected 
on the assessment of probability of human error in cases of 
compromised safety. Consequently, the method enables better 
understanding of the constraints and conditions under which 
ATC/ATM controllers operate. These conditions are important 
for understanding ATC/ATM controllers’ incompliance with 
existing procedures and skill-related errors; 

• HFACS (Human Factor Analysis and Classification 
System) is method developed at beginning of 2000’s in USA, 
as a system to categorize latent and immediate causal factors 
that have been identified in aviation accidents. It is based on 
analysis of hundreds of aviation accident reports and main 

purpose is to provide a framework for accident investigations 
and to serve as a tool for accident trends assessment. HFACS 
uses four levels of failure: i) unsafe acts; ii) preconditions for 
unsafe acts; iii) unsafe supervision and iv) organizational or 
cultural influences. The method is very promising for analysis 
of air traffic controller errors and failures in ATC/ATM and is 
effective for understanding the antecedents of operational 
errors for air traffic safety analysis. 

1)  Purpose 
The methods/models dealing with human factor errors in 

civil aviation have been developed to identify and eventually 
prevent errors (particularly of aircraft crew and ATC/ATM 
controllers), which could cause aircraft incidents and accidents. 
In addition, these models have investigated factors from the 
operational environment, which could cause errors, as well as 
calculating the probability of making errors in performing 
given activities. Consequently, it will be expected that they will 
be applied to both operational and design stages of developing 
aviation systems. Specific types of methods/models have given 
insight into the cognitive processes of the ATC/ATM 
controllers operating in the incidental situations, analyzed these 
situations, and calculated probability of making errors. In 
addition, these methods/models have possessed some ability 
for predicting errors and specifying the error reduction 
measures. According to risk types in Section II, those 
methods/models are mostly intended to determine “statistical” 
and “predicted” risk for given probability of error. 

2) Problems
Human factor errors methods/models posses some 

shortcomings, which might compromise their more efficient 
and effective application to the ATC/ATM as follows:

a) Most activities in ATC/ATM and in particular, factors 
influencing human operator performance and possible errors 
have usually been considered in isolation, i.e., independently 
on each other; in many cases the quantitative information has 
exclusively relied on expert judgment;  

b) Only specialists in ”human factors” have been able to 
use these methods/models efficiently and effectively; i.e., it has 
been time consuming and almost impossible to apply these 
methods/models in an operational environment without 
specialists;  

c) The methods/models have been constrained exclusively 
to the operational processes and activities in the ATC/ATM. 

D. Third-party risk methods/models 

Third-party risk implies risk if an individual on the ground 
to be killed by crashing aircraft. In such a case, the accident is 
called a “groundling accident” or “groundling crash” and the 
fatality a “groundling fatality”. Since most air traffic accidents 
(about 70% according to [29]) happen around airports, the 
concept and assessment of third-party risk has been mainly 
focused on areas around airports. In a given context, the basic 
assumption has been that risk always exists, cannot be reduced 
to zero and should be predictable, transparent, and controllable, 
as well as quantifiable and measurable. Modeling of third-party 
risk has shown promise in resolving these problems including 
setting up thresholds for acceptable risk around airports [30], 
[31], [32]. Three cases of assessment of the third-party risk are 
illustrated as follows: 
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• USA case - generally implies assessment of the risk 
an individual is exposed to when at some distance from a given 
airport during the period of a year. For such a purpose, relevant 
statistics on fatalities from official sources have been collected 
and the prospective number of ground fatalities estimated. The 
estimation has been carried out by multiplying two independent 
variables – the number of crashes around airports and the 
number of fatalities per individual crash. The model has shown 
that the probability of being killed by crashing aircraft has 
decreased more than proportionally with increasing distance 
from the airport and increased with increase in the volume of 
the airport traffic at distances up to about two miles. The model 
has not considered spatial variability of the risk due to 
changing residence locations and the aircraft flight paths 
around the airports, which might be considered as its main 
disadvantage [32];  

• The Netherlands case - this method was developed by 
the NLR, inspired by the crash of cargo aircraft in the Bijlmer 
district of Amsterdam in 1992. Method contain the following 
elements [31], [33]: i) the accident probability model, which 
calculates the probability of an aircraft accident in the vicinity 
of an airport depending on the probability of an accident per 
aircraft movement and the annual volume of airport traffic; ii) 
the accident location probability model, which calculates the 
probability of a given location becoming an accident scene 
depending on its position relative to airport runways and the 
incoming and outgoing aircraft trajectories; and iii) the 
accident effect model, which combines output from both 
previous models to calculate the probability of an accident at 
each location within the area surrounding a given airport. 
Individual and societal risks have been used as measures of 
third-party risk. After calculating the individual risks for the 
entire area around given airport, the risk contours can be 
plotted on the horizontal plane [31]. Societal risk applies to the 
entire area around a given airport and actually exists only when 
people are actually present in the area [31], [33];

• UK case - has become important after Public Safety 
Zones (PSZs) were introduced in 1958. The PSZ was defined 
as an area adjacent to the end of a runway in which 
development of land had to be restricted if it would likely 
significantly increase the number of “residing, working or 
congregating people there” [31]. In the 1997 the method for 
third-party risk assessments around airports and the proposal of 
the appropriate risk assessment criteria was developed in a 
NATS. The method was based on distinguishing aircraft 
regarding their manufacturer, country of origin, type (large, 
small, jets, turbo-props), and category (passenger, cargo), 
modeling of the aircraft crash location and the crash 
consequences both based on a limited sample, and simplified 
approach, to draw the risk contours around a given airport. In 
addition, cost-benefit analysis was applied to set up criteria for 
acceptable (tolerable) risk [31].

1) Purpose 
The third-party methods/models have been mainly used for 

decision-making and policy purposes related to airport 
development and operations as follows: a) forecasting risk for 
an individual to be killed by a crashing airplane in the vicinity 
of given airports. The information has been used for comparing 
the risk around airports and that around chemical or nuclear 
plants; b) zoning around airports using individual risk contours 

and societal risk values, i.e. determining areas, which should be 
considered dangerous for building houses or other vulnerable 
infrastructure; c) indicating changes in risk contours arising 
from airport development or changes in using existing 
infrastructure (changes of runways in use, arrival or departure 
trajectories, etc). Relative to the classification of risk given in 
Section II, it could be mentioned that third-party 
methods/models are used for assessment of “predicted” and 
“real risk to an individual”. 

2) Problems
The third-party methods/models have been permanently 

improved and updated. The main problems identified during 
that process have been as follows [33]: a) lack of generality, 
i.e., the specific method/model has been developed for the 
specific airport; b) proactive assessment of the risk could not 
be carried out due to the risk control measures being already in 
place; c) scarcity of data on real accidents and risk exposure 
around the airports in the official statistical sources; d) 
difficulties in setting up threshold values for individual and 
societal risk; if too high it might compromise the airport 
operations and development; if too low, it might put 
individuals at an unacceptable jeopardy.

IV. RECOMMENDATIONS AND RELATION TO NEW 

TECHNOLOGIES

The methods/models for assessment of risk and safety in 
civil aviation described in the previous section have been 
reviewed aiming at identifying, from the engineering 
perspective, eventual shortcomings which might significantly 
compromise their usability, as well as points for their eventual 
improvements. For such a purpose, based on the available 
literature, a review framework containing the recommendations 
(requirements) and relation to new technologies for each 
method/model type, has been designed (the term “new 
technology” is referring to the new technologies, systems, 
procedures, concepts, operations, etc). Finally, some 
commonalities between them are presented in form of 
prospective research agenda. 

A. Recommendations 

1) Causal methods/models for risk and safety assessment 

of aircraft and ATC/ATM 
It is desirable that causal methods/models posses some 

predictive capabilities, i.e., not only predicting the risk level 
and causal breakdown but also indicating their variations 
within changing input assumptions. Such capability would 
enable these methods/models to reflect better the already 
adopted safety measures as well as eventual benefits of further 
improvements. In addition, they should be able to assess the 
safety bottleneck in the existing system, i.e., its most 
vulnerable component. Due to the very complex and 
demanding modeling process; modular development could 
eventually be a compromise solution for these methods/models. 
This could imply starting with official statistics on air traffic 
accidents, and later on, allowing integration of particular 
modules into more complex networks. In addition, these 
methods/models could be developed specifically for airports, 
ATC/ATM, and airlines as components of the civil aviation 
system. 
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2) Collision risk methods/models 
Regarding the purpose and existing structure, certain 

compromise in terms of obtaining some kind of balance 
between complexity and usability (due to enormous amount of 
input data and high level of the necessary expertise) might be 
recommended. Additional recommendations would be 
development of the method/models for specific purposes such 
as collision risk assessment in the en-route and terminal 
airspace or at the airport as well as devotion to their use at local 
level particularly while assessing the effects of new equipment 
on the collision risk. Finally, these methods/models should 
have better predictive capability because their usage will be 
more and more related to collision risk assessment when new 
systems, procedures, concepts and operations are introduced. 

3) Human factor error methods/models 
Further development of these methods/models should focus 

on dealing with human error at all ultimately interrelated levels 
of ATC/ATM such as operations, maintenance, organization, 
and management. They should be able to consider mutual 
dependency between errors from particular interrelated 
activities as well as dependability of factors causing particular 
errors. In addition, the methods/models will have to focus more 
on dealing with existing and new technologies and systems in 
their both operational and design stages. 

4) Third-party risk methods/models 
Certainly, development of more general methods/models 

for assessment of third-party risk could be recommended. They 
should have flexible structure in order to appropriately handle 
differences and specificities of traffic, layout and surrounding 
environment at particular airports. In addition, these 
methods/models should be able to handle proactive managerial, 
organizational, technical and/or other changes, and to represent 
their effects on the overall risk and safety around given airport. 
As well, they should have some predictive capabilities. Last but 
not least, there is an increasing need for common frameworks 
for managing third party risk by developing methodologies and 
tolerability criteria for comparable risk assessment in order to 
ensure fair competition between airports (in Europe) [34]. 

B. Relation to new technologies 

1) Causal methods/models for risk and safety assessment 

of aircraft and ATC/ATM 
The causal methods/models could contribute to the 

proactive development of policies on implementing changes by 
providing insight into the effects of changes in existing systems 
on risk and safety [8]. In particular, under conditions when the 
system changes due to implementation of new technologies, 
these methods/models could provide feedback about their 
contribution to lowering risk and consequently increasing the 
overall system safety. 

2) Collision risk methods/models 
Used for reduction of aircraft separation for more then 40 

years, the collision risk methods/models have proved their 
viability. However, further reductions in aircraft separation by 
the use of new technologies will be needed as an option for 
increasing airspace capacity. Therefore, existing modified and 
new methods/models will have to be able to assess collision 
risk under such circumstances [10]. Some models such as 

TOPAZ are already in place. Use of this method/model is in 
line with methodology proposed by the ICAO, which points 
out the necessity for evaluation of risk of new technologies 
against threshold values and its comparison with the reference 
system [35]. In cases where there is lack of reference systems 
or large scale changes in existing systems, expert judgment is 
recommended. In addition, setting up threshold values for risk 
while implementing new technologies, which are expected to 
be of lower risk, is also a matter for further elaboration of 
existing systems and the development of new collision risk 
methods/models.  

3) Human factor error methods/models   
Human factor error methods/models with necessary 

modifications should be applicable to new technologies and 
systems in ATC/ATM for identifying human errors at all levels 
of system functioning and they should be able to generate 
measures for error prevention and/or reduction already at the 
design stage. For such purposes, they will have to be able to 
handle careful specification of activities and tasks throughout 
the system in a way, which will not be highly if not crucially 
dependent on the highly specialized staff.  

4) Third-party risk methods/models 
Predictive capabilities and flexibility of third-party risk 

methods/models will be essential to produce new (updated) 
individual and societal risk estimates based on the expected 
number of fatalities after introducing new technologies and 
operational procedures at given airport. On the one hand these 
are expected to increase airport capacity and on the other they 
should decrease the accident rate in the vicinity of airports. 

C. Prospective research agenda 

The overview and review of the mentioned methods/models 
for assessment of risk and safety in civil aviation have 
uncovered some commonalities between them, which could be, 
after being summarized, used for generating prospective 
research agenda. These are as follows: 

• Regarding the purpose all models have been 
developed to support decision-making processes during system 
planning, development and management, through evaluation of 
the risk and safety of proposed technological, organizational 
and managerial changes;  

• Regarding problems that all methods/models have 
been confronted with: i) Necessity to have a good, statistically 
significant data bases on air traffic accidents and their causes 
(the lack of such data has been compensated by the expert 
judgment inherently containing unreliability and uncertainty); 
and ii) Complexity in quantification of risk and safety due to 
dependability of particular air traffic accidents on many 
interrelated dynamic and stochastic causes; 

• Regarding the recommendations, all methods/models 
should have some predictive capabilities, flexibility, and 
modularity as well as should be generic; 

• Regarding application to new technologies, all 
methods/models should be able to investigate their risk and 
safety under given circumstances. However there might be 
some limitations in such application due to the inherent 
limitations of existing models to appropriately handle the risk 
and safety of new technologies [35].  
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Mitigating the above-mentioned and other problems in line 
with recommendations how to improve existing and develop 
new methods/models for assessment of risk and safety in civil 
aviation particularly for new still non-existing technologies 
have been identified as the main research challenge for the 
prospective research. 

V. CONCLUSIONS 

The paper has provided a review of some of the 
methods/models for assessment of risk and safety in civil 
aviation. The main findings have provided insight into the 
efforts already carried out in developing these methods/models, 
their inherent complexity and lack of sufficient flexibility, lack 
of the available data for calibration and testing, and lack of the 
sufficient predicting capabilities enabling easier application to 
the assessment of risk and safety of new technological, 
procedural and operational concepts. These have aimed at 
increasing system capacity on the one hand and reducing 
acceptable risk and safety thresholds on the other. In many 
cases, the need for developing “specialized” or “dedicated” 
methods/models for particular parts of the system have been 
discovered. In addition, difficulties such as the lack of real-life 
data have been overcome by including expert judgment despite 
awareness of its uncertainty and biases. The structured need for 
balance and compromise between methods/models complexity, 
time and cost of development, and transparency of results have 
also been pointed out. Prospective research has been 
considered to further improve existing models in line with 
recommendations, which have generally implied capability of 
risk and safety assessment during development and after 
implementation of new technologies, generality on the one 
hand and dedication on the other, predictive capabilities, 
flexibility and easier understood and handled modular system 
structures.
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Abstract—Fault and event trees are the dominantly used safety 
risk models in air traffic. Systemic accident risk assessment by 
Monte Carlo simulation is a more recent technique, the power of 
which is less explored. In this paper we compare the two 
approaches for an accident risk analysis of an active runway 
crossing operation that is supported by a runway incursion 
alerting system for the runway controller. For this example we 
show and explain remarkable differences in results obtained 
using the two approaches.  

Keywords- runway crossing; runway incursion; collision risk; 
stochastic systems; Monte Carlo simulation; event sequence 
analysis; alert system  

I. INTRODUCTION

In following Hollnagel [11], accident models can be 
categorized in sequential models, epidemiological models, and 
systemic models. 

Sequential accident models describe an accident as the 
result of a limited number of sequences of events that occur in 
a specific order. These models assume that there are well-
defined cause-effect links that propagate the effects of chains 
of events leading to an accident. Examples of sequential 
accident models are the domino theory, event trees and fault 
trees. Many methods used in practice are based on the 
traditional fault/event tree. However, as argued by Hollnagel 
and several other leading researchers, e.g. [15], [16] and [18], 
they may not be adequate to account for the complexity of 
modern socio-technical systems. Sequential accident models 
are commonly known and often applied in system 
dependability and safety requirement studies in aviation and air 
traffic, e.g. [8].  

Epidemiological accident models describe an accident in 
analogy with the spreading of a disease, i.e. as the outcome of a 
combination of factors, such as performance deviations, 
environmental conditions, barriers and latent conditions. Like 
sequential accident models, epidemiological accident models 
rely on cause-effect propagation in accidents.   Epidemiological 
models provide a broader basis to represent the complexity of 
accidents than sequential models by better accounting for 
interactions between relevant factors. Epidemiological models 
have been used in aviation and air traffic, in methods such as 
the Human Factors Analysis and Classification System of 

Wiegmann and Shappel [21] and Bayesian belief networks, e.g. 
[1], [10], [13].  

Systemic accident models describe the performance of a 
system as a whole, rather than at the level of cause-effect 
mechanisms or epidemiological factors. The systemic view 
considers accidents as emergent phenomena from the 
variability of a system, for instance due to the concurrent and 
interacting behaviour of multiple agents (humans, technical 
systems) in a safety critical and dynamic operation. In such 
case the interacting multiple agents together form a joint 
cognitive system (Hollnagel and Woods, [12]). Hollnagel [11] 
explains that the foundation of systemic models lies in systems, 
control and chaos theories. Subsequently, he describes the key 
principles of these theories in terms of an elegant functional 
resonance accident model. Leveson [15] directly exploits the 
control theory view for the development of a systemic accident 
modelling approach, named STAMP. Corker, Pritchett and co-
workers [14], [17] have shown that agent based Monte Carlo 
simulation allows to predict emergent behaviour in advanced 
air transport developments. Blom et al. [4] exploit stochastic 
system and control theory to develop a multi-agent Monte 
Carlo modelling and simulation approach for the evaluation of 
safety critical air traffic scenarios, named TOPAZ. Stroeve et 
al. [19] show that this Monte Carlo modelling and simulation 
approach is of systemic accident type.  

To practitioners of accident risk analysis of future air traffic 
management designs (e.g. in NEXTGEN and SESAR), the 
development of three rather different types of accident 
modelling types raises the question whether the developments 
beyond sequential models yield better safety analysis results or 
not. In the latter case the novel approaches would be nice to 
have only. In the former case, the novel approaches even may 
be of critical design value for the design of future air traffic 
management. In order to bring more clarity in this question, the 
aim of this paper is to compare a fault/event tree approach with 
a Monte Carlo simulation approach for an active runway 
crossing operation, that is supported for safety reasons by a 
runway incursion alert system (RIAS) for the runway 
controller. This active runway crossing example incorporates 
concurrent and interacting behaviour of pilots and controllers 
in the dynamics of the operation. 

The paper is organized as follows. Section II presents the 
active runway crossing operation considered. Section III 
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presents the safety relevant scenarios that have been identified 
for this operation, and the scenario selected for benchmarking. 
Section IV presents the risk assessment by the event sequence 
modelling and analysis. Section V presents the risk assessment 
through Monte Carlo modelling and simulation Section VI 
compares the accident risk results obtained by the two 
approaches. Finally, Section VII draws conclusions.

II. THE ACTIVE RUNWAY CROSSING OPERATION 

The subject of our risk assessment is an active runway 
crossing operation proposed at Amsterdam Airport Schiphol. In 
this proposed operation, Runway 18C is used for departures, 
whereas taxiing aircraft have to pass it on their ways from the 
gate to departure from Runway 36L, or from landing on 
Runway 18R to the gate. Figure 1 shows Runway 18C/36C 
with surrounding taxiways. 

During the early development of the infrastructure and 
operation for simultaneous use of the aforementioned runways, 
the air navigation service provider opted for crossings over an 
active Runway 18C/36C, to keep taxi times between airport 
centre and the far-off runway as low as possible. For this 
operation, a runway incursion alerting system (RIAS) was 
foreseen to give stop bar violation alerts and runway incursion 
alerts. In support of this early development phase, a safety 
requirements analysis has been performed using a functional 
hazard analysis (FHA) for, inter alia, the runway incursion 
alerting system and its usage by the runway controller (RC). In 
[9], a number of hazardous scenarios have been considered, 
such as collisions between a departing aircraft and an aircraft 
making a runway incursion, and between an aircraft sliding off 
the runway and an aircraft holding at a crossing point. The 
safety risk analysis of the runway incursion collision scenario 
delivered, inter alia, the following design requirements under 
poor visibility condition: 

• The probability that the Runway incursion alert system 
(RIAS) fails to detect a runway incursion is at most 10-5;

• The probability that the runway controller fails to react 
appropriately to an alert is at most 5×10-5;

• The probability that it takes a minute for contingency 
procedures to become effective when the radio frequency 
is blocked, is at most 10-5; and 

• The probability that pilots of both aircraft fail to react to 
stop taxiing and cancel take-off/perform missed approach 
is at most 10-5.

These FHA based design requirements subsequently formed 
the basis for the design of a RIAS supported active runway 
crossing operation of runway 18C/36C. As has been explained 
in [7], eventually this proposed RIAS supported runway 
crossing design of active runway 18C/36C has not been 
selected for implementation at Amsterdam Airport Schiphol. 
For the purpose of comparing two risk analysis methods, 
however, this RIAS supported runway crossing  design forms a 
valuable example.                    

III. COMMON ACCIDENT RISK ANALYSIS STEPS

In order to validate whether the RIAS supported design of 
the active runway crossing operation would be sufficiently 
safe, it has been evaluated following a formal risk assessment 
process. An overview of the steps taken in this safety risk 
assessment is given in Figure 2. This cycle has been developed 
over many years at NLR, and presented in [4]. This cycle is 
generic in the sense that it is used both in preparation of an 
event sequence-based assessment as well as a Monte Carlo 
simulation based assessment.  

In step 0, the objective of the assessment is determined, as well 
as the safety management and regulatory context, the scope and 
the level of detail of the assessment. The actual safety 
assessment starts by determining the operation that is assessed 
(step 1). Next, hazards associated with the operation are 
identified (step 2), and aggregated into safety relevant 
scenarios (step 3), for which the potential severities are 
identified (step 4). The risk quantification is done in the  
frequency assessment (steps 5). Subsequently, the safety risk 
associated with each safety relevant scenario is classified (step 
6). For each safety relevant scenario with a (possibly) 
unacceptable safety risk, the main sources (safety bottlenecks) 

Figure 1. Runway 18C/36C and its surrounding at Amsterdam Airport 
Schiphol 
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contributing to safety risks are identified (step 7), which help 
operational concept developers to learn for which safety issues 
they should develop improvements in the ATM design. If the 
ATM design is changed, a new safety risk assessment cycle of 
the operation must be performed in order to investigate how 
much the risk posed by previous safety issues has been 
decreased, and to assess any new safety issues that may have 
been introduced by the enhancements themselves.  
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Figure 2. Safety risk assessment cycle. 

Steps 0 through 4 are the common accident analysis steps 
for Monte Carlo simulation and fault/event tree based 
approaches in step 5. For the active runway crossing operation 
considered these common steps are described in the remainder 
of this section.  

Step 0: Identify objective 

Before starting the actual risk assessment, the objective and 
scope of the assessment are set. This is done in close co-
operation with the decision makers and designers of the 
advanced operation. Also, the appropriate framework of safety 
management and safety regulations must be made clear, such 
that the assessment is performed in line with these. 

An important issue in setting this context is the choice of 
risk tolerability criteria/Target Level of Safety (TLS) with 
respect to which the assessment is performed and the scope of 
risks to which these are applied. Depending on the application, 
such criteria are defined for particular flight condition 
categories (e.g. flight phases or sub-phases) and for particular 
severity categories (e.g. accident or serious incident). 
Typically, within the chosen context, these criteria define 
which flight condition/severity categories have to be evaluated 
and which frequency level forms the Target Level of Safety 
(TLS) threshold per flight condition/severity category. 

Step 1: Determine operation 

Step 1 serves for the risk assessors to obtain a complete and 
concise overview of the operation, and to freeze this 
description during each cycle of analysis. Main input to step 1 
is a description of the operational concept from the designers, 
while its output is a sufficiently complete, structured, 
consistent and concise description of the operation considered. 
The operation should be described in generic terms, it should 
provide any particular operational assumption to be used in the 
safety assessment, and it has to be verified by the operational 
concept designers. Typically during this step, holes and 

inconsistencies in the concept as developed are also identified 
and immediately fed back to the design team. 

Step 2: Identify hazards 

The term hazard is used in the wide sense; i.e. an event or 
situation with possibly negative effects on safety. Such non-
nominal events or situations may evolve into danger, or may 
hamper the resolution of danger, possibly in combination with 
other hazards or under certain conditions. The goal of step 2 is 
to identify as many and as diverse hazards as possible. Hazard 
identification brainstorming sessions are used as primary 
means to identify (novel) hazards.  

Based on the experience gained in using the hazard 
identification part of HAZOP in a large number of safety 
analyses and on scientific studies of brainstorming, NLR has 
developed a method of hazard identification for air traffic 
operations by means of pure brainstorming sessions. This 
method has been reported in [6]. In such a session no analysis 
is done and solutions are explicitly not considered. An 
important complementary source is formed by hazards 
identified in previous studies on related operations. Example 
hazards are mentioned in the explanation of step 3.

In total, about 100 hazards have been identified. A first 
ordering of these hazards is made by distinguishing

• root hazards, which describe safety relevant events and 
conditions that cause the initiation of a conflict in a safety 
relevant scenario, and 

• resolution hazards, which describe events and conditions 
that influence resolution of the conflict, which is aimed at 
limiting the severity of consequences. 

Step 3: Construct scenarios 

When the list of hazards is as complete as reasonably 
practicable, it is processed to deal with duplicate, overlapping, 
similar and ambiguously described hazards. Then, per flight 
condition selected in Step 0, the relevant ‘conflict’ types which 
may result from the hazards are identified using a full list of 
potentially relevant conflict types, such as for instance ‘aircraft 
erroneously crossing and other aircraft in take-off’ and 
‘collision between aircraft sliding off runway and aircraft near 
crossing’. Although these situations are simply called 
‘conflicts’, it is important to note that not only ordinary 
conflicts between aircraft are considered; ‘conflict types’ rather 
indicate general potentially dangerous operational situations. 

Each potentially relevant conflict type is subsequently used 
as crystallization point upon which all applicable hazards and 
their combined effects are fitted as elements of additional event 
sequences. If hazards cannot be appropriately addressed by the 
crystals developed so far, then additional conflict types need to 
be defined and corresponding scenarios developed. The output 
of such a crystallization process is a bundle of event/condition 
sequences and effects per conflict type/crystallization point, 
and each resulting crystal is referred to as a safety relevant 
scenario (see Figure 3). This way of constructing scenarios 
aims to bring into account all relevant ways in which hazards 
can play a role. 
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Figure 3. Generic diagram of a safety relevant scenario. 

The outcome of this crystallization process are crystals for 
the following safety relevant scenarios of the active runway 
crossing operation: 

• Scenario I: Aircraft erroneously in take-off and crossing 
aircraft on runway; 

• Scenario II: Aircraft erroneously crossing and other 
aircraft in take-off; 

• Scenario III: Aircraft taking off and runway unexpectedly 
occupied; 

• Scenario IV: Aircraft crossing and runway unexpectedly 
occupied by aircraft; 

• Scenario V: Aircraft crossing and vehicle on runway; 
• Scenario VI: Collision between aircraft sliding off runway 

and aircraft near crossing; 
• Scenario VII: Aircraft taking off and vehicle crossing; 
• Scenario VIII: Jet-blast from one aircraft to another; and 
• Scenario IX: Conflict between aircraft overrunning, or 

climbing out low, and an aircraft at a nearby taxiway. 

Because Scenario II ranks high in expected safety risk, this 
scenario has been selected for the comparison of the two risk 
assessment approaches in this paper. Scenario II covers the 
situation where there is one aircraft that takes off from runway 
18C, and has been allowed to do so, and there is one aircraft 
that crosses the runway while it should not, over the runway 
crossing position marked by ‘W3’, somewhat to the north of 
the middle of the runway (see Figure 1). 

In the context of safety relevant scenario II, examples of its 
elements in figure 3 are: 

• Root hazard a: Pilots react on clearance for another aircraft 
and start crossing; 

• Root hazard b: Pilots cross without clearance; 
• Hazardous situation: Aircraft crossing runway while it 

should not; 
• Condition: Other aircraft has initiated take-off; 

• Conflict: Aircraft is erroneously crossing the runway, 
while other aircraft is taking off; 

• Resolution hazard c: Pilots of crossing aircraft do not 
frequently look for conflicting traffic; 

• Resolution hazard d: Pilots of crossing aircraft are not 
tuned to frequency of runway controller; and 

• Conflict evolution: Possible ways of evolution of the 
runway incursion conflict, e.g. leading to an accident or an 
incident of certain severity. 

Step 4: Identify severities 

For each of the safety relevant scenarios identified in step 
3, it is determined which of the severity categories selected in 
step 0 are applicable to its possible effects. Usually, a range of 
severities applies to a safety relevant scenario. For all nine 
safety relevant scenarios, except scenario VIII, all four 
severities (minor, major, hazardous, accident) have been 
identified as being applicable [5]. For safety relevant scenario 
VIII, the severity of accident has been judged not to be 
applicable.  

The sequel of this paper focuses on step 5 (assess 
frequency) of the safety analysis for the most severe possible 
effects of scenario II, i.e.  accidents. In Section IV this is done 
using a fault/event tree analysis approach. Next, in Section V, 
this is done using a Monte Carlo modelling and simulation 
approach. Finally the results of both approaches are compared 
in Section VI.  

IV. EVENT SEQUENCE BASED RISK ASSESSMENT

For safety relevant scenario II, the accident risk is modelled 
through a combination of fault and event trees. Two separate 
fault trees (see Figure 4) have been developed for two specific 
cases: 

• Case p, i.e. pilot of taxiing aircraft starts crossing without 
contacting the runway controller (e.g. by misunderstanding 
the ground controller); and 

• Case p-not, i.e. pilot of taxiing aircraft has contacted 
runway controller well, though starts crossing while it 
should not. 

Subsequently, for each of these two fault trees an event tree has 
been developed. Both event trees make use of the following 
fixed sequence of twelve branching points: 

• There is an aircraft on 18C in take-off (yes/no) 
• Early recognition and resolution by pilots (yes/no)
• Early recognition by RC (yes/no) 
• Stopbar violation alert and RC becomes aware of it 

(yes/no) 
• Early communication by RC and pilot resolution (yes/no) 
• Medium recognition and resolution by pilots (yes/no) 
• Medium recognition by RC (yes/no) 
• RIAS alert and RC becomes aware of it (yes/no) 
• Medium communication by RC and pilot resolution 

(yes/no) 
• Medium recognition by RC (yes/no) 
• RIAS alert and RC becomes aware of it (yes/no) 
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• Medium communication by RC and pilot resolution 
(yes/no) 

• Late recognition and resolution by pilots (yes/no) 
• Late recognition by RC and pilot resolution (yes/no) 
• Late communication by RC and pilot resolution (yes/no) 

The branching points in the event tree differentiate between 
early, medium, and late recognition of the conflict by the pilots 
and RC. This approach was chosen as a systematic means to 
get hold on the large variety in the timing of particular events 
to happen in combination with the timing of stop bar violation 
and RIAS alerts and the remaining braking distance.  

Of all feasible branching point combinations, there are six 
ending at accident. All others end at late, medium or early 
resolution of the conflict. The estimation of the yes/no 
probability values per branching point has been done on the 
basis of statistical data and expert based estimates, for each of 
the two cases (p and p-not) separately [5]. This way, for each 
branching point both expected, and upper/lower bound 
probability values have been assessed. Subsequently, the 
quantified fault and event trees have been used to calculate 
accident risk in terms of expected value, and upper and lower 
bound values. The rsulting upper bound accident probability 
values for scenario II are given in Table I.  

TABLE I. RESULTS OF THE EVENT SEQUENCE-BASED RISK ASSESSMENT 
FOR THE TWO CASES CONSIDERED. THE PROBABILITIES ARE UPPER BOUND 

VALUES PER TAKE-OFF.

Case Conflict 
probability 

Conditional accident 
probability given 

conflict 

Accident 
probability   

p-not 3 10-4 1.6 10-5 4.8 10-9 

P 6 10-5 7.3 10-5 4.4 10-9 

Total 3.6 10-4 2.6 10-5 9.2 10-9 

In Figure 5 it is shown which branching points play a role in 
the accumulation of contributions to the accident probability. 
For contributions to case p, the risk is dominated by situations 
in which RC is alerted by stopbar violations. For contributions 
to case p-not, the risk is dominated by situations in which RC 
is not yet aware of the conflict after a stopbar violation alert. 

Total accident risk  9.2e-9

p-not    4.8 e-9

no   4.8e-9 yes
2.3e-11

p   4.4e-9

Medium RC
recognition

Stop bar
violation alert

RIAS
alert

Early RC 
recognition

Late RC
recognition

yes
0

no   4.8e-9

no   2.9e-9 yes
1.8e-9

no   2.2e-9yes
7.1e-10

yes
1.4e-9

no
7.9e-10

no   4.1e-9 yes
3.6e-10

yes
3.1e-9

no   9.6e-10

no   8.0e-10 yes
1.6e-10

no   2.2e-10yes
5.8e-10

yes
8.1e-11

no
1.35e-10

Figure 5. Contributions to the collision risk for events related to early, 
medium or late RC recognition of the conflict, and the occurrence of stopbar 
violation or RIAS alert. The probabilities are upper bound values per take-off. 

V. MONTE CARLO BASED RISK ASSESSMENT

A. Monte Carlo simulation model 

Prior to running Monte Carlo simulations for accident risk 
analysis, a simulation model is developed that captures the 
nominal and non-nominal (stochastic and dynamic) behaviour 
of the aircraft, the relevant technical systems, the relevant 

Figure 4: Fault Trees for safety relevant scenario II.
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human operators (pilots and runway controller), and the 
interactions between all these entities. Figure 6 gives an 
overview of the main entities and their interactions for the 
runway incursion Monte Carlo simulation model [4], [19], 
[20]. An arrow from one entity to another entity indicates that 
the former (directly) influences the latter. 

For the development of the models for the human operators, 
the key aspects are taken into account, such as situation 
awareness / task performance / task scheduling of a human 
operator, flight phases / performance modes of aircraft, and 
availability / status of an alert system. Subsequently, the 
interactions between human operators and/or technical entities 
are also modelled, e.g. the effect of task performance of a pilot 
on the flight phase of an aircraft, or the effect of an alert on the 
situation awareness of a controller. The resulting human 
performance models and their interactions have been calibrated 
and validated through a comparison with an Air-Midas model 
for surface operations [2], [3]. A complementary validation 
approach consisting of a systematic bias and uncertainty 
assessment has been provided in [19]. 

Taking-off 

aircraft

Runway 

controller

ATC system: 

R/T

Taxiing

aircraft

Pilot flying

taking-off 

aircraft

Pilot flying 

taxiing

aircraft

ATC system:  

Surveillance 

ATC system:

RIAS

Visibility

condition

Figure 6. Interactions between the main entities of the runway incursion 
simulation model: aircraft, pilots flying, runway controller, visibility condition 
and ATC system (R/T, RIAS and surveillance).   

B. Risk assessment results 

Table II shows the values assessed for the event 
probabilities and conditional accident probabilities of the 
runway crossing operation considered, at a distance of 1000 m 
from the runway threshold. Two non-nominal situation 
awareness (SA) conditions for the pilot of the taxiing aircraft 
are distinguished*): 

• The pilot flying of the taxiing aircraft believes to be 
proceeding on a normal taxiway (without being aware to 
be heading to a runway crossing), and 

• The pilot flying of the taxiing aircraft starts to cross the 
runway without being aware that crossing is currently not 
allowed.  

Table II shows that the conditional accident probability value is 
35 times higher when the PF of the taxiing aircraft believes to 
be proceeding on a taxiway rather than being crossing a 
runway. 

Through a deeper analysis of the Monte Carlo simulation 
results, the reasons of this large difference appeared to be as 
follows. When a pilot aims to cross a runway, then he will stop 
prior to the runway and expecting a clearance before actually 
starting the crossing. However, when a PF aims to proceed on a 
taxiway then there is no reason to stop, and its aircraft 
maintains taxiing speed. Moreover, being unaware of the 
runway, the pilot has no reason to frequently scan this runway. 
As a result of this, at the moment that a pilot detects the 
runway incursion, then the time period that is left to stop the 
aircraft is much shorter than the time period that would be 
available when the aircraft starts from a hold before crossing 
the runway, first has to build up taxiing speed, and where the 
pilot frequently scans this runway.  

TABLE II. MONTE CARLO SIMULATION BASED RISK ASSESSMENT FOR 
RUNWAY CROSSING AT 1000M FROM TAKE-OFF STARTING POINT. THE VALUES 

ARE POINT ESTIMATES PER TAKE-OFF.

SA by PF of 
Taxiing aircraft 

Probability of 
event 

Event conditional 
accident 

probability 

Accident 
probability   

Cross runway 2.3 10-4 4.8 10-6 1.1 10-9 

Proceed taxiway 3.5 10-5 1.7 10-4 6.0 10-9 

Total 2.7 10-4 2.6 10-5 7.1 10-9 

Figure 7 provides a view on various contributions to the 
collision risk, such as the influence of situation awareness 
conditions of the pilot of the taxiing aircraft (Cross 
runway/Proceed runway), and the functioning of ATC alert and 
communication systems (Up/Down). These results show that 
accident risk is dominated by situations where a pilot flying of 
a taxiing aircraft is not aware of the nearby runway due to 
erroneous situation awareness, whereas  neither failure of alert 
systems for ATC, nor failure of communication systems 
contribute noticeably to collision risk per departure. 

__________________________________________________ 

*) The identification of these non-nominal SA conditions is in fact a direct 
result of the systematic modelling of multi-agent SA within our Monte Carlo 
simulation model [20].
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Yes

Cross runway Proceed taxiway

Up Down

Up Down Up Down Up Down Up Down

Up Down

SA pilot
taxiing a/c

ATC alert
systems

Communication
systems

No
Initial SA
difference

Total collision risk

1.1e-9 2.7e-13 1.8e-13 1.4e-17 6.0e-9 4.1e-13 1.4e-13 2.2e-17

1.1e-9 1.8e-13 6.0e-9 1.4e-13

1.1e-9 6.0e-9

7.1e-9<<7e -9

7.1e-9

Yes

Cross runway Proceed taxiway

Up Down

Up Down Up Down Up Down Up Down

Up Down

SA pilot
taxiing a/c

ATC alert
systems

Communication
systems

No
Initial SA
difference

Total collision risk

1.1e-9 2.7e-13 1.8e-13 1.4e-17 6.0e-9 4.1e-13 1.4e-13 2.2e-17

1.1e-9 1.8e-13 6.0e-9 1.4e-13

1.1e-9 6.0e-9

7.1e-9<<7e -9

7.1e-9

Figure 7. Contributions to the collision risk for various combinations of events 
related to pilot situation awareness and functioning of ATC alert and 
communication system, for crossing distance of 1000 m, under good visibility.

C. Conditional risk increase under hypothetical assumptions  

Using the Monte Carlo simulation model, it also is possible 
to attain insight in the conditional risk increase when the 
monitoring capability of any of the involved human operators 
or ATC alert system is assumed to be out of the loop. Table III 
shows the conditional collision risks obtained for the 
hypothetical situation where an aircraft taxies towards a 
runway crossing while the pilot believes to taxi on a normal 
taxiway. The conditional collision risks in Table III refer to 
hypothetical cases where traffic conflict monitoring by specific 
human operators, or ATC alerting system are assumed to be 
within the model (‘yes’) or out of it (‘no’). A risk increase 
factor is determined by comparing the conditional collision risk 
with the situation in which none of the human operators are 
taken out of the loop.  

Table III shows that out-of-the-loop placing of monitoring 
function by PF of taxiing aircraft ranks highest on risk increase. 
Second ranks risk increase due to out-of-the-loop placing of 
monitoring by PF of taking-off aircraft. Third ranks risk 
increase due to out-of-the-loop placing of monitoring by RC, 
and fourth ranks risk increase due to out-of-the-loop placing of 
ATC alert systems. 

TABLE III. CONDITIONAL RISK INCREASE FACTORS ACHIEVED IN THE 
SIMULATION MODEL DUE TO OUT OF THE LOOP ASSUMPTIONS OF MONITORING 
BY HUMAN OPERATORS OR ATC ALERT SYSTEM, WHEN THE PF OF A TAXIING 

AIRCRAFT INTENDS TO PROCEED ON A NORMAL TAXIWAY UNDER GOOD 
VISIBILITY (CROSSING IS AT 1000 M FROM RUNWAY THRESHOLD)

VI. COMPARISON OF RESULTS 

For scenario II, the upper bound of estimated accident risk 
assessed by the event sequence approach equals 9.2 10-9 per 

take-off [5]. This means that the upper bound value estimated 
by the event sequence approach is almost equal to the Monte 
Carlo simulation based point estimate value of 7.1 10-9 per 
take-off.  

Comparison of the values in Table I with the values in 
Table II, shows that the conditional collision risk total/mean 
values also are about the same for the scenario based upper 
bound estimates and the Monte Carlo simulation based point 
estimates. Through a bias and uncertainty assessment 
conducted in [19], it has been shown that the Monte Carlo 
simulation based upper bound value of the conditional risk is 
almost a factor five larger than the point estimated value. This 
means that the event sequence approach in Section IV leads to 
a significantly lower accident risk level per take-off than the 
Monte Carlo simulation approach in Section V.  

In order to better understand the reason of this difference, 
Table IV compares conditional risk increase factors under MC 
simulation and event sequence approaches for the hypothetical 
cases of Table III plus two combinations, i.e. case 1&2 and 
case 1&2&3 respectively. The Monte Carlo simulation-based 
results are given for the case that the pilots of the taxiing 
aircraft believe to be proceeding on a taxiway and the event 
sequence-based results are given for event p ‘Pilot starts 
crossing without contacting RC (e.g. by misunderstanding the 
ground controller)’. These two conditions have in common that 
they both imply that pilots of the taxiing aircraft are not aware 
of the need to be in contact with the runway controller, which 
makes their comparison particularly relevant.  

TABLE IV. COMPARISON OF CONDITIONAL RISK INCREASE FACTORS DUE 
TO ASSUMING (COMBINATIONS) OF HUMAN OPERATOR MONITORING OUT-OF-

THE-LOOP. IN THE MC SIMULATION RESULTS THE PILOT OF THE TAXIING 
AIRCRAFT (ERRONEOUSLY) BELIEVES TO TAXI ON A NORMAL TAXIWAY. THE 

EVENT SEQUENCE BASED RESULTS ARE UPPER BOUND ESTIMATES THAT APPLY 
TO EVENT P.

Monitoring in-loop-of MC simulations Event sequences case 

PF
taxi 

PF
take- 
off  

RC Condit
ional 
risk 

Facto
r

Conditi
onal  
risk 

Fact
or

0 yes yes yes 1.7 10-4 1 7.3 10-5 1

1 no  yes yes 9.4 10-3 55.3 **) **) 

2 yes no yes 4.0 10-4 2.35 **) **) 

3 yes yes no 2.3 10-4 1.35 1.2 10-3 17

1&2 no no yes *) *) 1.4 10-2 200 

1&2
&3 

no no no 8.9 10-2 530 2.5 10-1 3400 

*) In the MC simulation approach, not monitoring by pilots of both aircraft was not evaluated  

**) In the event sequence approach, distinction between pilots of different aircraft was not modelled 

The event sequence results in Table IV show that the 
product of the risk increase factor for the case without 
monitoring of the controller (case 3) and the risk increase 
factor for the case without monitoring of the pilots of both 
aircraft (case 1&2), is equal to the risk increase factor for the 
case where pilots and controller do not monitor (case 1&2&3). 
This reflects that in the event sequence approach the risk 
reducing contributions of pilots and controller are considered to 
be independent. In contrast, for the Monte Carlo simulation 
results, it follows from Table IV that the product of the risk 

Monitoring in the loop of 
Hypoth
etical 
Case  

PF
taxi   

PF
take-off   

RC ATC 
alert 

systems  

Conditio
nal risk 

Increa
se

Factor 

0 Yes yes yes yes 1.7 10-4 1
1 no  yes yes yes 9.4 10-3 55
2 Yes no yes yes 4.0 10-4 2.4 
3 Yes yes no yes 2.3 10-4 1.4 
4 Yes yes yes no 2.2 10-4 1.3 
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increase factors due to not monitoring of individual human 
operators (case 1, case 2 and case 3) is considerably smaller 
than the risk increase factor for the case when both pilots and 
controller are not monitoring (case 1&2&3). This reflects that 
in the Monte Carlo simulation approach, the risk reducing 
contributions of pilots and controller are interdependent, such 
that the risk increase due to not monitoring by one of the actors 
is moderated by the performance of the others. In particular,      
Table IV shows that the increase in the conditional collision 
risk by excluding monitoring by RC is much higher in the 
event sequence approach (factor 17.1) than it is in the Monte 
Carlo simulation approach (factor 1.35). It is the simulation 
based approach that makes clear that although RC identifies a 
good share of conflicts, its contribution to avoiding a collision 
is much smaller than the event sequence based approach 
predicted. Deeper analysis yields that a significant proportion 
of the instructions issued by the runway controller arrive late, 
hence these instructions either concern conflicts that are 
already solved by the pilots, or even arrive too late for any of 
the pilots involved to successfully avoid a collision. 

VII. CONCLUSION

In safety risk analysis literature there is an ongoing debate 
regarding the advantage of systemic modelling over sequential 
modelling for complex safety critical socio-technical systems, 
such as future air traffic management. In order to contribute in 
a concrete way to this debate, we performed a benchmark of 
both approaches for the same demanding application, i.e. 
accident risk analysis of active runway crossing operation. The 
sequential modelling approach considered is fault/event tree 
modelling. The systemic modelling approach considered is 
Monte Carlo modelling and simulation.     

Within the dynamics of an active runway crossing 
operation, the concurrent and interacting behaviours of pilots 
and controllers make that accident risk analysis on the basis of 
an event sequence based approach may be more demanding 
than what can be managed in a controlled way. The 
introduction of a differentiation between early, medium and 
late responses did not prevent a significant underestimation of 
(conditional) collision risk contributions of up to an order in 
magnitude. More specifically, for the runway incursion 
scenario considered, the event sequence based approach 
provided results which would imply that, under good visibility 
conditions, RIAS support to RC could serve as an effective 
means of reducing accident risk by an order in magnitude. The 
Monte Carlo simulation approach, however, showed that the 
effective contribution of RIAS support is almost zero for the 
simple reason that the pilots often will receive a RIAS 
triggered instruction from RC at a moment that one of the 
pilots already has recognized and started to resolve the conflict. 
Nevertheless, in such case, RC may perceive him/herself to 
have played a key role in resolving the conflict well. 

The key difficulty is that coping with time and dynamic 
dependencies within event sequence modelling, is complicated 
by the interactions and concurrencies that play a key role in 
runway incursion. The power of a Monte Carlo simulation 
approach is that it can handle concurrency and interactions 
well.  
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Abstract—Air transportation systems are designed to ensure that 

aircraft accidents are rare events. To minimize these accidents, 

factors causing or contributing to accidents must be understood 

and prevented. Previous research has studied accident data to 

determine these factors. The low rate of accidents however, 

makes it difficult to discover repeating patterns of these factors. 

In this research we employed a data mining technique to conduct 

a holistic analysis of aircraft incident data in relation to the 

accident data. The analysis identifies relationships between the 

accident and incident data and finds patterns of causal and 

contributory factors which are significantly associated with 

aircraft accidents. 

Keywords- aviation safety; aircraft accidents; aircraft incidents; 

data mining; contrast-set mining 

I. INTRODUCTION

Levels of safety are typically measured by the number of 
accidents and incidents and their rates. An aircraft accident is 
defined as an occurrence associated with the operation of an 
aircraft in which people suffer death or injury, and/or in which 
the aircraft receives substantial damage. An aircraft incident is 
an occurrence which is not an accident but is a safety hazard 
and with addition of one or more factors could have resulted in 
injury or fatality, and/or substantial damage to the aircraft [1]. 
Throughout the history of air transportation, along with the 
continuous growth in air travel, remarkable improvements 
have been made in lowering of accident rates. Nevertheless, 
further improvements are needed.  

Figure 1 indicates annual rates of accidents that meet the 
selection criteria used in this study (as explained in section 
II.A). The accident data is obtained from the National 
Transportation Safety Bureau (NTSB) database.  

__________________________________________________ 

* The author’s affiliation with The MITRE Corporation is provided 
for identification purposes only, and is not intended to convey or 
imply MITRE’s concurrence with, or support for, the positions, 
opinions or viewpoints expressed by the author. 
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Figure 1. Rates of part-121 accidents that meet this study’s filtering criteria  

To further improve the flight safety, traditionally 
researchers focus on studying accident data to determine 
causal factors leading to accidents [2, 3, and 4]. The low rate 
of accidents however, makes it difficult to discover patterns of 
these factors. Other approaches study larger sets of data 
available on incidents but don’t analyze relationships between 
these data and the accident data [5, 6, and 7]. 

Two influential theories in the safety studies are Swiss 
Cheese model [8] and Heinrich Pyramid [9]. The Swiss cheese 
model, introduced by James Reason in 1990’s, views a 
hazardous situation culminating in an accident equivalent to 
passing through successive slices of Swiss cheese. Each 
“slice” is a system or process designed to prevent harm, 
however, the slices have holes representing errors in the 
system or process. Each error may occur frequently without 
harmful results, but when combined (i.e., holes are lined up), 
accident occurs. This model is widely used for investigating 
human factors (See Figure 2). 

     

Figure 2. Swiss Cheese model 

   Organizational     unsafe       preconditions    unsafe 
       influences    supervision   for unsafe acts     acts 

accident failures 
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The Heinrich Pyramid, introduced by H. W. Heinrich in 
1930’s, represents the accidents as low-frequency and high-
risk safety hazards at the top of a pyramid. Moving down on 
the pyramid, the next layers consist of incidents and unsafe 
acts which are less hazardous but are more frequent. (See 
Figure 3.) An adaptation of the Heinrich pyramid in the 
aviation safety domain suggests that for every major accident 
there are 3-5 non-fatal accidents, 10-15 incidents, and 
hundreds of unreported events [10].  

                                                          accidents 

                                                                      incidents 

                                                                           

                                                                             unsafe acts 

Figure 3. Heinrich Pyramid 

In this study, similar to Heinrich pyramid, we look for the 
relationships between accidents and incidents. However, 
unlike the Heinrich pyramid which considers a quantitative 
relationship between accidents and incidents, our study looks 
for correlations between the underlying factors of accidents 
and incidents. The study considers the factors individually as 
well as combinations of the factors similar to the line-up of the 
holes in the Swiss Cheese model.   

We analyzed the incidents in contrast to accidents and 
identified factors which are present in both classes of events 
but are significantly associated with accidents. We then 
studied the identified patterns of factors in the context of 
incidents.  

II. DATA

The data used in this study consists of accidents and 
incidents pertaining to commercial flights (part-121) from 
1995 through 2004, which provides a large enough sample size 
for the analysis. The accident data is obtained from the 
National Transportation Safety Board (NTSB) database. The 
incident data is obtained from four national databases: Federal 
Aviation Administration Accident and Incident Database 
System (FAA/AIDS), National Aeronautics and Space 
Administration Aviation Safety Reporting System 
(NASA/ASRS), FAA Operational Errors and Deviations 
(FAA/OED), and FAA System Difficulty Reports 
(FAA/SDRS). 

Each report of accident or incident in these databases 
consists of structured fields plus a narrative explaining the 
event. Causal and contributory factors are identified either 
directly by the person who submits the report, or indirectly by 
a domain expert who reviews the report. These factors are in 
the structured fields. Our analysis used these factors.  

A. Data Selection 

Since the purpose of the analysis was identifying patterns of 
accident factors related to the routine operation of the flight, 

accidents and incidents due to the following causes were 
filtered out from the data: 

Medical and alcohol related events, such as pilot being 
sick or drunk 

Terrorism and security related events, such as bomb 
threats 

Passenger and cabin-crew related problems, such as 
passengers being injured due to hot coffee spilling on 
them 

Bird/animal striking the aircraft 

Events during the phases of operation when the aircraft 
is not operating (parked, standing, preflight) 

   Also, reports pertaining to the Alaska region were filtered 
out since flight environment and procedures in this region are 
different from other regions in the United States and require a 
separate study.  

   After applying the filters, there were 184 accidents, and 
the following sets of incidents in the data for analysis: 2,188 
reports in the FAA/AIDS dataset, 29,922 reports in the 
NASA/ASRS dataset, 10,493 reports in the FAA/OED dataset, 
and 85,687 reports in the FAA/SDRS dataset. 

B. Data Constraints 

All accidents in the United States involving civil aircraft 
are investigated by the NTSB, an independent organization, 
and reported in the NTSB database. Accident data, therefore, 
can be assumed complete and free of bias. These assumptions 
cannot be made about the incident data. Incidents are under-
reported and are subject to self-reporting bias. Voluntary 
reports represent a fraction of incidents [11] and recent audits 
indicate reporting of the incidents mandated by the FAA are 
under-reported [12 and 13].  

   Our study analyzed the underlying factors of accidents 
and incidents. The historical data on incidents is large enough 
to represent these factors qualitatively. Also, we consider all 
factors that are present in the events, primary or contributory. 
This minimizes the impact of the bias in reporting a factor as 
contributory versus primary. 

III. METHODOLOGY

We first developed a common taxonomy across the 
accident and incident databases to identify common fields 
(factors) between the two classes of events. We then 
transformed each report into a vector consisting of the common 
fields populated with their corresponding values for each 
report. Next, we applied the STUCCO [14] algorithm to the 
accident and incident vectors and identified patterns of factors 
which are significantly associated with accidents or with 
incidents. The findings were ranked using Factor Support 
Ratio, a measure introduced in this study as described below in 
this section under ‘Ranking’. Results of the analyses conducted 
on multiple databases were compared for cross-database 
validation. The results are discussed in the next section. 
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A. Common Taxonomy 

The process of deriving the common taxonomy is data-
driven. After reviewing each individual database structure and 
unique values for each field, we developed a hierarchy of 
factors and sub-factors common across the databases. Eight 
high-level categories of factors were identified in the data, 
each containing corresponding sub-factors. These factors and 
examples of their sub-factors are shown in Figure 4. The 
‘Other’ category contains all sub-factors which were not big 
enough to have a separate category for themselves.  

   A normalization of the values was needed so that all 
databases use the same word/phrase to refer to the same 
factor/condition. For example, to refer to the action where pilot 
has to execute a maneuver to avoid a vehicle or object on the 
runway, ‘ground encounter’ is used in one database and ‘object 
avoidance’ in another. 

   The reports were converted to vectors consisting of fields 
that indicate presence or absence of each of the common 
factors and sub-factors in the accident or incident. These 
vectors were then used in the analysis. 

Factor Sub-Factor examples

 Aircraft
  Engine, Flight control system,  

  Landing gear 

 Airport
  Snow not removed from runway,  

  Poor Lighting, Confusing marking 

 Air Traffic   

 Control

  Communication with pilot,   
  Complying with procedures 

 Company   Procedures, Management, Training 

 Maintenance   Compliance, Inspection 

 Pilot
  Visual lookout, Altitude deviation,  

  Decision/Judgment 

 Weather   Wind, Thunderstorm, Ice 

 Other
  Factors not in the other categories, 

  e.g.,   FAA oversight, Visibility 

Figure 4. Cross-database common taxonomy 

B. Contrast-Set Mining 

Since the objective of the study was to identify factors and 
factor combinations that are precursor to accidents, we needed 
an analysis technique that could take advantage of both sets of 
data (accidents and incidents) and determine which factors are 
more likely to lead to accidents. We applied the STUCCO 
algorithm [14] to analyze accident and incident vectors by 
contrasting them. The algorithm finds conjunctions of 
attribute-value pairs that are significantly different across 
multiple groups. In the case of our data, there are two groups: 
accidents and incidents. Attribute-values are binary values 
indicating presence or absence of the factors in the event.  

The factors and their children (combinations of factors) are 
examined for their frequency (support) in each group. For each 
factor-set, deviation is calculated as absolute value of the 
difference between accident support and incident support. In 
the first step, factor-sets for which deviation is more than a 

minimum threshold proceed to the next step to be tested 
further. We used a minimum of 1% threshold for the deviation.  

In the next step, Chi Square test is performed to test 
statistical significance of the distribution of factor-set over the 
two groups. The contingency table shown in Figure 5 is used 
for this test. A p-value of 0.05 is used as the threshold. Factor-
sets with a p-value of more than 0.05 are rejected. A p-value of 
less than 0.05 is the equivalent of being in the 95% confidence 
interval and is accepted. 

 accidents incidents 

factor-set 

true

accidents 
containing the 

factor-set 

incidents 
containing the 

factor-set

factor-set 

false 

accidents not 
containing the 

factor-set 

incidents not 
containing the 

factor-set

Figure 5. Contingency table used for Chi Square significance test 

C. Ranking 

Once significant factor-sets were identified by the 
algorithm, we ranked them based on the Factor Support Ratio
measure. As shown in equation (1), we calculate the Factor 
Support Ratio for each factor-set as the ratio of the factor-set’s 
support in accident dataset over its support in the incident 
dataset. 

Support Ratio

incident

accident

Support

Support

The Support Ratio is the probability of a factor-set being 
involved in an accident divided by its probability of being 
involved in an incident. The information conveyed by this 
measure about the factor-set is different than that of the 
deviation (the difference between the factor-set’s accident and 
incident supports) that is used in the algorithm. To understand 
the Support Ratio better, consider factor-sets A and B and their 
corresponding measures in Table 1.

TABLE I. SUPPORT RATIO VS. DEVIATION

factor- 

set 

accident 

 supp 

incident  

support Dev 

Support 

Ratio 

A 60% 50% 10% 1.2 
B 11% 1% 10% 11 
C 60% 10% 50% 6 

Both factor-sets A and B have a deviation of 10% between 
their accident support and incident support. However, in the 
case of factor-set B, the support in accidents is 11 times more 
than in incidents. This can be interpreted as: occurrence of 
factor-set B in an accident is 11 times more likely than its 
occurrence in an incident. This is a more distinctive 
distribution than that of factor-set A which has a Support Ratio 
of 1.2. We can use this measure to compare factor-sets A and 
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B, and say factor-set A is more likely to be involved in 
accidents than factor-set B. 

To understand the significance of Support Ratio for 
ranking the factors consider factor-sets A and C in Table 1.
Both factor-sets appear in 60% of accidents. But the fact that 
factor-set C appears in 10% of incidents raises its Support 
Ratio (compared to factor-set A). We interpret this as: factor-
set C is qualitatively a more significant accident factor than 
factor-set A. When factor-set C occurs it is more likely (by a 
factor of 6) to be involved in an accident than in an incident. 
But when factor-set A occurs, the likelihood of having an 
accident versus having an incident is smaller (1.2). 

Accident support of a factor (frequency of the factor in 
accidents) by itself shows how many times the factor has been 
involved in accidents but does not show how frequently the 
factor has occurred (in accidents and incidents). Similarly, 
incident support of a factor only indicates how many times the 
factor has occurred in incidents without an indication of the 
factor’s role in accidents. In some cases, a factor seen 
frequently in incidents might rarely be involved in accidents. 
This means the factor is not a significant accident factor. One 
explanation could be that the factor could be stopped from 
leading to accidents once it occurred.  

IV. RESULTS

We performed separate analyses on four pairs of datasets, 
each pair consisted of accident reports and their corresponding 
incident reports in one of the four incident databases. The 
results of the analyses were compared at the end. Below are 
major findings of the study that were consistent across the 
multiple analyses of incident/accident database pairs. 

A. Combination of factors 

Factors are more likely to yield to accidents (rather than 
incidents) when they are combined together. Ranking of the 
results by the Factor Support Ratio showed that likelihood of a 
factor being involved in an accident rises as more factors co-
occur with the factor. For example, the Support Ratio for 
combination of pilot+airport factors was 7.2 compared to the 
Support Ratio of 3.9 for the pilot factors, signifying that pilot 
factors combined with airport factors are 1.8 times more likely 
to results in accidents than the pilot factors alone.  

B. Company factors 

Company factors are referred to factors such as mistakes by 
the company (or airline) personnel, inadequate or non-existing 
procedures by the company for performing a task, and lack of 
management by the company management. The analyses 
identified these factors as significant accident factors. Ranking 
of the results by their Support Ratios identified company
factors as the highest ranked category of accident factors 
among the eight categories of factors in the data. 

C. ATC factors 

The analyses identified Air Traffic Control (ATC) factors as 
the next highest ranked category of accident factors following 
the company factors. Among the ATC factors, ATC

communications are identified as the most significant sub-
factors associated with accidents. ATC communications refer to 
factors such as controllers issuing traffic advisories, controllers 
providing weather information to the pilot, and controllers 
checking for correct readback of instructions by the pilot. 

D. Pilot factors 

Pilot factors are more frequent than other factors in 
accidents but they are also more frequent in incidents and 
therefore their Support Ratio is lower and ranks them after the 
company and ATC factors. Among the pilot factors, visual 
lookout is identified as the most significant pilot sub-factor. 

E. Aircraft factors 

Aircraft factors are referred to mechanical problems with 
the aircraft or its components and systems. Examples are 
problems with landing gears, flight control systems, and 
wings. Without presence of other factors, aircraft factors are 
identified as incident factors, meaning that they are more likely 
to cause incidents than accidents when occurring alone. But 
when aircraft factors are combined with other factors, such as 
severe weather or pilot errors, the combination becomes an 
accident factor. 

V. CONCLUSION

We further studied the results in the context of the historical 
databases where data was available. The data over a ten-year-
period (1995-2004) showed that pilot and aircraft factors are 
decreasing and Air Traffic Control (ATC) factors are 
increasing (see figures 6, 7, and 8).  The operational error 
reports in the OED database show that ATC factors are 
influenced by a variety of conditions, referred to as complexity 

factors. The data available to us included eleven of these 
complexity conditions: airspace design, emergency event, 

controller experience, flow control, number of aircraft, 

runway conditions, runway configuration, terrain, special 

event, weather, and other. The ten-year historical data showed 
top-most frequent complexity conditions influencing the ATC

factors are number of aircraft, airspace design, runway 

configuration, and controller experience.
    

Pilot and ATC factors in ASRS reports

y = -1.8523x + 123.82

y = 2.2041x + 35.628
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Figure 6. Incident rates containing pilot and ATC factors, in the ASRS 
database 
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aircraft factor in FAA/AIDS incident reports

y = -0.7948x + 15.171
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Figure 7. Rate of the incidents containing aircraft factors, in the AIDS 
database 

Aircraft problem reports in SDRS database
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Figure 8. Rate of incidents containing aircraft factors, in the SDRS database  

   The number of aircraft complexity condition can be 
expected to rise even further considering the continuous 
growth of air transportation projected by the FAA [15]. The 
projected growth will impact Runway configuration and 
airspace design complexity conditions indirectly. With an 
increased volume, airports will have to use runway 
configurations that accommodate more departures and arrivals. 
Difficulties with the airspace design, such as limited space for 
complying with altitude changes when moving the aircraft 
from one airspace to the other, will be aggravated when there 
are more aircraft in the airspace. The controller experience
will also be impacted by the projected growth, since more 
controllers will be needed to handle the increased operations. 
In addition, the number of controllers retiring in the past few 
years has exceeded the projections [16] and a large number of 
existing controllers are expected to retire within the next few 
years [17]. FAA plans to hire over 1,000 controllers per year 
for the next 10 years. The current experienced controllers will 
be replaced with a new generation. 

   Considering the accident factors identified in this study, 
the projected growth in air transportation and the consequent 
aggravation of the conditions affecting the accident factors, 
accident rates can be expected to increase beyond their current 
levels unless changes are made to current conditions. 

VI. FUTURE WORK

The study conducted here is a starting point for further 
research on the relationships between accidents and incidents 
and identification of more detailed accident factors. As a 
continuation of this study, the methodology applied here can be 
applied to other safety databases that were not available to this 

study, such as the Aviation Safety Action Program (ASAP) and 
Flight Operations Quality Assurance (FOQA) databases 
maintained by airlines. These databases offer safety data which 
could yield to discovery of more detailed accident factors. In 
addition, upon availability of more detailed data, the approach 
in this research can be taken one step further to study patterns 
of factors within each of the identified categories. 

This study covered accidents and incidents pertaining to 
commercial flights within the United States. A similar study 
could be conducted on the General Aviation (GA). Depending 
on the availability of the data, the studies could be extended to 
regions in other countries as well. 
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Abstract— This paper describes an investigation into ATC 
complexity as a contributory factor in changes of safety level. 
ATC complexity, together with equipment interface and 
procedural demands comprise the task demands on the 
controller; subsequent controller activities are mediated by 
performance shaping factors to create workload. In order to 
establish a link between ATC complexity, a controller’s 
subjective workload and safety, complexity factors are 
identified and subsequently related to both workload and 
safety indicators. The studied data comes from a real-time 
simulation using controller-pilot data-link communication 
(CPDLC) technology, recently completed at EUROCONTROL 
CRDS in Budapest.   

Keywords - ATC complexity; task demands; controller’s 
activity; workload; safety  

I. INTRODUCTION

The EUROCONTROL Statistics and Forecast Service 
(STATFOR) predicts that in 2025 the number of commercial 
flights in Europe will be between 1.7 and 2.1 times the traffic 
in 2005 [1]. This is an average growth of 2.7%-3.7% per 
year. The most pressing problem facing the European Air 
Traffic Management (ATM), therefore, will be to provide 
sufficient capacity to meet this increased air traffic demand, 
while at the same time the safety level of air travel has to be 
maintained or even improved. Airspace capacity that lags 
behind air traffic demand inevitably leads to flight delays, 
which in turn means an economic loss to airlines.  
In the current air traffic control (ATC) environment the key 
limiting factor to increasing sector capacity is the workload 
of the air traffic controller. Therefore proposed solutions for 
increasing airspace capacity aim at reducing controller 
workload - which includes: the delegation of separation tasks 
from ground to the aircraft (e.g. the free-flight concept [2]), a 
re-sectorisation of the airspace, and the introduction of new 
controller support tools in order to reduce the amount of 
work, or at least the difficulty of the controller tasks. As the 
work of air traffic controllers is foremost cognitive in nature 
a considerable amount of research has been undertaken to 
understand the complex task demands that drive the 
workload of a controller (see [3] for a recent review). The 
term “workload” denotes a subjective quality reflecting the 
individual controller’s perception of the task demand 
imposed on him/her by the current air traffic situation. Thus, 

many studies implicitly assume that controller workload 
varies as a function of both directly measurable air traffic 
factors (number of aircraft in the sector, speed variability, 
proximity of aircraft, etc.) and controller’s activity mediated 
by factors such as the controller's abilities, age, fatigue, level 
of experience, etc. [4].   
As ATC is a safety-critical working environment any 
changes implying an adverse impact on controller workload 
have a direct bearing on flight safety (Fig.1.adopted after 
[4]).  

Figure 1. Simplified scheme of the relationship between ATC complexity 
and safety  

The present paper examines the relationship 
between task demands as defined by a set of ATC 
complexity factors, controller’s actions, subjective workload, 
and safety. For a safety criterion, a metric was used that was 
recently developed as part of the EUROCONTROL 
INTEGRA project [5]. This metric referred to is Propensity 
and is defined as a proxy for the likelihood of a safety 
significant event occurring during normal operations. Thus, 
the present study attempts to predict subjective workload and 
Propensity as criteria on a moment-to-moment basis using a 
linear combination of ATC complexity factors and 
controller’s activity measures as predictors.  

The paper is organized as follows: In the following 
section we will give a brief overview of research on ATC 
complexity and the derivation of task demand metrics from 
which a selection for the purpose of the present study was 
made. A more detailed description of controller’s activity 
and workload measures used in the study follows. Then, the 
INTEGRA safety metric is explained. Next is described the 
real-time simulation experiment which provided the data 
base for the calculation/collection of the predictor and 
criterion metrics. What follows are a description of the 
approach for statistical analysis and the presentation of the 
results. Finally, these results will be discussed and 
conclusions drawn. 

This work is funded by the EUROCONTROL CEATS Research, Development and Simulation Centre (CRDS), Budapest, Hungary.
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II. ATC COMPLEXITY 

A straightforward determinant of controller 
workload is simply the number of aircraft for which the 
controller is responsible in a specified time and sector. This 
measure is referred to as the sector load. Predicting sector 
load and avoiding sector overload is the basic tool upon 
which current traffic flow management is built. However, the 
level of difficulty experienced by the controllers depends on 
additional factors beyond the number of aircraft present in a 
sector [6].  To be able to capture more accurately ATC 
complexity, it is necessary to take into consideration also 
flight characteristics of each individual aircraft as well as 
interactions between pairs of aircraft. Important flight 
characteristics of aircraft relate to instantaneous changes of 
the state of the aircraft, e.g. changes in altitude, heading or 
speed. Interactions between aircraft are considered not only 
in terms of potential conflicts but also include the pattern of 
how aircraft converge and the degree of what in [7] has been 
referred to as the disorder among aircraft, i.e. the variability 
in headings and speeds of aircraft. Despite the fact that ATC 
complexity has been the subject of a significant number of 
studies (see [3] for a recent review), and many complexity 
factors have been proposed, up to now a comprehensive and 
generally accepted set of measures has not been defined yet.   
For the purpose of the present study, a list of complexity 
factors was selected that has been consistently found to be 
important and for which detailed calculation formula have 
been reported. The factors were partially elicited from work 
described in [8 - 12]. 

The selected overall set of 24 complexity factors is 
presented in Table I. It is out of the scope of this paper to 
describe all 24 factors in detail. For a more thorough review 
of the listed factors readers are referred to the indicated 
source literature. 

III. CONTROLLER ACTIVITY – LINK BETWEEN TASK 

DEMANDS AND CONTROLLER’S WORKLOAD

Even though task demand factors can capture one 
aspect of the ATC situation, it should be kept in mind that 
ATC is a dynamic environment and that controllers actively 
interact with the traffic, and therefore have an important 
influence on ATC complexity and hence the level of safety. 

Several researchers agree that workload is a result 
of such a complex interaction between the task demand and 
the way the controller actively manages the situation (e.g. 
[3], [4], [13], [14]).  Moreover controllers, by performing 
certain activities, regulate the evolution of the task demands 
with the aim of keeping workload at an acceptable level. 
Nevertheless, not all controller tasks are observable. As 
defined by [15], there are four controller tasks while 
managing the ATC situation: monitoring, evaluating, 
planning and implementing the formulated plan. 
Furthermore, out of these four tasks only one is observable, 
and that is the implementation process. It means that by 

taking only objectively measurable (sub)tasks into 
consideration, it is possible to capture only one aspect of 
comprehensive controller activity involved. However, as this 
aspect of the controller’s activity is directly connected with 
changes made by the controller on the ATC situation, we 
considered it sufficient for our study.  
Thus, in the current study, controller’s input (data entries) 
and radio communication were used as the representatives of 
performed controller’s activities (the study is based only on 
the Executive controller data entries, and not Planning 
controller, and therefore no phone communication is not 
considered here). 

TABLE I. COMPLEXITY FACTORS

Complexity Factors Used in 
1 number of aircraft [8], [10], [12] 

2 number of climbing aircraft [8], [10], [12] 

3 number of descending aircraft [8], [10], [12] 

4
number of aircraft with heading change 
greater than 15˚ 

[10], [9] 

5
number of aircraft with the speed change 
greater than 10 knots 

[10], [9] 

6
number of aircraft with lateral distance 
between 0-25nm and vertical separation 
less than 2000ft above 29000ft 

[10], [9] 

7 horizontal proximity measure 1 (C5) [8], [10], [12] 

8 vertical proximity measure 1 (C6) [8], [10], [12] 

9 horizontal proximity measure 2 (C7) [8], [10] 

10 vertical proximity measure 2 (C8) [8], [10], [12] 

11 horizontal proximity measure 3 (C9) [8], [10] 

12 vertical proximity measure 3 (C10) [8], [10] 

13 time-to-go to conflict measure (C13) [8], [10] 

14 variance of ground speed (C14) [8], [10], [12] 

15
ratio of standard deviation of speed to 
average speed (C15) 

[8], [10], [12] 

16 density indicator (mean) [7], [11], [12] 

17 variability in headings (track_disorder) 
(mean) std)

[7], [11], [12] 

18 variability in speed (speed_disorder) 
(mean) std)

[7], [11], [12] 

19 divergence between pairs of aircraft 
(mean)

[7], [11], [12] 

20 convergence between pairs of aircraft 
(mean) std)

[7], [11], [12] 

21-22 
sensitivity indicator (a/c converging-
mean; a/c diverging-mean) 

[7], [11], [12] 

23-24 
insensitivity indicator (a/c converging-
mean; a/c diverging-mean) 

[7], [11], [12] 

IV. THE INTEGRA CONCEPT OF SAFETY METRICS

Within the INTEGRA concept [16] the term Propensity 
expresses the likelihood of a safety significant event 
occurring during the operation of the ATM system. It is 
defined through the probability function of an aircraft about 
its calculated position. Therefore, the interactions between 
aircraft are presented through the interactions between these 
probability functions. Propensity is calculated for each pair 
of aircraft that are within defined cut-off criteria for both 
vertical and horizontal separation. 
If the distance between two aircraft is decreasing, the 
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interaction between their probability functions will be higher, 
and therefore, the value of propensity metric is increasing.  
Additionally, the INTEGRA authors introduced into 
propensity calculation a so-called safety weighting function 
for the pair of aircraft, determined by the distance between 
the two aircraft. The purpose of the safety weighting function 
is to describe the safety significance of proximity between 
aircraft. This weighting function also takes the use of 
advanced tools, the density of air traffic, higher than normal 
information processing loads and severe weather into 
account.  

The propensity defined for an aircraft pair takes 
values between 0 and 1: the propensity tends to 1 when there 
is a major reduction in safety margins and tends to 0 when 
safety margins are assured. More detailed information on the 
propensity metric can be found in the [16]. 

V. THE REAL-TIME SIMULATION EXPERIMENT

1) Simulation  
In order to obtain relevant values, data were recorded during 
a two-week LINK2000+ Small Scale Real Time Simulation 
2 experiment (LINK 2000+ SSRTS2). The aim of this 
simulation was to develop and validate new principles of task 
delegation between the planning and executive controller 
with the aim to best accommodate the Controller-Pilot Data-
Link Communication (CPDLC) capability in an en-route 
environment [17, 18]. The simulation involved three
different sectors of the Central European Air Traffic Services 
(CEATS) airspace. The data used for the present study are 
data obtained for the two busiest sectors simulated.  

2) ATC Complexity measures 
The flight plans and flown trajectories were used as input 
data for the complexity factors calculations. Customized 
software was developed to calculate these values for each 2 
minute time steps.  

3) Controller activity measures 
All inputs made by the executive controller recorded during 
the simulation were extracted. These inputs refer to 
assignments of vertical rate, exit flight levels/planned entry 
levels, cleared flight levels, headings, speed instructions, and 
direct clearances. These were summed across each 2-minute 
time step and across input, resulting in only one measure 
named Actions_SUM. Furthermore, cumulative duration of 
radio calls (= frequency occupancy time per 2-minute time 
step) was calculated as well as the average duration of single 
calls. Altogether, we used three measures of the controller’s 
activity – Actions_SUM, Frequency Occupancy Time and 
Average Radio Duration obtained for every 2-minute time 
steps. 

4) Workload measures  
For the same time steps, controllers were providing workload 
ratings. To collect workload measures during the simulation 
the Instantaneous Self Assessment (ISA) technique as 
operator-subjective metric was applied, where the air traffic 

controller gives subjective ratings of workload. This tool was 
developed by the UK NATS and offers 5 points rating scale. 
On every time step controller can opt a level of workload 
ranging from very low to very high.  

5) Safety measure 
As noted before, the propensity metric was used as the safety 
criterion. The propensity value is calculated using software 
developed within the frame of the EUROCONTROL 
INTEGRA project. The values are obtained for each pair of 
aircraft within a sector unit during the 2-minute time steps. 
Bearing in mind that there was more than one pair of aircraft 
in the sector, it was necessary to extract one value per time 
step. In the study we opted for the maximum value. 

Descriptive statistics of the extracted measures are given in 
table II.  

TABLE II. DESCRIPTIVE STATISTICS OF DEPENDENT MEASURES

 Measures Min. Max. Mean Std. 
Deviation 

Actions_SUM 
(count) 

0.000 13.000 3.320 2.372 

Frequency 
Occupancy Time (s) 

0.000 50.400 23.991 8.779 

Average Radio 
Duration (s) 

0.000 7.200 3.245 0.674 

ISA (rating 1 to 5) 1.000 5.000 2.870 0.736 

propensity_max 
(value 0 to 1) 

0.010 0.976 0.599 0.147 

6) Participants and data extraction procedure 
The LINK2000+ SSRTS2 experiment involved a total of 18 
controllers out of which 6 controllers worked on the two 
sectors considered here. The data used for the statistical 
analysis were derived from these 6 participants only. Each 
controller completed an overall of 8 exercises of 1 hour and 
20 minutes, from which 1- hour recordings were extracted 
for analysis. Scores were derived for every 2 minutes, 
resulting in 30 measurements per exercise. These data were 
obtained for each indicator (ATC complexity measures, 
workload measures and safety measures). The overall dataset 
comprised 6 (controllers) x 8 (exercises) x 30 (time 
segments) = 1440 measurements for each indicator. Prior 
inspection of the data set revealed that during the whole 
simulation (all 8 exercises) one of the six controllers always 
rated workload as 'fair', hence there were no variations in 
workload measure. The data of this participant was discarded 
from the analysis, with 1200 measurements remaining. In 58 
time segments (4.8%) data was missing. Therefore, 
subsequently reported results are based on measurements 
obtained in 1142 time segments. 

VI. STATISTICAL EVALUATION AND RESULTS

A. Principal Component Analysis 

In a first analysis step, a Principal Component Analysis 
(PCA) on all 24 complexity metrics was computed in order 
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to derive a reduced number of uncorrelated predictor 
variables for the subsequent computation of regression 
models.  
Principal components having an eigenvalue > 1 were 
extracted and subsequently rotated using the VARIMAX 
method. This analysis resulted in the extraction of 8 principal 
components that accounted for 67.26 % of the total variance 
in the metrics. The table III. displays these components 
sorted by the sizes of their eigenvalues and along with the 
percentage of variance they account for. By inspection of the 
pattern of loadings given in the 8 component x 24 metrics 
matrix, the following components meanings could be 
derived. Note, that the loading of a given metric on a given 
component is equivalent to the correlation between that 
metric and that component. Therefore, the metric with the 
highest loading by and large guides the interpretation of the 
component.  

TABLE III. RESULTS OF THE PRINCIPAL COMPONENT ANALYSIS  

Components Eigenvalue 
% of 

Variance 
Cum. % of 
Variance 

Comp.1 4.935 20.563 20.563 

Comp.2 3.442 14.343 34.906 

Comp.3 1.775 7.395 42.301 

Comp.4 1.450 6.042 48.343 

Comp.5 1.344 5.602 53.944 

Comp.6 1.129 4.706 58.650 

Comp.7 1.036 4.316 62.966 

Comp.8 1.030 4.291 67.257 

Comp.1 – ground speed variance and
divergence/convergence: strongly related to the variance of 
the ground speed (0.884) and the ratio of the standard 
deviation to the mean ground speed (0.845). Also, the strong 
correlation with divergence and convergence factors (0.787 
and 0.785 respectively) was recognised, which is in 
compliance with speed significance, as divergence/ 
convergence factors actually measure how fast aircraft are 
moving toward/from each other.  

Comp. 2 – aircraft count: this component has the strongest 
correlation with the number of the aircraft in the sector 
(0.816)  

Comp. 3 – horizontal proximity: this component can be 
considered as addition to the previous one, as it shows high 
correlation with the horizontal distance between aircraft 
taking into consideration the aircraft count - horizontal 
proximity measure (C5) : 0.894 and density_mean: 0.815 .  
Together these two components (Comp. 2 and Comp. 3) can 
be representatives of so-called sector density.

Comp. 4 – aircraft vertical transitioning: highly correlated to 
the number of descending aircraft (0.785) as well as speed 

change related to this vertical evolution (0.732) 

Comp.5 – conflict sensitivity: this component is loaded 
highly by both sensitivity indicators (Sd+(i):0.772 and Sd-(i):
0.751). Sensitivity is related to the gradient of the relative 
distance between aircraft. This indicator measures the change 
in terms of relative distance in response to changes in speed 
and heading of the involved aircraft. If sensitivity is high 
only small changes in heading and speed imply a high impact 
on relative distance. This is the case, e.g. when two aircraft 
are heading towards each other.  The sensitivity indicators 
are designed to set a weight on potential conflicts that are 
difficult to solve (see 12]. Note that a situation with high 
sensitivity is easier to resolve for the controller than one with 
a low sensitivity [7].   

Comp.6 – insensitivity: This component is strongly related to 
the insensitivity indicators both for convergence and 
divergence of the aircraft (insen_c: 0.723 and insen_d:
0.686). It is not simply an analogue with the opposite 
direction to the previous component. High insensitivity is 
given for a pair of aircraft when the degree of convergence is 
high while sensitivity for convergence is low.    

Comp.7 – vertical separation: high correlation with the 
measure of the vertical separation of aircraft in close 
horizontal proximity (C10) defines this component (0.849) 

Comp.8 – horizontal separation: analogously to the previous 
component, this component is defined based on the 
correlation with the measure of horizontal separation of the 
aircraft in close vertical proximity C9 (0.908).  
The PCA yielded 8 component scores for each two-minute 
interval which were used as predictors in the subsequent 
multiple regression analyses. 

B. Multiple Regression Analyses  

Two sets of multiple regression models were computed. The 
first set was performed to assess the effectiveness in 
predicting ISA workload ratings on the basis of ATC 
complexity and controller activity metrics. The second set of 
multiple regression analysis assesses the effectiveness of 
predicting propensity using ATC complexity, controller 
activity and ISA workload ratings as predictors.  
1) ISA regression models 
Instead of using the stepwise linear regression involving all 
predictors, we first compared two alternative multiple 
regression equations to fit the data. For the first multiple 
regression equation all 8 component scores were forced into 
the model regardless of their single significance. In the 
second equation the 3 activity metrics entered the equation. 
This was done in order to assess the contribution of ATC 
complexity components in relation to the controller activity 
metrics. Table IV contains the global statistics of these two 
equations. It can be seen that the first equation containing 
only complexity components yielded a multiple R of 0.36 
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corresponding to R2 of 0.13 or in other words corresponding 
to 13% of variance of the ISA workload ratings. Adding the 
controller activity measures in the second equation 
contributed to a significant increase in the multiple R 
although it increased the percentage of variance explained by 
only 3% to a total of 16%. Therefore, it can be concluded 
that both sources of information, ATC complexity and 
controller activity, have a unique contribution to the 
prediction of ISA workload ratings. 

TABLE IV. COMPARISON OF ALTERNATIVE MULTIPLE REGRESSION 
MODELS FOR PREDICTION OF ISA 

A final multiple regression model was computed using 
traditional stepwise linear regression approach in order to 
identify those predictors that are responsible for the 
significant contribution to workload prediction. This model 
we refer to as the optimised model as all insignificant 
variables have been removed. The parameter statistics of this 
model is given in Table V. The model consists of 8 
parameters (Comp.1 – Comp.6, Frequency Occupancy Time 
and Average Radio Duration) 

TABLE V. PARAMETER STATISTICS OF THE OPTIMISED MODEL  FOR 
THE PREDICTION OF  ISA WORKLOAD RATINGS

B Std. 
Error 

Beta t Sig. 

Comp.1 0.052 0.020 0.071 2.596 0.010 

Comp.2 0.102 0.021 0.139 4.921 0.000 

Comp.3 0.101 0.020 0.137 5.009 0.000 

Comp.4 0.092 0.020 0.124 4.561 0.000 

Comp.5 -0.147 0.021 -0.200 -7.166 0.000 

Comp.6 0.074 0.020 0.100 3.676 0.000 
Frequency 
Occupancy 
Time 0.012 0.003 0.142 4.627 0.000 
Average Radio 
Duration -0.182 0.033 -0.164 -5.488 0.000 

The stepwise regression analysis revealed that the first 6 out 
of 8 complexity components remained in the prediction 
model. The components that showed the strongest correlation 
with ISA ratings are Comp. 3 and Comp. 5 which consider 
horizontal proximity and the conflict sensitivity. The higher 
horizontal proximity, i.e. the closer the aircraft in the 
horizontal plane, the higher was controller workload. When  
sensitivity of the conflict increased, the workload ratings of 
the controller decreased, which is consistent with [7].  

Frequency Occupancy Time and Average Radio Duration 
representing the communication load also remained in the 
model. When Frequency Occupancy Time, i.e. overall 
frequency occupancy time is increasing, the workload rating 
is also higher. On the other hand, the increment of the 
average duration shows the decrease in controller’s 
workload.  
2) Propensity regression models 
Analogously to the ISA regression models, we compared 
alternative multiple regression equations in order to evaluate 
how the three sources of indicators (ATC complexity, 
controller activity and ISA workload) contributed to the 
prediction of propensity. Four propensity regression 
equations were considered: the first equation contains only 
the scores of the ATC complexity components, two 
“intermediate” equations in addition contain the three 
activity measures or the ISA rating, respectively. The fourth 
equation contains all input variables. The global statistics of 
these equations are shown in table VI. The equation that 
contains only ATC complexity components yields a multiple 
R of 0.53, i.e. accounts for 28% of variance of the propensity 
metric. When comparing the two “intermediate” equations, 
one can see that adding the 3 activity measures to equation 1 
improved the prediction only by 1% (see R2 change in 
equation 2 in table VI), while adding ISA improved the 
prediction by 2%. However, there is no gain in predictive 
power when the measures of controller activity are added to 
equation 3 as indicated by the statistics obtained for equation 
4, the full model.  

TABLE VI. COMPARISON OF ALTERNATIVE MULTIPLE REGRESSION 
MODELS FOR PREDICTION OF PROPENSITY

Regression 
equation 
containing  

mult. 
R R2 R2

change 
F

change df Sig. F 
change 

1.complexity 
components 

0.53 0.28 0.28 55.99 
8,

1133 
0.000 

2. complexity 
components and  
controller's 
activity  measures 

0.54 0.29 0.01 3.63 
3,

1130 
0.013 

3. complexity 
components and 
ISA ratings 

0.55 0.30 0.02 26.05 
1,

1130 
0.000 

4. complexity 
components,  ISA 
and controller's 
activity  measures 

0.55 0.30 0.00 1.83 
1,

1127 
0.139 

Finally, stepwise regression analysis was performed for the 
identification of an optimized model. The parameter statistics 
this model are shown in table VII. The model consists of 5 
parameters (Comp.2 – Comp. 6 and ISA ratings).  

TABLE VII. PARAMETER STATISTICS OF THE OPTIMISED MODEL  FOR 
THE PREDICTION OF  PROPENSITY METRIC

B Std. 
Error 

Beta t Sig. 

Comp.  2 0.027 0.004 0.184 7.268 0.000 

Regression 
equation 
containing  

mult. 
R

R2 R2

change 
F

change 
df Sig. F 

change 

complexity 
components 

0.36 0.13 0.13 21.20 
8 , 

1131 
0.000 

complexity 
components and  
controller's 
activity  
measures 

0.40 0.16 0.03 13.77 
3 , 

1128 
0.000 
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Comp. 3 0.041 0.004 0.280 11.104 0.000 

Comp. 4 0.014 0.004 0.095 3.795 0.000 

Comp. 5 -0.049 0.004 -0.332 -12.924 0.000 

ISA ratings 0.028 0.005 0.138 5.192 0.000 

The Comp.1, which stands for ground speed variance and 
divergence/convergence of the pair of aircraft, did not remain 
in the model. Even though through Principal Components 
Analysis it resulted in highest eigenvalue and accounted for 
20.563% of the total variance in the metric, it did not 
contribute to the prediction of propensity metric. The 
components that showed the strongest correlation with 
propensity metric are Comp. 3 and Comp. 5, i.e. horizontal 
proximity and the conflict sensitivity. Also, of great 
significance are correlations of propensity metric with 
number of aircraft in the sector (Comp.2) and vertical 
movements of the aircraft in the sector (Comp.4). As it could 
be anticipated through the previous comparison of alternative 
regression models, the activity measures did not remain in 
the model. Only ISA ratings contributed to the prediction of 
propensity. 

VII. DISCUSSION AND CONCLUSIONS

The focus of the paper was the investigation of the 
relationship between ATC complexity, controller’s activity 
measures, subjective workload and safety measures. Based 
on the previous work in the field an initial set of 24 
complexity factors was defined. In order to reduce this set, a 
Principal Component Analysis (PCA) was performed, which 
resulted in 8 components. [12] also performed a PCA using a 
set of 27 complexity indicators as input variables. There is a 
big overlap between their and our set of input variables (see 
complexity factors that is used also in [12] in table I). 
However, their data was extracted in one-minute time steps 
from real traffic recorded in a total of 103 sectors across one 
day of traffic. Their PCA revealed 6 components (using the 
same extraction criterion of eigenvalue > 1 as in the present 
paper) that accounted for 76% of the total variance. Aircraft 
count had the highest loading on the first component 
accounting for 46.7% of the variance in their PCA which 
corresponds to the second component in the PCA of the 
present study. Comparing the loadings of the complexity 
indicators on the remaining five components suggests that 
the first component of our PCA corresponds to a mix of their 
second, fourth and fifth component. Finally, their sixth 
component is more or less equivalent to our seventh 
component.  Their third component in [12] was correlated 
with a metric representing the degree of incoming sector 
flows, which was not considered here. Therefore, a good 
agreement between the PCA results obtained in our 
simulation study and their real-traffic study can be 
concluded.         
The scores for the eight components were calculated and 
further entered in different multiple regression models in 
order to reveal their correlation with ISA workload measures, 

controller activity indicators and INTEGRA propensity as a 
safety measure.  
First of all, it was found that subjective controller workload 
as measured by the ISA ratings depends on additional factors 
rather than only on aircraft count. This is in agreement with a 
couple of other studies (e.g. [7], [9], [12]). 
The results suggested that subjective workload hinges on 
other aspects of the ATC complexity as well as on the 
communication load of the controller. Both the total 
frequency occupancy time and average radio duration 
significantly correlate with ISA workload ratings. Moreover, 
as it was hypothesised in [19], the present study suggested 
that the average time for an individual communication is 
negatively related to workload. In other words, the amount of 
time that a controller spends on a single communication 
should decline as the situation gets busier.  

Furthermore, the results of the propensity regression model 
provided some insight into the construct validity of this 
metric in the sense that we first can pinpoint what aspects of 
the sector situation influence the degree of propensity, and 
second, in what way propensity is related to subjective 
workload and measures of controller activity. Four 
complexity components were found to be correlated with 
propensity: aircraft count, horizontal proximity, vertical 
transitioning, and conflict sensitivity. It is assumed that it is 
due to the calculations of the propensity metrics which relies 
on the calculated position of aircraft rather than their speed, 
the latter being reflected in component 1 of the PCA.  

It is still an issue for further validation to demonstrate that 
propensity is a valid safety metric. This should be taken into 
account in future work, which should consider also other the 
actual occurrence of safety critical events into account.  
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The assessment of local aircraft crash risks in the vicinity of 

airports is of primary importance in numerous safety studies 

relating to the determination of Third Party Risk due to aircraft 

accidents. This paper presents an approach of determining local 

aircraft crash rates by means of a cluster analysis. This statistical 

method detects similarities between airports in consideration of 

safety relevant parameters.      

Safety, aircraft crash risk, accident ratio, External Risk, 

similarity analysis, cluster analysis  

I. BACKGROUND

A. Introduction 

In the context of planning approval procedures at many 
major European airports, safety relevant issues today gain 
increasing importance over e.g. noise or environmental issues. 
When analyzing the safety in air traffic, one essential model for 
airport related safety studies is the determination of External or 
Third Party Risk, that is the risk of death due to an aircraft 
accident for people who do not participate in the air transport 
system, generally people living or working in the vicinity of an 
airport.

Despite the lack of regulations relating to External Risk in 
most European countries (with the exception of The 
Netherlands and Great Britain), determining External Risk 
becomes a central instrument for evaluating risks due to aircraft 
accidents for people living around airports.  

The External Risk model consists of three sub-models:  
the accident ratio (AR), the accident location (AL) and lastly 
the accident consequence (AC) sub-model. The scope of this 
paper is the accident ratio sub-model, for which a statistical 
method of determining a local accident ratio for a specific 
airport by means of cluster analysis is presented.

In order to further clarify the topic the following section 
gives an introduction into the External Risk model itself. 

B. The External Risk Model 

The External Risk (ER) expresses the statistical potential of 
a human being receiving fatal injuries as the result of a severe 
aircraft accident or its potential consequences in form of 
secondary effects on the ground (damages to an industrial 
plant, for example). This potential is important around airports, 

because the operational accident risk for aircraft is highest 
during takeoff and landing and so ER calculations generally 
refer to an airport. The term external refers to the fact that the 
risk is calculated for those people who are not formally 
participating in the air transport system during a given time 
period. Typically, this is the population residing in the area 
around that airport, or people who work there (employees). 
More precisely, these are people located at least temporarily 
within a selected investigation area around the airport.  

The External Risk effectively consists of two types of 
measurable risk figures, the local or Individual Risk and the 
group or Societal Risk: 

The Individual Risk is the probability of an imaginary 
person being killed in a particular location within the 
investigation area as a result of an aircraft accident 
during a period of one year. It is therefore not 
important to know whether a person is actually present 
or not.  

When calculating risk, it might additionally be 
important to consider the population that is actually 
present and the distribution of this population around 
the airport rather than an imaginary person. 
Calculations are made in order to determine the size of 
the risk of one or more simultaneous casualties within 
this population. This probability of a disaster of a 
certain size is known as the Societal Risk.  

The External Risk model furthermore consists of three sub-
models:  

an accident probability model, providing a local 
Accident Ratio (AR) for fatal aircraft accidents 
according to the definitions given in ICAO Annex 13 
[1], 

an accident location model, providing an Accident 
Location (AL) distribution probability function 
referred to the Air Traffic Route System and linked to 
a runway and/or threshold, and

an accident consequence model, providing the local 
Accident Consequence (AC) Area with regard to local 
terrain and industrial site details.  
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With these three sub-models and all required airport related
parameters (e.g. movements per departure/ arrival route, traffic
mix, industrial sites) Individual Risk will be calculated and 
shown in individual risk contours around the airport area.
Following Figure 1 demonstrate such individual risk contours
as an example at an imaginary airport: 

Figure 1. Individual Risk

With information about population density (residents/
employees) within the investigation area (usually an area of 40 
km x 40 km centred in the airport reference point) societal risk
will be calculated as so called F/n- curves.

As an essential element of External Risk calculation, the
accident ratio sub-model and current approaches for calculation 
are described more precisely in the following chapter II. 
Furthermore in chapter III is presented an alternative approach 
of assessing a local accident ratio at a certain airport by means
of statistical analysis.

II. CURRENT METHODS OF LOCAL AR DETERMINATION

A. Definition of local Accident Ratio

Generally, aircraft crash risk may be assessed by using
theoretical models which would use the measured probabilities
of all possible causal factors to predict the probability of a
crash. However, such a theoretical approach is very 
problematic, since aircraft accidents are usually the result of a
combination of many separate causal factors with unknown
probabilities and complex interrelationships. An alternative
method is to use empirical data on accidents and on aircraft 
movements to calculate aircraft crash risks. This non-causal
approach assumes that the historical accident ratio will 
continue into the future, which, if there are future safety
improvements, as they are currently aimed by the SESAR 
Consortium [2], may lead to an overestimation of accident ratio 
in future years. 

The accident ratio itself is defined as the probability of an 
aircraft accident per movement and is calculated by dividing
the number of accidents in a certain time period by the number
of relevant movements within this period:

MovementsOfNumber

AccidentsOfNumber
AR

Because crash probabilities differ considerably between 
airports, a selection of data from the available worldwide
accident data is required to make the accident ratios suitable for 
a specific airport.

Many sources provide global AR values, calculated by a 
simple division of worldwide accidents by worldwide 
movement data. For example the “Statistical Summary of 
Commercial Jet Airplane Accidents” annually published by
Boeing [3] provides a good overview about the global AR per
year in worldwide commercial operations, as well as a trend in 
global AR.

But this global AR may not be valid for a specific airport;
in fact, a local AR differs from the global AR, depending on
the airport, because there are numerous factors which influence
the safety within a certain investigation area (certain airport) 
and lead to a local accident crash probability.

Calculating a local accident crash probability suitable for a
specific airport may be done in many different ways. The
current essential (more or less standardized) methods, which
are used by several national organizations to determine local
aircraft crash risks (e.g. for calculating External Risk), are 
presented in the following sections.

B. NATS -Method

The National Air Traffic Services (NATS) of the United
Kingdom uses an AR Model specific for generic aircraft 
groups within their model of Public Safety Zone (PSZ)
calculation [4]. On an empiric basis, crash rates per classified
aircraft group will be calculated.

The NATS defines a classification of aircrafts according to 
their type of engine (jets, turboprops and piston-engine), the
region of their manufacturer (eastern, western) and their date of
first delivery. The essential breakdown of aircraft classification 
is therefore: 

Class I western airliner jets (e.g. Boeing B707, Comet)

Class II – IV western airliner jets (Boeing B727, B747,
Airbus A310, etc.)

Other jets (Eastern Jets / Executive Jets) 

Turboprops (western airliner Turboprops before 1970/
after 1970, unclassified Turboprops)

Piston-engine

By means of historical aircraft accident data and statistics,
NATS calculates an AR for every group of aircraft and with
knowledge about the share of every aircraft group in the traffic
mix at a certain airport, the overall AR for this certain airport
can be calculated.

For most of the major, worldwide airports the current
traffic-rate of modern western airliner jets (Class II – IV) is
more than 95% and the share of e.g. eastern jets or older
turboprops is marginal. So, according to the NATS-method this 

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9200



approach would calculate nearly the same overall AR for every 
major airport.  

This approach is therefore not very useful for calculating an 
AR suitable for a specific airport, because a causal 
differentiation primarily for major airports is not given. 
Furthermore a differentiated analysis of e.g. the airports Air 
Traffic Control (ATC) infrastructure or operational 
performance which may influence a local AR is not taken into 
consideration.

C. DOE- Standard 

The U.S. Department of Energy (DOE) Standard DOE-
STD-3014-2006 [5] describes a method of risk analysis for 
hazardous facilities due to aircraft crashes. The chosen 
approach is very similar to the method of External Risk 
calculation, as here also the probability of an aircraft crash 
independent from the crash location is one part of the risk 
calculation process.

For near-airport facilities, the aircraft crash rate is 
empirically calculated for accidents during take off or landing 
at a specific airport (close to a hazardous facility) differentiated 
by type of traffic (general aviation, commercial aviation and 
military).  Furthermore, there are some defined sub-categories: 
for general aviation by type and number of engines and for 
commercial operations the two sub-categories: air carrier and 
air taxi.

This classification by type of traffic implies the same 
problem as the classification by aircraft type as favoured by 
NATS: a differentiation for many major airports is not given, 
because one type of traffic is omnipresent (here commercial air 
carrier) and therefore this method would also calculate nearly 
the same overall AR for most major airports.     

D. NLR- Method 

In 1993 the National Aerospace Laboratory of the 
Netherlands (NLR) published the first documentation about 
External Risk Calculation [6]. This document gives, amongst 
others, a detailed description how to determine a local accident 
ratio. Despite of numerous model updates [7] this accident ratio 
model remains more or less unchanged until today. 

The NLR does not evaluate local AR by means of 
classification by aircraft or type of traffic only; in fact it uses a 
method of detecting a certain set of airports similar to the 
airport under investigation by means of expert justice. The 
similarity analysis may differ depending on the airport under 
investigation, but it takes following essential criteria into 
consideration:

ATC Infrastructure (precision/ non-precision
approaches, terminal approach radar, etc.) 

Size of airport (e.g. number of runways) 

Operational performance (annual movements) 

Local geographical peculiarities (e.g. mountainous 
area)

So, the NLR- approach does not include the disadvantages 
of the NATS or DOE method, as it uses more than one 
parameter for the AR assessment. However this expert based 
analysis is a very subjective and irreproducible method, as 
there are no clearly defined selection criteria (this differs 
depending on the airport) and the selection process itself is not 
traceable.

E. Conclusion 

Each of the presented methods for assessing a local aircraft 
crash risk includes certain disadvantages:  the NATS and DOE 
methods do not apply a real similarity analysis, as they only 
take one parameter into consideration and the NLR method by 
means of expert justice is irreproducible. To avoid these 
disadvantages, an alternative method of detecting similar 
airports is presented here. This method takes into consideration 
the operational performance of the airports as well as 
reproducibility, since it is calculated by means of statistical 
analysis.

III. SIMILARITY BETWEEN AIRPORTS, A STATISTICAL 

APPROACH

A. Introduction 

1) AR determination process overview 
A selection of a certain number of airports empirically 

similar to the airport under investigation and the total count of 
accidents at these similar airports has to be quantified to 
determine a local accident ratio.  

So, the first step of determining a local AR is the selection 
of a certain number of similar airports. Here, similarity is 
understood as similar operational performance of the airports in 
terms of yearly passenger traffic, quantity of handled cargo and 
air traffic movements. By means of correlation analyses, it 
could be shown, that the chosen parameters (flight operations, 
cargo, passengers) provide the highest correlation between 
traffic load and traffic safety: a high correlation between the 
available Air Traffic Control Infrastructure, type of traffic at 
the airport (IFR/VFR) and the size of airport, for example, 
could be identified. 

Once a certain set of similar airports is defined, all relevant 
accidents at these airports have to be investigated. The local 
AR for the airport than is calculated as the division of the sum 
of all accidents by sum of all movements. The whole process of 
determining a local AR at a certain airport is presented in 
following figure 2: 
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Accident ratio

Sum of all relevant
accidents

(within investigation period)

Sum of all movements at
similar airports

(within investigation period)

movementsallofsum

accidentsallofsum
AR

List of similar airports

Determine similar
airports

(methods described in Chapter III

and IV)

Airport under investigation
(cargo, movements, pax)

Determine relevant
accidents at similar

airports

Figure 2. AR determination process

In order to estimate crash rates from historical data, it is
necessary to have complete data on airport related crashes and
the corresponding numbers of movements. The following
sections give an overview how to investigate this information.

2) Investigation of traffic data
The first step to determine a local AR, suitable for the 

airport under investigation, is the selection of a certain number
of similar airports. As described above, operational
performance of the airports in terms of yearly passenger traffic, 
quantity of handled cargo and air traffic movements gives a 
good indication for similarity analysis. Therefore these three
parameters for a huge set of airports must be investigated.

The database of the Airports Council International (ACI)
[8] is a very comprehensive source of worldwide airport
operations data. It provides operational data for more than 1500
airports worldwide from 1991 until today and is updated
monthly. As mentioned above, there are three variables:

Number of air traffic movements per year 

Number of passengers per year and

Amount of handled cargo per year.

These three variables are used to filter similar airports
based on the mean value per variable from 1991 until today (17 
years) for each airport. This period was selected to provide an 
empirically stable reference data set while taking into
consideration the poor data quality of the 80ies decade. 
Furthermore for validation of the analysis results, the data used 
should be applicable to current aviation which implies that only
recent data should be taken into account. 

The similarity selection process itself will be performed by 
means of statistical methods and is described later in section B
of this chapter.

3) Investigation of relevant accidents
In order to determine relevant accidents at the identified

similar airports there are various international accident 
databases available. A very comprehensive and easy accessible 
database for worldwide aircraft accidents is the Aviation Safety
Net (ASN) [9]. It covers nearly every aircraft accident having 
occurred during the last 50 years and provides a huge amount
of additional information (e.g. investigation agency, link to full
accident report). Another comprehensive and free online
accessible database is the NTSB- Database [10] which today 
includes more than 65,000 accidents having occurred since
1982.

Accidents taken into consideration should be at least
consistent with following selection criteria:

Occurrence with at least one fatal injured person on 
ground or on board the accident aircraft (according to 
definition of fatal accident in ICAO Annex 13),

Occurrence during take off or landing phase and within
a certain area around the airport (as mentioned above,
usually 40 km * 40 km),

Occurrence within the investigation period (as 
mentioned above, usually about 15 years)

Occurrences not involving sabotage, hijacking or
military action

Depending on the airport under investigation, additional
selection criteria may be defined, e.g. no occurrences with
aircraft below 5.7 to MTOM, if the airport under investigation
does not include this kind of traffic or its traffic count is
marginal.

B. Clusteranalysis in AR- Determination

1) Introduction
Cluster analysis is a multivariate procedure for detecting

natural groupings (clusters) in data. Cluster analysis
classification is based upon the placing of objects into more or
less homogeneous groups, in a manner such that the
relationship between groups is revealed. This means, the 
formed clusters should be internally homogenous (members are 
similar to each other) and externally heterogeneous (members
are different to members of other clusters). Figure 3 below
shows such a clustered dataset by means of a schematic
diagram (note, that the given figure does not represent the true
spread of airports operational performance and grouping, as it
is only used for purpose of clarification):
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Figure 3. schematic cluster diagram

The selection of airports similar to a certain airport is
derived here by a statistical similarity analysis – the cluster
analysis. There are some more statistical methods for such
similarity analyses, but irrespective of the method every
similarity analysis underlies the same diametrical effect: The
higher the number of similar elements (airports) is, the lower is 
the similarity to the reference element (airport under
investigation). This means, the number of similar airports has
to be high enough to achieve a statistically stable data basis for
AR calculation, as well as the similarity to the airport under
investigation has to be given for every considered airport.
Otherwise, a set of e.g. 5 to 10 similar airports may induct a 
high similarity, but it’s not enough to ensure a statistically
stable data base. Therefore, finding a balanced proportion
between the number of airports and similarity measure is of
primary importance.

2) Standardization of  variables
Standardization of variables has to be executed to enable

the comparison of variables to minimize the bias in weighting
which may result from differing measurement scales and 
ranges.

The variables used for clustering -  the yearly passenger 
traffic, quantity of handled cargo and air traffic movements,
may show very high differences , e.g. depending on the airport
the number of yearly passengers is about 100-times higher than
the number of yearly movements (generally speaking, average
number of passengers per movement). For comparative
purposes and in order not to overestimate the passenger
variable, every variable has to be normalized before starting the
cluster algorithm. The best method of normalization for the
chosen approach is the so called Z- Transformation, which
results in a mean value of zero and a variance of one for each
variable:
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3) Clustering with Ward’s linkage
Generally, hierarchical cluster analyses are comprised of 

agglomerative and divisive methods. The divisive methods
start with all of the observations in one cluster and then
proceed to split (partition) them into smaller clusters. The
agglomerative methods initially consider each observation as a 
separate cluster and then proceeds to combine them until all 
observations belong to one cluster. The here applied cluster
algorithm is of agglomerative nature.

The two key steps within cluster analysis are in the first
place the measurement of distances between objects and 
secondly to group the objects based upon the resultant
distances (linkages). The distances are a measure of similarity
between objects and may be measured in a variety of ways, e.g. 
as Euclidean distance. The criteria used to link (group) the
variables may also be undertaken in a variety of manners, as a 
result significant variation in results may be seen. Linkages are 
based upon how the association between groups is measured.
Four of the better-known algorithms for hierarchical clustering
are average linkage, complete linkage, single linkage and
Ward's linkage. Ward's is a popular default linkage which
produces compact groups of well distributed size. The final
algorithm according to Ward’s procedure is applied here: it 
uses an analysis of variance approach to evaluate the distances 
between clusters. This method is regarded as very efficient for
the existing approach, as it forms clusters of approximately the 
same size. 

Ward's linkage is a specific weighting method applied in
the hierarchical cluster analysis. The linkage function
specifying the distance between two clusters is computed as the 
increase in the error sum of squares (ESS) after fusing two
clusters into a single one. Ward's Method seeks to choose the
successive clustering steps so as to minimize the increase in 
ESS at each step. 

The ESS of a set x of Nx values is the sum of squares of the
deviation from the mean value xm. For a set x the ESS is
therefore described by the following expression:

xN

i

mi xxxESS
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The distance or linkage function for the distance between
the two Clusters X and Y is described as:

)]()([)(),( YESSXESSXYESSYXD  (

with XY being the combined cluster resulting from fusion
clusters X and Y. So, the distance function describes the
increase in ESS by fusing Cluster X and Cluster Y into one 
combined cluster XY.  This distance function has to be
calculated for every combination of clusters within the dataset
and put into the so called distance matrix. The minimum
increase in ESS between two certain clusters marks the next
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agglomeration step. The two clusters with minimum increase in
ESS will be combined into one cluster.

The essential process of agglomerative clustering with
Ward’s method is presented in following figure 4:

Fusing of these two clusters into one

Searching for the two clusters with
lowest increase in ESS

Determination of first distance
matrix

Determination of new distance
matrix

All airports within
one cluster?

End

Yes

No

Start with finest partition
(every airport is one cluster)

Figure 4. Process of agglomerative clustering

The results of the applied cluster analysis may be presented
as a so called dendogram. This presents the fusion of clusters 
per cluster step as shown in the following Figure 5, at an 
imaginary example:

Figure 5. Dendogram – an imaginary example

As seen, within the first step of cluster analysis, airport 8
and airport 2 will be combined to one single cluster and step

three indicates the first clustering of the reference airport
(combined with airport 4). Within step 6 the master cluster
contains 5 airports and within step 8 all airports belonging to
one cluster, which marks the end of the cluster agglomeration.

This imaginary example also shows the difficulty of setting
the best point of interrupting the cluster algorithm.
Theoretically every cluster step reaching the minimum count of 
similar airports may be chosen as final cluster step.

4) Interrupting the Analysis
Once the similarity threshold through a minimum reachable

data variance is reached, that cluster will be set to the master
cluster, which contains the reference airport. All other airports
belonging to the master cluster form the set of data that will be 
used in calculating the AR. 

Detecting this similarity threshold (finding the best point of
interrupting the cluster agglomeration) may be unfrugal. As 
described earlier there must be a balanced proportion between
the number of similarity airports and similarity measure. The
higher the number of included airports in the master cluster is,
the lower is the similarity to the reference airport. A statistical
method for finding this point may be the so called F-test, which
provides an indication about the homogeneity of a certain
group of airports. Therefore for each step of the cluster 
agglomeration the F-value for each variable of the reference
cluster has to be calculated as the quotient of variance of 
reference cluster and variance of the entire data set: 
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With:

V(J,G) = variance of variable J in group G 

V(J) = variance of variable J in the entirety

With variance defined as:
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As a result, it has to be mentioned that the smaller the F-
value is, the higher is the homogeneity of the reference cluster.
A cluster has to be considered as homogeneous if the F-value
for each variable is not bigger than one. 

Generally, every cluster step can be chosen as final master
cluster, whose F-value is lower than one and whose reaches a
minimum sample size (from experience more than at least 20
airports). Practically, this cluster step should be used which
marks the similarity threshold: where the F-value for each 
variable is still slightly below one and within the next cluster
step one of the variables would exceed an F-value of one.

C. Summary

Once this similarity threshold is defined, all airports
belonging to the master cluster within the derived cluster step
can be set as similar airports. Afterwards all relevant accidents 
at these airports in the given time period have to be
investigated as well as the total count of movements at all
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airports in the given time period to determine a local accident
ratio, suitable for the airport under investigation.

Note, that the given mathematical descriptions in this paper
do not represent the full Ward’s cluster algorithm, as the
determination process of such multivariate clustering process is
much more complex. The full mathematical process is 
documented in a comprehensible way in various statistical
volumes (e.g. [11], [12]). Presenting the full cluster algorithm,
would go beyond the scope of this paper, nonetheless it could
be shown that the application of a cluster analysis is a good 
instrument for detecting similar airports.

The following chapter IV gives an overview of the results
of a hierarchical cluster analysis conducted according to the
method described above, in order to identify prevailing trends.

IV. RESULTS

Based on the described method of airport clustering a
cluster analysis was performed by using traffic data from the
ACI- airports data base [8]. From this database airports with
more than 30,000 movements per year (mean value from 1991
to 2006) and with traffic data from at least six out of 17 years
per variable were selected. Within these selection criteria a
dataset of 398 worldwide airports was used as input value for
the cluster analysis. 

The cluster analysis was performed without a reference 
airport, as the results should not be used for determination of a
single AR for a specific airport, but should be used for
identifying prevailing trends and correlations between traffic
load and AR.

As a result, several clusters that reach a minimum sample
size of at least 20 airports and with an F- value lower than one
could be found. For each of the 398 airports within these 
clusters all relevant accidents were examined by using various
international accident databases (e.g. [9], [10]).  Following
Table I present four clusters as an example:

TABLE I. SAMPLE OF AIRPORT CLUSTER

Sample of airport cluster 

Cluster- No. 1 7 9 11

No of airports 54 111 35 21

movementsa 132,252 102,266 215,236 430,603

cargoa 156,436 27,016 331,266 338,934

passengersa 8,684,462 2,600,680 17,040,752 24,767,204
No of accidents 
(last 17 years) 23 95 8 9
AR

[per movement]
1.89E-07 4.92E-07 6.25E-08 5.85E-08

a. mean value per airport and per year  (last 17 years)

Based on these “characteristic” clusters, a correlation 
between traffic load and accident ratio was to be verified. 
Therefore, a large amount of random airports with typical
passenger/ movement ratios and cargo/ movements ratios were 
produced and based on the determined clusters a local AR was
calculated for each of these airports.

Finally, it could be found that the higher the number of 
movements (respectively passengers and cargo volume) is, the
lower is the number of accidents per movement. Generally 
speaking, a decreasing AR by increasing traffic volume could
be detected. 

Following Figure 6 gives an example of this general trend,
for imaginary airports with a passenger/ movement ratio of 60
(60 passengers per movement) and a cargo/ movement ratio of
1.25 (1.25 t cargo per movement):
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Figure 6. Decreasing accident ratio with increasing traffic volume

As seen in Figure 6 the AR values ranges between 5*10-7

per movement and 5*10-8 per movement, with a significant
decreasing trend. 

This decreasing trend may be due to the increasing
navigation infrastructure (ILS Equipment, RNP-RNAV
procedures, etc.) and increasing professionalism of all
stakeholders with increasing traffic volume. On the other hand
the results lead to the assumption that the complexity of the
airport layout (e.g. numbers of runways) does not have a
negative influence on the local accident ratio. However, more
research is needed to identify all underlying causes for this
decreasing trend.

V. CONCLUSION

The aim of the applied hierarchical cluster analysis is to
achieve a reproducible, statistically based algorithm of
detecting airports which are empirically similar to a certain
airport, in order to assess a local accident ratio for this airport.

The cluster analysis is a well known statistical grouping
method and applied for the given problem it gives a very good
indication which set of airports can be assumed as similar to a 
specific airport under investigation. In terms of a legalization
of External Risk calculations, a fully expert based analysis of 
similar airports (as favoured by the NLR), which is 
irreproducible and subjective method, may not lead to a 
legalization process, as it is not a specific and standardized
calculation method. The applied cluster analysis avoids this
disadvantage by means of a statistical and reproducible
algorithm.

Finally a cluster analysis was performed, that uses traffic 
and accident data of nearly 400 worldwide airports. It could be
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found, that the higher the number of traffic volume at a specific 
airport the lower is the number of accidents per movement. 
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Abstract—The purpose of this paper is to provide a framework
based on hybrid systems theory for safety modelling in air
traffic management applications. This framework can be used
to represent complex multi-agent applications in which a wide
set of possible abnormal scenarios has been considered. In the
aviation context possible catastrophic events can take place due
to an error of a single agent involved in the procedure. It will
be shown how the hybrid system framework allows a description
and detection of these errors and their effects on the evolution
of the procedure. At first it is proposed a description of the
ASEP-In Trail Procedure which has been chosen to illustrate
the methodology. Then, a general view about hybrid systems is
proposed in order to explain the mathematical environment. Once
basic concepts have been introduced, the hybrid model of the
ASEP-ITP is explained and the concept of critical observability
is introduced. Finally, an hybrid observer is proposed in order
to detect unsafe situations associated with the hybrid system
evolution.

Index Terms—Safety Modelling, Hybrid Systems, Critical Ob-
servability, Air Traffic Management, In Trail Procedure.

I. INTRODUCTION

THE volume of air traffic in the oceanic airspace is

quickly increasing inducing the necessity of an improved

efficiency in the management of the air traffic flows along

these routes. The new procedures that are developed to satisfy

this necessity have to increase capacity without affecting

safety. This has to be proved using advanced methods. The

complexity of the safety analysis of new procedures comes

from the specific structure of the environment on which

they are applied. The main aspect to be considered is that

operations are the result of interactions between many entities

of various types and at multiple locations. Furthermore the

air traffic management systems are characterized by a mixed

environment with human-controlled and computer-controlled

subsystems the behaviors of which evolve following com-

pletely different logics that cannot be represented using the

same class of mathematical models. This complexity can easily

be modelled by means of agents in the context of hybrid

system theory. Each decision taken by a single agent, either

human operator or computer aid, influences the actions of

all other agents involved. An hazardous decision induced by

a wrong situational awareness can then be reflected into a

catastrophic event. When modelling this kind of multi-agent

systems all the decision making processes of each agent and

their interactions have to be taken into account in order to

identify non-nominal situations and act accordingly to prevent

them to evolve into accidents.

Up to now the methodologies used for safety analysis

can be classified in three main categories which reflect the

temporal evolution of the complexity of airborne scenarios. As

proposed in [5], [6] these categories are Sequential Modelling,

Epidemiological Modelling and Systemic Accident Modelling:

the Sequential modelling represents the accident as the out-

come of a series of individual steps that occur in a given

and (in principle) predictable order, using hierarchies such

as the event tree or networks (Critical Path models or Petri

networks); the Epidemiological modelling describes accidents

as the outcome of a combination of manifest and latent

factors that happen to exist together in space and time; the

Systemic accident modelling considers accidents as something

that must be expected. Systemic models have their roots

in control theory and emphasize the need to base accident

analysis on an understanding of the functional characteristics

of the system rather than on assumptions or hypotheses about

internal mechanisms or cause-effect chains. Systemic models

deliberately try to avoid a description of an accident as a

sequential or ordered relation among individual events or even

as a concatenation of latent conditions.

In this paper we propose to apply a new methodology for

safety modelling that has been developed in [3], [7], [9],

[10]. This methodology is based on hybrid systems theory

that provides a powerful framework to develop multi-agents

models. Using this methodology it is possible to link the

changes of the physical systems behaviour with the actions

made by each agent. These actions can be right decisions

taken by human operators, like pilots and controllers, but also

decisions due to situational awareness errors. In this context

each decision can represent an instantaneous change inside

the continuous dynamics of an agent. Using hybrid model

it is possible to describe the behaviour of single agent by

means of discrete states. Different continuous dynamics that

are associated with each discrete state and represent different

aspects of the behaviour of the agent; the decisions taken

by the agent and by the other agents involved generate the

switches between the different discrete states. In this way, a

complex behaviour of an agent can be suitably represented

with simplified dynamics whose descriptive power is enhanced

using the event-driven discrete systems, without making use

of a more complex mathematical model. Once all the agents

have been modelled, the behaviour of the whole system can
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be analyzed by following the evolution of each agent and, at

the same time, their interactions. In this way non-nominal and

abnormal situations can be identified and subsequently inserted

in the model as an additional state.

The paper is organized as follows. In Section 2 a description

of the In Trail Procedure (ITP) application which has been

chosen to illustrate the hybrid system framework is proposed.

In Section 3, the hybrid model of the airborne procedure is

presented explaining how it describes the procedure’s steps.

In Section 4, the hybrid observability problem is introduced

and a hybrid observer is proposed. Section 5 provides some

concluding remarks.

II. DESCRIPTION OF THE IN TRAIL PROCEDURE

The In Trail Procedure (ITP) is part of the Airborne
Separation Assistance Systems (ASAS) area. ASAS embraces

the goal of improving flight management by introducing a

stronger interaction between pilots and controllers. The In

Trail Procedure (ITP) here considered is envisioned as an

Airborne Separation (ASEP) Application which is one of the

four ASAS application categories. ASEP applications involve

the transfer of responsibilities for the separation from the

controller to the flight crew during the execution of the

procedure. This can happen when the flight crew does have

the most appropriate surveillance equipments (i.e. ADS-B and

ASAS equipment) and is therefore able to monitor separation

and act if necessary.

The ASEP-ITP [1], [2] described hereafter is a procedure

that aims at improving flight efficiency along oceanic routes

where procedural control is performed. The procedure pro-

vides a safe and practical method for air traffic controller

to approve, and flight crew to conduct, climb and descent

through different flight levels with less stringent applicability

conditions than today’s operations.

Fig. 1. Example of ITP geometry

A. ITP Criteria

The ASEP-ITP allows climb or descent through only one

flight level for a maximum of 2000 feet in RVSM airspace (and

4000 feet in non-RVSM) and the ITP speed/distance criteria

are designed so that under nominal conditions the proposed

5NM separation minimum is preserved throughout the ITP

manoeuvre. The proposed ITP speed/distance criteria are the

following:

• initiation ITP distance of no less than 10 NM and positive

ground speed differential of no more that 20 kts, or

• ITP distance of no less than 15 NM and positive ground

speed differential of no more that 30 kts.

Fig. 2. ASEP-ITP phases diagram

The ITP encompasses a set of six vertical geometries: lead-

ing climb (as shown in Figure 1), leading descent, following

climb, following descent, combined leading-following climb

and combined leading-following descent. These geometries are

designed on the basis of the relative position of the ITP aircraft

and one or two reference aircraft.

The initiation criteria (ITP speed/distance criteria) that are

necessary to start an ITP procedure are designed so that

the estimated distance between the airliner which performs

the climb or descent (ITP aircraft) and one or two ADS-B

equipped aircraft (reference aircraft) in the surrounding area

should get no closer than the ITP separation minimum of

5 NM until vertical separation is again achieved. These ITP

speed/distance criteria are based on combinations of relative

speed and relative distance values between the ITP aircraft and

the reference aircraft are necessary conditions which have to be

verified by the flight crew before requesting an ITP manoeuvre

to the air traffic controller (ATC).

The ITP aircraft must maintain a minimum 300 ft/min of

climb or descent and constant cruise Mach number throughout

the ITP manoeuvre. The reference aircraft must be non-

manoeuvering and it is not expected to manoeuvre during the

ITP. Given these conditions, it can be shown that a 4000 ft

flight level change would result in a reduction in the initial

distance of 4.5 NM assuming a positive ground speed differ-

ential of 20 kts. To ensure that the ITP separation minimum

of 5NM will be guaranteed during the flight level change

under these conditions, the initial distance between the aircraft

must exceed 9.5 NM. So using 10 NM of initial distance the

separation minimum is guaranteed. In the same way it could

be proved that with positive ground speed differential of more

than 20 but less than 30 kts, an initial distance of 15 NM

ensures that ITP separation minimum is respected.

A compact view of the ASEP-ITP phases is illustrated in

Figure 2, and is now described.

B. ITP Initiation phase

The decision to request an ITP rather than a standard

flight level change will typically be based on a number of
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factors outside the scope of the ITP application, such as crew

preference and judgment, the magnitude of the desired flight

level change, and any other information available to the crew

about the flight’s progress and proximate traffic situation.

Once the flight crew has decided to consider requesting an

ITP, the flight crew proceeds through the following steps to

formulate and initiate the request:

1) Identification of ITP flight levels

• The crew identifies a requested flight level, which

is a flight level above (for a climb) or below (for

a descent) one flight level and that is no more than

4000 ft from the initial flight level.

2) Checking ITP aircraft Performance by the crew:

• The ITP aircraft is capable of performing a rate of

climb or descent of at least 300 fpm at the assigned

Mach number to the requested flight level.

• The ITP aircraft is not expected to manoeuvre

except for a climb or descent or a change of course

to remain on their clearance.

3) Identification of reference aircraft The crew selects as

reference aircraft up to two potentially blocking aircraft

which meet the following criteria:

• The ITP aircraft has the same direction with poten-

tially blocking aircraft.

• Qualified ADS-B data are available from potentially

blocking aircraft.

• The ITP speed/distance criteria are met with poten-

tially blocking aircraft.

4) ITP Request

• If the ITP criteria are met, the ITP aircraft crew

requests the ITP, using the required ITP phraseology

which provides the controller with the requested

ITP flight level change geometry (i.e., leading or

following), the ITP distance and the flight ID of

reference aircraft.

C. ITP Instruction Phase

1) Issue of ITP Clearance by controller ATC determines

if standard separation will be met with all aircraft at

the requested flight level and at all flight levels between

the ITP aircraft’s initial flight level and requested flight

level. If so, a standard (non-ITP) flight level change

clearance can be issued. If not,
• Determine that the ITP request message format

is correct and that the flight crew has correctly

identified the reference aircraft at the intervening

flight level.

• Determine that standard separation will be met with

other aircraft (i.e., all but the reference aircraft) at

the requested flight level and at all flight levels

between the ITP aircraft’s initial Flight Level and

requested flight level.

• Determine that the ITP aircraft is not a reference

aircraft in another ITP clearance;

• Determine that the ITP aircraft and the reference

aircraft are on the same track.

• Determine that the reference aircraft are non-

manoeuvring and not expected to manoeuvre during

the ITP. A change of course (only) to remain on the

same identical Track as the ITP aircraft would not

be considered a manoeuvre. The controller will not

issue an ITP clearance if a reference aircraft is in the

process of a manoeuvre or expected to manoeuvre.

• Determine that the positive mach differential is no

greater than 0.03 Mach.

Based on the ITP aircraft’s request and the controller’s

determination of the previous six conditions, the con-

troller would issue the ITP clearance.

2) ITP Crew Re-Assessment

• After the ITP clearance is issued, the flight crew

of the ITP aircraft must again determine that the

ITP criteria continue to be met with respect to the

reference aircraft immediately before initiating the

climb or descent. If the ITP criteria are no longer

met, the crew refuses the clearance and remains at

the initial flight level.

D. ITP Execution Phase

1) ITP Aircraft Crew Tasks during the ITP Manoeuvre

• As after a standard climb or descent clearance, the

crew must initiate the ITP without delay after receipt

of the clearance. Note that the crew re-assessment

should not cause an undue delay in the initiation of

this manoeuvre.

• The crew must maintain the original cruise Mach

number during the climb or descent.

• The ITP aircraft must maintain a minimum 300 fpm

climb or descent rate, or the minimum rate required

by regulation, whichever greater, throughout the ITP

manoeuvre.

• The ITP aircraft crew shall monitor the ITP distance

to the reference aircraft during the climb or descent.

The crew monitors the ASAS equipment indicating

the range of the blocking aircraft. If the separation

minimum is predicted to be violated a temporary

speed change is allowed.

• The ITP flight crew reports the establishment at the

new flight level.

• If the ITP cannot be successfully completed as

cleared once the climb or descent has been initi-

ated, an abnormal termination occurs. ATC must be

notified immediately when this condition occurs.

2) Controller Tasks during the ITP Manoeuvre

• The controller will not issue any manoeuvre clear-

ance to the reference aircraft until the ITP Aircraft

reports establishment at the new flight level or the

ITP is abnormally terminated.

E. ITP Termination Phase

1) The ITP is completed when the ITP flight crew reports

established at the new flight level.
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2) If the ITP aircraft cannot successfully complete the ITP

once the climb or descent has been initiated, an abnormal

termination occurs.

III. HYBRID MODEL OF THE ITP PROCEDURE

In this section the hybrid model of the ASEP-ITP is

proposed.

A. Preliminaries on Hybrid System Theory

The following description provides a general view of the

hybrid systems (i.e [3], [4]). Thus, only the basic definitions

are presented in order to facilitate the understanding of the

ITP hybrid model proposed.

Definition 1. (Non Deterministic Hybrid System [3])
A hybrid system is a tuple H = (Q × X, Q0 ×
X0, U, Y, ε, E,Ψ, η, Inv, G, R) such that:

• Q = {q1, q2, ..., qN} is a set of discrete states.
• X ∈ R

n is a set of continuous states.
• Q0 ⊆ Q is a set of initial discrete states.
• X0 ⊆ X is a set of initial continuous states.
• U ⊆ R

m is a set of continuous control input.
• Y ⊆ R

p is the set of continuous observable output.
• {εq}q∈Q associates to each discrete state q ∈ Q the

continuous time-invariant dynamics εq : ẋ = Fq(x) with
output y = gq(x).

• E ⊆ Q×Q is a collection of edges, where each edge e ∈
E is a ordered pair of discrete states, the first component
of which is known as source and is denoted by s(e), while
the second is the target and is denoted by t(e).

• Ψ is the finite set of discrete output symbols
ε, ψ1, ψ2, ..., ψr where ε is the empty string that corre-
sponds to unobservable output.

• η : E → Ψ is the output function, that associates to each
edge a discrete output symbol.

• {Invq}q∈Q associates to each discrete state q ∈ Q an
invariant set Invq ⊆ X .

• {Ge}e∈E associates to each edge e ∈ E a guard set
Ge ⊆ Invs(e).

• {Re}e∈E associates to each edge e ∈ E a reset map
Re : Invs(e) → 2Invt(e) , from Invs(e) ⊂ X to the power
set (i.e. the set of all the subsets) of Invt(e).

The system so defined can be compactly described using the

graph depicted in the Figure 3. It should be noticed that this

representation contains all the mathematical attributes intro-

duced in the definition 1. The evolution of an Hybrid System

can be synthesized in this way: supposed (q1, x0) ∈ Init
the initial hybrid system state, the continuous state x evolves

according to the continuous dynamic ẋ with x(0) = x1,0,

as long as x ∈ Invq1
, whereas the discrete state q remains

constant q(t) = q1. If at some point, state reaches guard

Ge1 then the discrete transition from q1 to q2 is enable. In

this situation, when the continuous state leaves the Invq1
the

discrete transition is forced, and the state x changes value

according to the reset map Re1. Next the process is repeated

starting from (q2, x2,0).

Fig. 3. Non-deterministic Hybrid System

A particular class of non-deterministic hybrid systems is

represented by the rectangular automata. This subclass is

introduced here and is the one that will be used in the hybrid

model of ASEP-ITP. Considered the space R
n with variables

x1, · · · , xn, a rectangular set B of dimension n is the product

of n intervals Bi ⊆ R of the real line, where each Bi is a

bounded or unbounded interval.

Definition 2. (Rectangular Automaton [4]): A rectangular
automaton is a hybrid system, as defined in Definition 1, that
also satisfies the following constraints:

• For every discrete state q ∈ Q, the set of initial continu-
ous states X0 ⊆ X and the invariant set Invq ⊆ X are
rectangular sets.

• For every discrete state q ∈ Q, there is a rectangular
set Bq such that the continuous time invariant dynamics
εq : ẋ = Fq(x) ∈ Bq for all x ∈ R

n.
• For every edge e ∈ E, the set Guarde is a rectangular

set, and there is a rectangular set Be and a subset Je ⊆
{1, · · · , n} such that for all x ∈ R

n the reset map is
Re = {(x′

1, · · · , x
′
n) ∈ R

n| for all 1 ≤ i ≤ n, if i ∈ Je

then x
′
i ∈ Be

i else x
′
i = xi}.

Therefore, in a rectangular automaton, the derivative of

each variable stays between two fixed bounds, which can be

different in different discrete states. Then in each discrete

state q ∈ Q the continuous dynamics can be defined as

ẋi ∈ Bq
i ⊆ Bq for all 1 ≤ i ≤ n. With each discrete jump

across an edge e, the value of the variable xi either does not

change if i /∈ Je, or resets non-deterministically to a new

value within some fixed constant interval Be
i ⊆ Be if i ∈ Je.

The hybrid model proposed below is slightly different from

the one of the Definition 2. This model also embeds a set Σ of

discrete input signals, and each edge e ∈ E is associated to a

symbol σ ∈ Σ that triggers the discrete transition between the

states linked by e. These inputs can be considered as discrete

disturbance or control inputs which model the communication

among the agents.

B. Assumptions

The ASEP-ITP can be decomposed in various subsystems

representing the agents involved in the procedure, each with

hybrid dynamics modelling its specific operations. It should be

remarked that to exploit the descriptive power of hybrid system

each agent must be considered by itself and subsequently the

effects of their actions on the dynamics of other agents can

be considered merging the models so obtained.
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The agents considered are:

• Air crew flying of ITP aircraft

• Oceanic controller

The approach used for selecting the agents does not provide

the modelling of the reference aircraft as an agent. The main

reason is that the flight crew of the reference aircraft does

not have the awareness of existence of an ITP manoeuvre

in which it is involved. In fact, there is no communication

between the controller or the flight crew of the ITP aircraft

and the flight crew of the reference aircraft. Furthermore any

hazardous actions of the reference aircraft can be considered

inside the hybrid dynamics of other agents.

The model proposed considers the simplest case of ASEP-

ITP execution where the ITP aircraft requests a climb through

one flight level, with only one leading reference aircraft

involved and without other blocking aircraft. Furthermore,

no wind is assumed. The continuous dynamics used in this

approach are intentionally simplified. In fact due to the con-

figuration of the traffic flows in the oceanic airspace (i.e

organized parallel tracks system) it is possible to focus on

longitudinal and vertical dynamics without considering the

lateral dynamics. Moreover, for safety analysis of this ITP,

using a more complicated model that considers a complete

dynamic of the aircraft would not be relevant.

C. Pilot flying of ITP aircraft Agent

Before explaining the model, the following variables are

introduced:

1) zi initial flight level of the aircraft

2) zf requested flight level of the ITP aircraft

3) vx,min minimal ground speed of the ITP aircraft

4) vx,max maximal ground speed of the ITP aircraft

5) vz,max maximal vertical speed of the ITP aircraft

6) xr longitudinal position of the reference aircraft

7) vrx the ground speed of the reference aircraft

8) Mi assigned Mach number for the ITP aircraft

9) a speed of sound, assumed as a constant value

Furthermore the following interesting areas of the airspace

can be identified:

1) A safe region in which the ITP aircraft performing

the ITP manoeuvre respects the ITP minimum distance

separation. The safe zone is defined as ΩS = {(x, z) :
x ∈ [−∞, xr − 5], z ∈ (zi, zf )}.

2) Thus, an unsafe zone can be defined as follows: ΩU =
{(x, z) : x ∈ [xr − 5, +∞], z ∈ (zi, zf )}.

The agent Hp Pilot Flying of ITP Aircraft can be described

using a model based on Definition 2. The following are the

objects of the system:

• Q = {q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12} is the

set of discrete states each associated with a node inside

the graph depicted in Figure 4;

• X = {(x, z) : x ∈ R
+

0 , z ∈ R
+}, with R

+

0 = R
+∪{0} is

the set of the continuous state values where x represents

the longitudinal position of the aircraft expressed in

nautical miles, z the altitude of the aircraft expressed in

hundred of feet (i.e. flight level inside the International

Standard Atmosphere).

• The initial discrete state is q1;

• The continuous dynamics are the followings:

- Fq1
(x, z) = {ẋ = Mia, ż = 0}

- Fq7
(x, z) = {ẋ ∈ [vx,min, vrx + 30], ż ∈

[300, vz,max]}
- Fq8

(x, z) = {ẋ ∈ [vx,min, vx,max], ż ∈
[300, vz,max]}

- Fq9
(x, z) = {ẋ ∈ [vx,min, vx,max], ż ∈ [0, 300]}

- Fq10
(x, z) = {ẋ = Ma, ż = 0, M �= Mi}

- Fqi(x, z) = Fq1
(x, z) for i = 2, 3, 4, 5, 6, 11, 12

• Σ = {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9} is the set of

discrete inputs, where σ1 means decision to make an ITP,

σ2 represents the reassessment failed, σ3 represents the

ITP criteria are not verified, σ4 means the ITP criteria

verified, σ5 represents the clearance denied, σ6 means

the clearance issued, σ7 means detection of an abnormal

event, σ8 = ε, σ9 represents a situational awareness error;

• Ψ = {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6} ∪ {ε} is the set of discrete

outputs, where ψ1 means the clearance rejected by the

crew, ψ2 represents the clearance request , ψ3 represents

the clearance accepted by the crew, ψ4 means the ab-

normal termination communication by the crew to the

controller, ψ5 means the report established at the new

flight level, ψ6 represents the confirmation by the crew

of the reception of the denied clearance;

• E ⊆ Q × Q is the set of transitions given by the graph

depicted in Figure 4. A label σ ∈ Σ is associated to each

edge as shown in Figure 4;

• η : E → Ψ the discrete output function defined by the

graph depicted in Figure 4;

• The domains of the discrete states are the following:

- Invq1
= {(x, z) : x ∈ R

+

0 , z = zi}
- Invq7

= {(x, z) ∈ ΩS}
- Invq8

= {(x, z) ∈ ΩS ∪ ΩU}
- Invq9

= Invq8

- Invq10
= {(x, z) : x ∈ R

+

0 , z = zf}
- Invq12

= Invq10

- Invqi
= Invq1

for i = 2, 3, 4, 5, 6, 11

• The guards are the empty set for all the discrete transi-

tions excepted for:

- G(q7, q12) = {x ∈ ΩS , z = zf}
- G(q8, q12) = G(q9, q12) = {(x, y) : x ∈ R

+}
• The reset function is always the identity function excepted

for:

- R(q7, q11) = {xq11
= xq7

, zq11
= zi}

- R(q8, q11) = R(q9, q11) = R(q7, q11)

The direct graph of this hybrid model is shown in the Figure

4. The evolution of an ITP could be followed on the graph in

this way. Initially the aircraft is in the cruise (i.e. discrete
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Fig. 4. Direct graph of pilot flying of ITP aircraft agent. The shadowed
locations are the critical states

state q1) phase. When the flight crew performs an ASEP-ITP

manoeuvre, the discrete transition to the ITP Initiation (q3)
takes place. Then, the flight crew has to verify if the ITP

speed/distance criteria are met. If the criteria are not satisfied,

the flight crew aborts the ITP initiation phase and there exists

the discrete transition to the ITP Aborted (q2) state. If the

criteria are verified, the flight crew requests the clearance to

the ATC and the discrete transition to ITP instruction (q4)
takes place. In this phase, if the clearance is denied by the

ATC the ITP is not executed and the discrete switch to ITP
denied (q6) takes place. When the clearance is issued, the

flight crew has to recheck the ITP speed/distance criteria in

order to evaluate if the criteria are still met. If the criteria

are not met, the flight crew rejects the clearance and this is

represented by the discrete switch to the ITP rejected (q5)
state. If the ITP criteria are still met, the flight crew accepts

the clearance, communicates it to the ATC and the discrete

state ITP Instruction (q4) changes to Standard ITP execution
(q7) state. It can happen that during the first or the second

verification of ITP speed/distance criteria the flight crew makes

an error due to a wrong situational awareness. This scenario is

modelled using an unobservable transition from the Standard
ITP execution (q7) to Non ITP criteria compliant execution
(q8); this transition is not detectable because the flight crew

does not know that an error occurred. From both these discrete

states, it is possible to jump to the Wrong execution (q9) state,

which models the situation where, again due to a situational

awareness error, the flight crew is performing the manoeuvre

without compliance with the performance criteria (i.e. vertical

speed more than 300 ft/min and Mach number constant). Start-

ing from the discrete states Standard ITP execution (q7), Non
ITP criteria compliant execution (q8) and Wrong execution
(q9), the manoeuvre is terminated in two different ways. In

the first case the flight crew detects an abnormal event and

the manoeuvre is terminated in an abnormal mode. The flight

crew communicates to the ATC the abnormal termination and

the discrete transition takes place to Abnormal Termination

(q11). In the second case, the ITP terminates in the correct

way; the flight crew communicates to the ATC established

in the requested flight level and the discrete state changes

to ITP termination (q12) state. From this discrete state a

situational awareness error can bring to an unsafe situation. In

fact, if the flight crew has changed the Mach number during

the manoeuvre for safety reasons and it does not revert to

the assigned Mach number when the requested flight level

is reached, an unobservable transition to Wrong termination
(q10) takes place.

D. Oceanic controller Agent

The hybrid model of the oceanic controller agent does not

include continuous dynamics and all the discrete transitions

take place because of the occurrence of a discrete input. Thus,

this hybrid model can be considered as a discrete event system.

The objects of the model are the followings:

• Q = {q1, q2, q3, q4} is the set of discrete states which are

associated with the corresponding vertices of the graph

shown in Figure 5.

• The initial discrete state is q1.

• Σ = {σ1, σ2, σ3, σ4} is the set of discrete inputs, where

σ1 represents the request of an ITP, σ2 means the abnor-

mal termination communication, σ3 means a situational

awareness error and σ4 represents the communication of

ITP terminated.

• Ψ = {ψ1, ψ2, ψ3, ψ3, ψ4} ∪ {ε} is the set of discrete

outputs where ψ1 means the clearance issued, ψ2 repre-

sents the ITP request denied, ψ3 represents the abnormal

termination confirmation, ψ4 means the confirmation of

a standard ITP termination.

• E ⊆ Q × Q is the set of transitions given by the graph

depicted in Figure 5. A label σ ∈ Σ is associated to each

edge as shown in Figure 5.

• η : E → Ψ the discrete output function defined by the

graph depicted in Figure 5.

Fig. 5. Discrete graph of the Oceanic Controller agent
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At the beginning of the ITP application, the discrete state

is Monitoring (i.e. discrete state q1), which models the usual

monitoring of the controller. When the ITP request from the

flight crew is received, the controller can decide to issue

or deny the clearance on the basis of the verification of

some criteria. If the request is not accepted, the controller

communicates the deny to the flight crew and the discrete

state does not change; if the clearance is issued, the discrete

transition to the ITP clearance issued (q2) takes place. During

the verification of the criteria, the controller can make an

error due to a wrong situational awareness. In this case, an

unobservable transition from ITP clearance issued (q2) to Non
ITP criteria compliant clearance issued (q3) takes place. From

both ITP clearance issued (q2) to Non ITP criteria compliant
clearance issued (q3) it is possible to jump to Abnormal
Termination (q4), when the flight crew communicates the

occurrence of an abnormal event; otherwise, if the controller

receives the confirmation of a standard ITP termination by

the flight crew, the discrete state is reverted to the initial

Monitoring (q1) state.

IV. HYBRID OBSERVER OF THE ITP AGENTS

The hybrid model presented in the previous section de-

scribes in detail the procedure and identifies safe and unsafe

scenarios. For safety analysis it is important to detect, instan-

taneously or with an acceptable delay, the discrete states of the

hybrid model associated with hazardous situations. This issue

represents a typical discrete observability problem of hybrid

systems. The idea is to design a finite state machine, known

as an ”observer”, which is able to discriminate the current

discrete state using only the observable output generated by

the transitions.

In the literature, several definitions of observability for

hybrid systems have been proposed. As defined in [7], [11],

an hybrid system is K-current-state observable if any discrete

location of the hybrid system can be identified by the use of

the discrete outputs, after a finite number K > 0 of discrete

transitions. It should be noticed that this notion cannot allow

for the immediate detection of critical states (i.e. K = 0).

An alternative definition is presented in [8] and requires that

all the states of the system, both safe and unsafe, have to be

immediately observable. For safety analysis it is sufficient to

consider the observability only of the set of the critical states

instead of the whole discrete state space. This approach is

considered in [9] where critical observability is proposed.

The next section presents the hybrid observer designed

for the Pilot Flying of ITP Aircraft Agent. This observer

checks for the critical observability of the agent, assuming

Qc = {q8, q9, q10} as set of critical states. The same approach

can be used to design the observer of the other agents involved

in the ITP procedure.

A. Hybrid Observer of Pilot flying of ITP aircraft Agent

The algorithm presented in [9] provides a method to design

the observer Op of the hybrid system Hp starting from the

direct graph associated to the system. In this way, the observer

obtained is a finite state machine Op = (Q̂, q̂0, Q̂m, Ψ̂, Ê, η̂)
defined as follows:

• Q̂ = {{q1, q2, q3}, {q4}, {q5}, {q6}, {q7, q8, q9}, {q11},
{q10, q12}}, where qi are the discrete states of Hp.

• The initial state is q̂0 = {q1, q2, q3}.

• The set of final or accepting states is Q̂m =
{{q7, q8, q9}, {q12, q10}}

• The set of discrete inputs Ψ̂ = {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6},

where each ψi represents a discrete output of the hybrid

system Hp.

• The set of transitions Ê ⊆ Q̂ × Q̂ given by the graph in

Figure 6.

• The discrete output function η̂ defined as the identity for

all the edges.

Roughly speaking, assuming ψi a discrete output of Hp

and q̂i the current state of Op, each state of the observer is

designed by grouping together the discrete states qi which

can be reached from all the states qi ∈ q̂i by a transition

labeled with ψi, and all the discrete states qi which can be

reached from the first ones by an unobservable transition.

The discrete outputs of the hybrid model now are used to

trigger the transitions of the observer (i.e. they are considered

discrete inputs of Op). For this reasons, the discrete states of

the observer are defined as sets of qi. The graph of the observer

Op is depicted in Figure 6: the initial state groups the initial

states of H̃p (i.e. q1), and the states that can be reached from q1

through transitions with unobservable output (i.e. q2, q3). As

the first observable output (i.e. ψ2) is available, the associated

transition of Op (i.e. from {q1, q2, q3} to {q4}) takes place.

Then, each time that a new observable output is generated,

a new transition of the observer is triggered according to the

graph.

Fig. 6. The observer Op

It should be noticed that the observer Op cannot be used to

identify immediately the critical discrete states. In fact, there

exists two discrete states of the observer where both safe and

unsafe states qi coexist. However, critical observability can be

recovered by generating a set of extra output signals which can

be used to distinguish when the system reaches a critical state.

These signals can be generated with a non-zero time δ from the
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continuous inputs, outputs and dynamics. The generating time

of the extra outputs creates a delayed detection of the critical

states. This kind of observability is known as δ−observability
(i.e. [3]). The observer Õp defined after the generation of the

extra-output is able to discriminate the critical states with a

delay δ which has to be acceptable. Õp is shown in Figure 7:

within this graph, the new transitions triggered by the extra

output signal (i.e. from {q7, q8, q9} to {q8, q9} and {q10, q12}
to {q10}) allows to discriminate the unsafe states.

Fig. 7. The observer Õp with delay δ. New outputs are ψ8,9 and ψ10

V. CONCLUSION

In this paper the hybrid system framework for safety

modelling in air traffic management applications has been

discussed. The need to develop new sophisticated modelling

methodologies originates from new challenges in safety and

from the increasing of inherent complexity in the airborne

procedures. A specific procedure, the ASEP-ITP, has been

investigated to show how this framework can be used to

represent a complex multi-agent application in which a wide

set of possible abnormal scenarios may happen. In the aviation

context, possible catastrophic events can take place due to an

error of a single agent involved in the procedure. It has been

shown how the hybrid system framework allows the descrip-

tion and the detection of these errors and the understanding of

their effects on the evolution of the procedure. The observers

which have been proposed here will allow to perform a formal

safety analysis, which investigates unforeseen circumstances

originated by the interaction of the hybrid agents.
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Abstract
The current trend within air traffic management (ATM), as a 

part of the Next Generation Air Transportation System 

(NextGen), is to increase the airspace system capacity to operate 

in diminishing capacity conditions while improving standards of 

safety. An extensive body of research exists regarding 

introducing automation into air traffic control in order to create 

more flexible and cost-efficient operations. The User Request 

Evaluation Tool (URET) is a strategic support tool designed to 

assist controllers with timely detection of conflicts; it offers tools 

for checking the conflict resolution clearances. This study 

develops general proactive, reactive, and interactive approaches 

for the risk assessment and management of the system in order to 

achieve quality (safety and serviceability) and reliability; it also 

presents a case study of URET implementation in Air Route 

Traffic Control Centers in the past ten years. First, the reactive 

approach, used in URET deployment, is developed, followed by 

developing the complementary and necessary proactive and 

interactive approaches. Safety Management and Assessment 

(SMAS) evaluation is performed for the reactive approach. 

Findings show that many factors led to cases of URET usage 

deviating from that provided for in the original design, and for 

using URET less often than it was originally intended.  

 Keywords: Air Traffic Control, en route, URET, 
performance shaping factors, proactive, reactive, interactive, risk 

assessment and management, SMAS 

I. INTRODUCTION

Human error contributes to air traffic management (ATM) 
incidents in the order of 90% or more [1], compared to the 
human error contributions in nuclear power (70-90%) or 
medical (98%) industries. However, ATM is unique because 
of its highly dynamic and time-critical environment, which is 
also very cognitive in the nature of its tasks. It is important to 
recognize that “human error is not, however, the only causal 
factor involved: incidents or accidents generally happen when 
several causes—possibly including human error—are 
combined.” In addition, many of these factors are “latent,” 
existing dormant within the system long before a major 
incident occurs. According to [2], some of the frequent latent  

contributors to incidents are: complex system design, poor 
man-machine interfaces, inappropriate work organization, 
awkward work procedures or policies, reduced or altered 
communication between human operators.

The ATM system is very reliable considering that every 
day air traffic controllers handle high numbers of aircraft 
movements without any incidents. Many redundant 
components in the system, as well as the structured 
communications between its players “have generally allowed a 
graceful recovery from failures, without accidents.” Such 
errors, due to the system reliability and humans in the loop are 
“not likely to be damaging to system performance if they can 
be caught and corrected by error-tolerant systems” [5].

Many studies analyzed the means of meeting growing air 
traffic demand, as well as introducing automation and 
surveillance tools into the existing system. However, 
automation can be a “mixed blessing” and can actually 
heighten the importance and impact of human error.  

Due to pressure on ATC to handle an increasing number 
of aircraft, the “tolerable error margin both for the pilot and 
the controller is shrinking as more traffic is packed into 
already crowded airspace” [6]. The current ATM struggle is to 
increase the airspace system capacity to operate in lower 
margin conditions while continuing to improve the current 
standards of safety.  

As a response to the NextGen additional capacity and 
safety needs, this study addresses the following goals and 
objectives:

addresses performance shaping factors relevant to air 
traffic controllers and provides a research and 
development foundation for the “next generation” ATC 
system 
discusses automation issues and introduces the specific 
automation tool, User-Request Evaluation Tool (URET), 
its intended use, and its actual use 
develops a reactive approach (Safety Management 
Assessment System—Braille Chart) for the “failure” of 
URET to be used in accordance with its designed usage 

* The author  was a graduate student at the University of California at Berkeley, Dept. of Civil and Environmental Engineering, at the time this study 
 was conducted. 
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develops a proactive and interactive approach for 
applicability of URET deployment in Air Route Traffic 
Control Centers (ARTCCs) 

II. ATC SYSTEM OPERATIONS 

Because the presented study focuses on Air Route Traffic 
Control Centers (ARTCCs), a general description of air traffic 
controller sector teams is presented below. 

A sector controller team ranges from one to three 
persons, depending on the traffic-induced workload. A two-
person controller team most commonly consists of: 
1. Radar Controller (R-side) - fully certified controller 

responsible for maintaining prescribed separation between 
aircraft under his/her control using radar-displayed 
information. He issues altitude, heading or airspeed 
change clearances to accomplish this duty and handles all 
communication with pilots. 

2. Radar Associate Controller (D-side) - either fully certified 
or developmental controller assists the R-side controller. 
Duties include flight strip management, coordination with 
other controllers, and identifying potential conflicts 
between aircraft that are not yet under the active control 
to the R-side controller. 

According to Bea [7], quality can be defined as the ability to 
satisfy the requirements of serviceability (use for purpose for 
conditions), safety (acceptability of risks), compatibility 
(acceptability of impacts), and durability (freedom from 
unanticipated degradation).  Because the goal of ATC is to 
facilitate the “safe, orderly and expeditious flow of air traffic” 
[6], to satisfy goals of both safety and efficiency can, however, 
be contradictory.  Indeed, in the ATC, safety always 
supersedes efficiency. Given the economic pressures from 
airline management and the increasing number of airplanes 
trying to utilize the airspace, it is easy to see that this could 
become a starting point for compromises in system integrity 
that could ultimately lead to failures. Airspace capacity 
maximization needs to take into account the fact that 
controller’s workload increases with the number of aircraft 
under control, and therefore we should not insist on reducing 
aircraft separation to the levels where the systems failure 
recovery is difficult to achieve. Means to increase capacity, 
which bring about increase in the controller workload, and 
sometimes need for separation reduction, have been turning to 
automation for help. 

III. AUTOMATION IN ATC

Traditionally, automation is implemented in an attempt to 
reduce the operator’s workload during peak periods of task 
load. However, this may not always be the actual outcome. 
For example, automation can reduce mental workload when 
workload is already low, or increase mental workload when 
workload is already high, better known as “clumsy 
automation” [10]. 

Automation technology in ATC has been advancing over 
time. Even so, humans are still essential to the system to 
monitor the system using automation tools, act as controllers, 
and need to be able to keep the system operating even when 

automation fails, which is a major concern in automation 
implementation. Several studies indicate that operators may 
require more time to intervene under automation than under 
manual control because they first need to regain awareness of 
the state of the system. When operators are actively involved 
in creating the state of the system (as opposed to passively 
monitoring automation), they develop a more complete 
situational awareness of the system state [10], which is of 
paramount importance in ATC, and the state-of-the-art in 
many areas of ATC. 

User Request Evaluation Tool is one of the automation 
tools introduced. It was intended to be a strategic support tool 
for the D-side controller of an en route sector team. With 
URET, the “D-side controller should be able to help the R-side 
controller to resolve potential conflicts of aircraft that are not 
yet under the sector’s active control, to check if the clearances 
the R-side controller is issuing are conflict free, and to better 
perform other D-side duties” [11]. URET notifies the 
controller of the potential conflicts by continuously checking 
current flight plan trajectories for strategic conflicts up to 20 
min into the future. It was expected that URET would enable 
the controller team to handle more aircraft due to the 
decreased workload resulting from the automation as well as 
the availability of more accurate information. In addition, 
URET was expected to help controllers provide more direct 
routings and better flight profiles to airlines. Currently, URET 
is installed and in use in all Air Route Traffic Control Centers 
(ARTCCs). However, URET’s actual usage differs from the 
designed one. For example, a very small percentage of 
controllers use it to check for the potential conflicts of aircraft 
not under the active control. On the other hand, they all use 
the electronic flight strip replacement functionality and a 
majority of controllers find it very helpful, above all because it 
reduces their manual workload.  

URET deployment and integration into the system took ten 
years. Many factors contributed to such a long period of 
integration: ATC system safety, organizational factors (FAA 
and controller union), automation tool itself, etc. Still, the tool 
is not being used in a designed way, which can be considered 
as an implementation failure in terms of serviceability, and 
reliability as viewed from the engineered systems’ reliability 
point of view. The following text describes the performance 
shaping factors further used to develop approaches to 
achieving reliability in the URET implementation 
management engineered system. 

IV. PERFORMANCE SHAPING FACTORS

Performance Shaping Factors (PSF) are “influences that can 
result in an increase in the mean rates of human errors” and 
are “useful in helping develop quantification of the potential 
effects of changes in organization, hardware, procedures, and 
environments on the base rates of human errors” [7].  PSF can 
be divided into the following categories: impairments, 
training, workload, organizational, communications, societal, 
and environmental. 

Impairment of a subject can come from one of four major 
causes: fatigue, well-being, medical, and drugs. Fatigue is the 
most studied in the human performance field. Work-rest 
schedules and shift work address these fatigue issues.  

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9216



Training can be subdivided into routine task performance, 
unfamiliar events, and emergency response. The effectiveness 
of training can greatly impact a controller’s performance. 

The workload PSF “entails the effects of demands imposed 
upon the subject by assigned and unassigned tasks.”  An 
individual’s demand can be subdivided into the following 
categories: occupation (direct and indirect), regulatory (laws, 
codes governing the subject’s work and/or personal life), 
societal, and personal [7].

The organizational PSF is a very powerful one, with 
culture (in particular, risk acceptance) being a dominant PSF.  
Teamwork both among controllers and between controllers 
and pilots is critically important for safe and efficient air 
traffic control [7]. 

The communications PSF can be subdivided into oral, 
written, and nonverbal. The effectiveness of communications 
also depends on shared assumptions, a shared mental model 
[9], or shared situation awareness between speaker and 
listener, which is critically important for a safe and efficient 
ATC

Societal and external environments are both PSFs that are 
not addressed in this study as they are not as significant or 
relevant to the ARTCCs as the other PSFs. 

With the given background on performance shaping 
factors for air traffic controllers, the consideration of 
automation in the future air traffic control system is logical. 
The next section proceeds with the discussion about the 
research dedicated to learning about the benefits and costs of 
automation into the system. 

V. METHODOLOGY 

This paper focuses on the quality attributes of safety 
(acceptability of risks), serviceability and reliability.  
Reliability is defined as the “probability that a given level of 
quality will be achieved during the design, construction, and 
operating life-cycle phases of an engineered system [7]. The 
authors view the system as consisting of seven components 
(see Table 1).

There are three fundamental approaches to achieving 
reliability in engineered systems: proactive, reactive, and 
interactive. These approaches are inter-related, interdependent,
interactive, and complimentary. The proactive approach 
includes measures employed before accidents and incidents; 
the reactive approach includes measures employed after 
accidents and incidents, and the interactive approach includes 
measures employed during the evolution of accidents and 
incidents. Each of the three approaches has its own strengths 
and weaknesses. The objective is to “define a combination that 
can be most effective and efficient in maintaining the desirable 
and acceptable quality and reliability of systems” [7].

First, we introduce and define the following important 
terms: 

System = the  implementation of URET in ARTCCs 
sectors (1995-2005) and the organizations involved in its 
implementation 
Failure = system usage different from the designed one 

In the first step, an overview of the existing methodology 
was conducted based on [11] that involves interviews of 
Subject Matter Experts (SMEs) (air traffic controllers) at the 
Oakland center (which did not have URET at the time), and 
the Indianapolis, Jacksonville, and Washington centers (with 
URET). The interview results provide useful information 
about:
1. The specifics of controller team operations, in both 

URET and non-URET environments 
2. Specific uses of URET 
3. Center culture

 In the second step, data for an in-depth reactive approach 
are gathered, collecting 3 grades (low bound, most probable, 
and high bound) for each factor in each of the 7 system 
components, and an explanation of why the particular grades 
are chosen.   

Further, based on the system (URET implementation in 
ARTCCs), a reactive approach is developed in order to 
understand why the system usage differed from its original 
usage design. This is necessary in order to further develop a 
proactive and interactive approach (plan and monitor) for a 
successful implementation of URET.  

VI. REACTIVE APPROACH

 The reactive approach is based on analysis of the failure 
of a system, where the system usage differs from the designed 
one. 

Development of the approach relies on gathering all 
available information on the failure and the life-cycle 
characteristics of the system. The information should address 
the following three categories: 

Initiating events and factors that may have triggered the 
accident sequence
Propagating events and factors that may have allowed the 
accident sequence to escalate and result in the accident, 
and
Contributing events and factors that may have 
encouraged the initiating and propagating events.

 Rather than considering a particular “accident” or 
“incident” that many reactive approaches are based on, the 
considered “incident” in this study is defined as follows: (i) 
URET is not achieving its original purpose, (ii) URET is not 
used as much as expected, and (iii) if used, it is used mostly 
for unintended purposes. 

Information gathered in the three mentioned categories 
should address the seven system components, as well as the 
life-cycle characteristics and history of the system including 
design, construction, operation, and maintenance.  
Furthermore, information is used in the Safety Management 
Assessment System (SMAS) protocol.  SMAS is intended to 
be used as a proactive measure to help identify potentially 
important problems or flaws in systems, and to help determine 
how these potential problems or flaws might best be remedied. 
The focus of SMAS is on those human and particularly 
organizational factors (HOF) that influence the safety of the 
system. SMAS can be used through all three approaches 
(proactive, reactive and interactive).   

The SMAS evaluation incorporates a qualitative 
assessment of the factors listed in Table 1 in each of the seven 
key system components: 1) operators, 2) organizations, 3) 
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procedures, 4) equipment, 5) structure, 6) environments, and 
7) interfaces. The evaluation of component factors relies upon 
experienced and trained assessors to assign a threefold grade: 
the lower and upper bounds of the most probable estimate, 
allowing assessors to capture their uncertainty when making 
an evaluation. Grading scale is composed of discrete values 
from one to seven where: 1 is “outstanding in all standards and 
requirements”, 4 is average, 7 is very poor, and the 
intermediate grades are used to express evaluations between 
these anchor points. A mean grade, standard deviation of the 
grade (St. Dev.) and coefficient of variation (COV) of the grade 
are determined for each attribute. 

TABLE I. EVALUATION CATEGORIES AND FACTORS [7]

Operating Teams 
Process auditing 
Safety culture  
Risk perception  
Emergency preparedness 
Command and control 
Communications

Organizational 
Process auditing 
Safety culture 
Risk perception 
Emergency preparedness 
Command & controls 
Training 
Communications 
resources

Procedures
Operating 
Maintenance 
QA/QC 
Contractor selection 
Pre-start up review 
Emergency response 
Manageme  of change nt
Validations

Equipment 
Design guidelines and 
        specification 
Materials 
Demand systems 
Power systems 
Configurations 
Control systems

Structure 
Design guidelines & 
specs 
Materials 
Loadings 
Structure configuration 
Computer programs 
Research, development 
  and  testing  
background    

Environmental 
External (Weather) 
Internal
Social external –  
   (Regulatory, Society)  
Social (internal) 
   (within organization and 
operating team) 

Operators & other 
Organizations & other 

Interfaces
Procedures & other 
Environmental & other 

Equipment & other 
Structure and other 

A “Braille” (Pareto) chart is then developed, 
summarizing the mean grades developed by the assessment 
team for each of the factors. The ‘high’ grades, those above 4, 
indicate components and their factors that are mitigation 
candidates. The coefficients of variation associated with each 
factor indicate the range of uncertainty associated with the 
ratings. The assessors are able to back track and identify the 
factors and attributes that result in a particular grade along 
with the recorded comments that provide the rationale for the 
grading. This provides a strong interpretative and evaluative 
component in identifying the best actions to improve a grade.

Although the SMAS factors gradings are performed for 
each of the seven components, we are presenting an 
explanation for the grading of the first system component only 
(Operating Teams), whose results are shown in Table II. 

A. SMAS Evaluation of Operating Teams Component 

The following six factors were evaluated for the first system 
component, Operating Teams: 

Process Auditing – The controllers do not have an 
actual, formalized auditing process of URET. In the 
exploratory interviews, controllers emphasized they only 
perform the processes for which they were adequately 
trained and consequently, they were not fully utilizing 
URET.
Safety Culture – Safety is their top priority (above 
efficiency and strategy).

Risk Perception – Air traffic controllers do not want to 
come into any risk-related situation; they want to avoid 
such situations at all costs.
Emergency Preparedness – The most probable grade of 
2.5 depends on how long the controllers have been using 
URET, and how they control traffic. For example, those 
that extensively used paper strips felt that handling paper 
strips helped them be more aware of situation, and hence, 
felt more prepared to respond quickly to emergencies. 
Switching to the electronic flight strip replacement made 
them feel that their mental picture was inadequate. 
Furthermore, they felt that procedures for use are 
insufficient to prepare them for emergencies. 
Command & Control – The most probable grade of 4 is 
based on the fact that the tool is used differently from its 
designed purpose.  The controllers are not using URET 
for its intended use (conflict probe), but more for its 
electronic flight strip functions that replaced paper strips.  
Communications – The implementation of URET 
should have improved controller team communications. 
Some centers’ communications did indeed improve, but 
primarily on an individual basis, rather than on a system-
wide basis. Some centers’ communications actually 
worsened. Interestingly, before the use of URET, most 
controllers worked in teams of 2; with URET, there were 
more occurrences where controllers were working alone. 

TABLE II. OPERATING TEAMS GRADING

Operating

Teams 

Lower
Bound

Most
Prob.

High
Bound

Mean St.
Dev.

COV

Process
Auditing

2 3 5 3.3 0.6 0.2 

Safety 
Culture

1 2 4 2.3 0.6 0.3 

Risk
Perception

1 1 2 1.3 0.2 0.2 

Emergency 
Prepared-

ness
1 2.5 4 2.5 0.6 0.2 

Command 
& Control 

3 4 6 4.3 0.6 0.1 

Training 4 5 7 5.3 0.6 0.1 

Communi-
cations

2 4 6 4.0 0.8 0.2 

                        GRADE      (Category Mean) 3.3 

Braille chart is developed based on the grading of all the 
factors listed in Table I, including the remaining six system 
components (Organizational, Procedures, Equipment, 
Structure, Environment and Interfaces). The chart summarizes 
the mean grades developed for each of the factors, as depicted 
in Figure 1.    
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Figure 1  Braille Chart for URET Evaluation Categories and Factors  

Based on the previously presented grading scale, this Braille 
Chart indicates that the majority of our system components do 
not meet the average standards (grade of 4). Four out of the 
seven components—Organizational, Procedures, Equipment, 
and Interfaces—are below average (between grades 4 and 7), 
whereas the other three components— Structure, Operating 
Teams, and Environmental—were barely above average 
(between grades 1 and 4). The operating teams (controllers) 
are not ranked poorly because the responsibility cannot be 
placed on them for using URET less often than was intended, 
as well as for not using URET for its intended purpose. The 
causes of the current style of URET implementation are rooted 
in the organizational factors, upstream from the operators 
themselves (i.e. lack of funding and attention for training and 
procedures). The worst ranked components were the Interfaces 
between Procedural + Operating, Procedural + Organizational, 
and Hardware + Procedural. These grades support the 
argument for integration of automation into the existing 
system, where separate system components (e.g. procedures, 
operating, organizational, hardware) are developed separately 
and independently. 

B. Event Category Findings 

The initiating events— that may have triggered the outcome 
of URET not being implemented as originally planned—are 
predominantly at the organizational level.

URET’s adoption decision was made at the organizational 
level, but individual users were then left to “adopt, re-invent 
or reject the innovation during its implementation” [12]. The 
FAA decided to deploy URET to all ARTCCs in the United 
States in 2002, after more than 20 years since the beginning of 
URET development.  Its continued development is a result of 
its robustness through the changing objectives of ATC 
management. The final deployment decision was based on 
automation performance metrics and cost-benefit assessment 
rather than on the analysis of controller performance when 
using URET. 

The compounding/propagating factors—those that may 
have allowed the event sequence to escalate and result in the 
accident (e.g. the unintended usage and lack of usage of 
URET)—include the performance shaping factors of workload 
and stress. It was expected that by fully using URET, the 
controller team will not only be able to handle more aircraft 
(because of reduced manual workload from automation and 
availability of more accurate information), but will also be 

able to provide more direct routings and better flight profiles 
to airlines. Since URET is designed as a decision support tool 
for the D-side controller to support the sector team strategic 
planning function, “full use of the tool is virtually impossible 
if only one controller works the sector” [12]. URET’s 
electronic flight strip replacement function caused an 
unintended consequence - the reduction of teams from two-
controller into one-controller teams. However, URET was 
designed for a two-controller team. In situations of increased 
traffic, if only one controller is working, and does not have the 
other controller’s support and communication, the workload 
and stress do not allow controller to apply strategic approach 
(what URET is designed for), but make him/her to work 
tactically. Moreover, in such situations URET becomes a low 
priority—the controller does not even have the time to use it, 
when presumably he would need it the most - an unintended 
outcome. 

The contributing factors—those that may have 
encouraged the initiating and propagating events—are 
insufficient training, lack of procedures, cultural differences, 
staffing, and structure of the center airspace. 

Training was one of the most significant contributing 
factors that led to the system usage that was different from the 
designed one. According to [11], “there was a lack of 
requirement for new controllers completing any on-the-job 
training to have URET proficiency.” Currently, training is 
done primarily on the job with more experienced controllers 
acting as teachers. Furthermore, this form of training is not 
efficient because most of these controllers are “more 
proficient in the pre-URET ATC, and less in the ‘proper’ 
URET use” [11]. 

For four of the new centers, URET training lasted only for 
four days, with the majority of the time spent on 
“buttonology”-explanations of how each function works and 
how to use the computer-human interface. The training did not 
address how URET would be integrated into existing 
practices, nor the creation of new procedures incorporating it. 
The training was not extensive enough to provide the 
controllers with full knowledge of URET and its use. Hence, 
they lack the ability to use the full range of URET 
functionality [11]. 

Although URET is installed in all ARTCCs, the FAA 
Order on Air Traffic Control, which contains the ATC 
procedures, covers Decision Support Tools (e.g. URET and 
Ocean-21) in a single, very brief chapter (Chapter 13). Most of 
the URET procedures assume a pre-URET environment. For 
example, flight strips are rapidly becoming obsolete, and yet, 
the chapter that covers the use of flight strips is quite long and 
elaborate. Although URET is intended to change the way 
controllers do their jobs, these changes are still not addressed 
in any training or work procedures. According to exploratory 
interviews with the SMEs and controllers, it was found that no 
appropriate ARTCC procedures exist for using URET [11]. 

VII. PROACTIVE APPROACH 

The proactive approach is intended to study the physical 
aspects of systems and procedural-human aspects, identify 
potential improvements and critical flaws, and identify ways 
to improve the quality of the systems and procedures. 
Proactive approaches include system design measures (e.g. 
design for robustness), and life-cycle ergonomic design. 
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 According to [7], a large variety of sample cases were 
studied in detail in which “errors made during and in the 
design of the system lead to the failure (lower than desired 
quality) of the system.” Organizations that were involved in 
the system designs are the dominant cause of system design 
related failures. Many of these errors are caused by the lack of 
the culture to promote quality in the design process. To 
improve and assure sufficient quality in system design, the 
priorities where one should devote attention and resources to 
are organizations, individuals, and procedures [7]. 

A. Design Organizations  

High-reliability organizations (HRO) can reduce the 
probabilities of errors by enacting the following [13]:
command by exception, redundancy, procedures and rules, 
training, appropriate rewards and punishment, and the ability 
of management to ‘see the big picture.’ 
 Command by exception is essentially migrating decision 
making responsibility to the persons with the most expertise in 
making the decision when unfamiliar situations arise. In 
systems like ATC, and its automation, the decision making 
(when automation introduction is in question) should be made 
by a group of experts that is comprised from controllers, tool 
designers, human factors experts—an interdisciplinary group.   
 Redundancy involves people, procedures, and hardware. 
Currently, URET is on a different power source than the other 
tools, providing a form of redundancy in case one power 
source goes out. However, in some ARTCCs where URET 
unintentionally reduced the two-controller team to a one-
controller team, redundancy in terms of controller decision-
making was reduced. Thus, it is recommended that a minimum 
of two-controller teams at all times becomes a standard, even 
when workload is low. 
 Another important aspect of HRO are procedures that are 
“correct, accurate, well organized, well documented, and are 
not excessively complex” [7]. In addition, HRO could develop 
constant and high-quality training programs. As discovered in 
exploratory interviews, training and procedures were two of 
the major problems contributing to the failure of intended and 
sufficient URET use. The current ATC training is performed 
on the job by experienced controllers who are more proficient 
in pre-URET than post-URET environments. More attention 
could be devoted to developing high-quality training. 
 According to [11] it was suggested that in order for the 
developers to become a HRO, they need to focus on 
integration, rather than leaving controllers to “adopt it and 
adapt it on their own”. 

B. Design Teams and Quality Assurance 

According to [7], the design teams are the “first line of 
defense to prevent and/or detect and correct system design 
engineering malfunctions.” This category includes personnel 
selection and training, as well as the formation of cohesive 
teams and teamwork.  
 It is suggested that these design teams become more 
cross-functional, where the design teams incorporate 
researchers and programmers, as well as the operators 
themselves. If the end-users are incorporated early on in the 
design process, this could lead to less re-work downstream 
and would serve the purpose better.  

 Quality assurance (QA) includes the activity conducted 
prior to an operation to ‘assure’ that the desired quality is 
developed. QA is the proactive element of QA/QC, where 
Quality Control (QC) is the interactive element (discussed in 
the following section).  QA methods take into account the 
quality attributes of the system (serviceability, safety, 
durability, and compatibility), and focus both on error 
prevention as well as error detection and correction.  

C. Design Procedures  

In the next generation system design procedures and guidelines, it 
is now clear that human and organizational factors (HOF) should 
be taken into even greater and more serious consideration.  

It is suggested that the design teams take into account the 
lessons learnt in the past and incorporate them into their 
design procedures. Not only could these organizations focus 
on developing and incorporating QA/QC into their procedures, 
but they could also continue to work on proactively 
incorporating HOF in order to continually improve the design. 
It is further suggested that the QA/QC is incorporated into 
both the procedures of how to use URET, and a way for the 
controllers and auditors to continually and easily check that 
URET is being used as intended. Another suggestion would be 
to institutionalize QA/QC into everyday work, rather than 
sporadically though large-scale studies. For example, it could 
become part of the controller’s daily or weekly routine during 
their short breaks to evaluate their performance relative to 
URET.

D. Ergonomic Design 

Ergonomics is the “science and practice of designing systems 
to fit people” [12]. Micro-ergonomics addresses the man-
machine interface design at the local work station level, 
whereas macro-ergonomics “addresses the design of the work 
system as a whole” [15]. In micro-ergonomics, engineered 
systems are designed in order to decrease the likelihoods and 
consequences of failures associated with human-system 
interfaces, and sometimes, increase the likelihoods of 
detection and correction of failures. By understanding the 
impacts and the significance of micro-ergonomics, there will 
be a better grasp and implementation of proactive risk 
assessment and management. 

Since many of the ARTCC sectors have reduced the 
teams to a one-controller team, different aspects of URET 
design could be considered to allow more flexibility for each 
individual ARTCC. URET has been demonstrated to be 
unsuitable for use by a one-controller team. URET has a 
separate trackball for information input, meaning that in 
situations of only one-controller working, he will need “to use 
two trackballs and two keyboards if he wants to use URET 
functions other than flight strip replacement one,” [11] which 
makes URET more complex to use. It is further suggested to 
re-design URET to accommodate both situations of one-
controller and two-controller teams. 

VIII. INTERACTIVE APPROACH

Since the aviation industry is highly dynamic and time critical, 
this interactive approach is crucial to the local operators to 
deal with threats to quality and reliability themselves. In other 
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words, the proactive and reactive approaches are not 
sufficient. Reference 3 has developed the proactive and 
reactive approaches, but there is a third and crucial element 
missing: the interactive (real-time) approach. According to [7], 
this interactive approach needs to be recognized and further 
developed.   

This interactive approach is based on the argument that in 
essence, the aspects that influence or determine system 
failures in the future are unpredictable and unknowable. 
Reference 7 provides an interactive theory that is based on 
organizations and teams “interacting” with the system to 
return it to a safe state, hence turning an accident or failure 
into an incident or “near miss.” The goal is to increase the 
proportion of successful interventions as events unfold by 
developing the operators’ cognitive skills so that they can 
manage an unimaginable event before them. 
 Interactive management has two fundamental approaches 
with the objective to achieve quality in systems: 1) to improve 
the management of the causes to reduce the incidence of HOE, 
and 2) to improve the management of the consequences to 
reduce the effects of HOE. There are three time frames in 
which one can focus HOE management activities: 1) to 
prevent errors before the activity, 2) to detect and correct 
errors during the activity, and 3) to reduce the consequences of 
the errors after the error is committed [7].

In managing a crisis, training can reduce the amount of 
cognitive processing required to determine what should be 
done. In addition, observations themselves are crucial in crisis 
management. They provide clues about whether 
implementation is producing the desired results. A crucial 
aspect of operator training managing a crisis is a true, detailed 
understanding of URET in relation to ATC. It is not enough 
that the operator knows how to “push buttons” and use the 
Computer-Human interface. The operator needs to know each 
of URET’s 4 functions deeply, how they function in relation

to one another and to the system as a whole. 
There are two fundamental approaches to improving crisis 

performance [9]: 1) providing people support, and 2) 
providing system support. Providing people support includes 
selecting the right personnel and in the case of ATC, it is 
crucial that these operators are audited, trained, and re-trained 
in order to fully implement all the functions and intentions of 
URET. The training should include crisis management 
strategies. System support is the second approach to improve 
crisis performance, which includes factors such as 
maintenance of equipment and procedures so that they can be 
relied upon when a crisis occurs.   

In ATC, human factors have traditionally been considered 
only during the design of the new tool (proactive), where the 
designed is expected to address all potential problems and 
consequences. However, once the tool has been implemented, 
the design is assumed to be sound, and the human factors 
specialists move to research the next innovation—there is not 
enough follow-up and observation on the implementation 
process [11]. It is suggested that the usage of URET is 
continuously being monitored and observed throughout. More 
importantly, the auditors would need to know and understand 
what exactly they are measuring because the end result could 
be misleading. 

In summary, it is suggested that the developers could 
learn more from field evaluations, and implement an 
interactive, real-time approach to monitoring the 

implementation of URET, in order to achieve a quicker 
evolution of air traffic management capabilities. In order to 
achieve this successful interactive approach, the selection of 
well-qualified operators and perpetual training and re-training 
is necessary to produce highly cognitive operators who can 
apply crisis management strategies while successfully 
navigating the crisis management loop. There needs to be 
more interactive, real-time monitoring on how controllers 
adopt/adapt URET and how its usage in turn impacts the 
overall ATC system.  

IX. SUMMARY OF THE STUDY RESULTS 

A Braille Chart is produced as a result of the analysis of seven 
factors as shown in the previous section in Table I.  Based on 
the grading scale with 1 being outstanding, exceeding all 
standards and requirements, and 7 being very poor, and not 
meeting any standards or requirements, a Braille Chart 
indicates that the majority of the system components do not 
meet the average standards (grade of 4). Four out of the seven 
components—Organizational, Procedures, Equipment, and 
Interfaces—are below average (between grades 4 and 7), 
whereas the other three components— Structure, Operating 
Teams, and Environmental—were barely above average 
(between grades 1 and 4).  The operating teams (controllers) 
are not ranked poorly because the responsibility cannot be 
placed on them for using URET less often than was intended, 
as well as for not using URET for its intended purpose. The 
causes of the current style of URET implementation are rooted 
in the organizational factors, upstream from the operators 
themselves (i.e. lack of funding and attention for training and 
procedures). The worst ranked components were the Interfaces 
between Procedural + Operating, Procedural + Organizational, 
and Hardware + Procedural. These grades support the 
argument for the integration of automation into the existing 
system, where currently the separate system components (e.g. 
procedures, operating, organizational, hardware) are 
developed almost separately and independently. 

For the purpose of developing the Factors Grading 
Braille chart, in calculating the means for each system 
component, it is assumed that each of the factors in the 
components had distributed weights. For example, in the 
Operating Teams component, the Training factor most likely 
contributed the most to the overall component grade. 
However, the purpose of this study was not to go into such 
detail, but rather, to bring to the surface the factors of concern 
that the proactive measures should address. 
 In the next step, the study addressed proactive measures 
to implement in terms of 1) design organizations (high 
reliability organizations), 2) design teams, 3) quality 
assurance, 4) design procedures, and 5) ergonomics. These 
proactive measures are developed from lessons learned from 
the reactive approach, and are intended to identify potential 
improvements, critical flaws, and ways to improve the quality 
of the systems and procedures. However, it is important to 
acknowledge that proactive measures cannot predict 
everything, especially in such complex and dynamic systems 
such as ATC, where it is critical that safety never be 
compromised. Thus, it is crucial that, in this stage of intense 
research, development, and transition, a strong, robust 
interactive approach be developed to ensure the smooth and 
successful implementation of automation tools (e.g. URET) 
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into the system. For the current state, several interactive 
measures are proposed to constantly monitor the impact of 
URET on the controllers and the system. Also, it was pointed 
out that it is important for the organizations to know what they 
are measuring.  For example, [7] has also mentioned that even 
if one is correctly measuring something, this may not mean 
anything since he or she may be measuring the wrong thing. 

X. VALIDATION

It is important to determine the validity and reliability of the 
study’s analytical methods and processes: 

A. Validity 

This paper has both external and internal validity. External 
validity is the extent to which the method (approach) is 
generalizable—the degree the results of its application to a 
sample population can be attributed to the larger population— or 
transferable—the degree the method’s results in one application 
can be applied to another similar application. Internal validity “is 
the basic minimum without which the method is 
uninterpretable,” addressing the rigor with which the method 
was conducted—in terms of the design, the care taken to 
conduct measurements, and decisions concerning what 
was/wasn’t measured [17].  The design of the method and care 
with which it was conducted was very carefully performed.   
We graded nearly every component and factor in the ATC-
URET system, and provided justification and explanation for 
each grade.   

The method of interviewing and developing three risk 
assessment and management approaches is very appropriate 
for its intended purpose.  Reference 3 has developed extensive 
studies in the proactive and reactive approach. Reference 7 has 
extended these studies further, spending much time in 
developing the theories and applications of the missing 
element—the interactive approach.  By applying this study on 
the implementation of URET in ARTCC sectors, this work 
also validates the work performed in [7] in how necessary and 
crucial it is to ensure that URET is monitored and interactively 
studied to improve its integration into the current system.  

The generalizability of this method is both intended to 
assess the current state, as well as being applicable to the 
future state of URET, since it is constantly being studied and 
improved, in addition to other innovations.  Also, the method 
and three approaches developed in this study have been 
validated by [7], where proactive, reactive, and interactive 
approaches were efficiently applied to the specific field of 
geotechnical engineering.  The authors recommend that this 
way of approaching problems can be applied to any industry, 
so long as there are human and organizational factors involved 
(e.g. hospitals, nuclear plants, NASA)—finding an industry 
upon which to apply these concepts should not prove too 
difficult. 

XI. CONCLUSIONS AND FUTURE WORK

This study has developed reactive and proactive approaches to the 
integration of URET in en route air traffic control centers. 
Following these approaches, we then developed an interactive 
approach for ARTCCs. 

There is a great deal more research needed to proactively 
develop, in particular, improved training and procedures as 

well as effective interactive measures. In order to develop a 
strong proactive approach, both the reactive and interactive 
approaches need to continuously feed information and lessons 
into one another—they are each complementary and necessary. 
By interactively studying the impacts of URET (and other 
future automation tools to be adopted and implemented) on the 
performance of air traffic controllers, as well as its very 
adoption and adaptation, usage, and integration, the gap 
between our current system and the next generation ATC will 
finally begin to diminish.  
 When automation introduction is in question, decision 
making should be made by a group of experts that is 
comprised from controllers, tool designers, human factors 
experts— all in an interdisciplinary group. By having these 
interdisciplinary groups apply these three approaches to 
studying automation introduction and implementation, they 
get closer to the ultimate goal of achieving quality (i.e. safety 
and serviceability). 
 We believe that the proposed approach to studying URET 
automation tool can be applied to other emerging automation, 
communication or surveillance tools in the near future. The 
lessons learnt from URET can be incorporated in applying 
sound proactive measures in other new implementations (e.g. 
other tools such as data link or ADS-B), so that the 
organizations will not have to start with learning from a 
reactive standpoint, and can move directly to a proactive and 
interactive system. We believe that the work completed in this 
paper is an excellent starting place for bringing proactive, 
reactive, and interactive quality management tools to this 
dynamic, complex field of introducing automation into the 
already stressed national airspace system. 
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Abstract—The principle “bottlenecks” of the air traffic control
system are the major commercial airports. Atlanta, Detroit, St.
Louis, Minneapolis, Newark, Philadelphia, and LaGuardia all
expect to be at least 98% capacity by 2012. Due to their cost and
the environmental and noise issues associated with construction,
it is unlikely that any new airports will be built in the near
future. Therefore to make the National Airspace System run
more efficiently, techniques to more effectively use the limited
airport capacity must be developed.

Air Traffic Management has always been a tactical exercise,
with decisions being made to counter near term problems.
Since decisions are made quickly, limited time is available to
plan out alternate options that may better alleviate arrival flow
problems at airports. Extra time means nothing when there
is no way to anticipate future operations, therefore predictive
tools are required to provide advance notice of future air traffic
delays. This research describes how to use Support Vector
Machines (SVM) to predict future airport capacity. The Terminal
Aerodrome Forecast (TAF) is used as an independent variable
within the SVM to predict Aircraft Arrival Rates (AAR) which
depict airport capacity. Within a decision support tool, the AAR
can be derived to determine Ground Delay Program (GDP)
program rate and duration and passenger delay. The introduction
of this decision support tool will expand the amount of time
available to make decisions and move resources to implement
plans.

I. PROBLEM STATEMENT

Air traffic congestion has become a widespread phe-

nomenon in the United States. The principle bottlenecks of the

air traffic control system are the major commercial airports,

of which at least a dozen currently operate near or above their

point of saturation under even moderately adverse weather

conditions [1]. The Macroscopic Capacity Model (MCM)

analyzed 16 airports within a 1000 nmi. triangle from Boston,

Massachusettes, to Minneapolis, Minnesota, to Tallahassee,

Florida. Based on this analysis, the MCM showed that in 1997

these airports were operating at 74% of maximum capacity.

The model further went on to predict that the these airports

will be at 89% capacity by 2012 [2].

The congestion problem is made worse because most airline

schedules are optimized without any consideration for unex-

pected irregularities. When irregularities occur, the primary

goal of the airlines is to get back to the original schedule as

soon as possible, while minimizing flight cancellations and

delays [4]. When trying to get back on schedule, sometimes it

is the complexity of the situation, coupled with time pressure,

which results in results in quick decisions that may be less

than optimal [5]. Therefore, it would be advantageous to

develop techniques to lessen the complexity of the situation

and increase the time available.

One way to increase the time available is to create a tool

that can predict the impact of weather on future inbound flight

operations. Weather reports such as the TAF, Aviation Routine

Weather Report (METAR), and the Collaborative Convective

Forecast Product (CCFP) all provide raw weather forecast

information. None of these forecasts though inform National

Airspace System (NAS) stakeholders what the effect of that

weather will be on flight operations. This research intends to

fill this void by developing a process from which a forecast can

be entered to produce estimate of the delay and capacity of the

airport within the forecast area. Capacity estimates, in the form

of AARs are produced for four time periods of the operational

day. Ground Delay Program estimates of duration and program

AARs along with expected delays can be derived from the

predicted AARs. Now the forecast will not only provide the

winds and ceiling, but also the AARs, GDPs, and expected

delay.

II. BACKGROUND

For efficient operation of the NAS, there is a need for the

weather forecasting services and TFM products to estimate the

reduction in capacity due to adverse weather. Weather forecast

products are uncertain and the uncertainty increases with

lead-time. Useful applications of weather forecasts requires

either refinement, consultation, and application of the weather

forecast to estimate air traffic capacity or decision support

tools that take forecasts and make predictions based on past
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forecasts and those forecasts connections to NAS capacity [6].

This paper describes a methodology used to create one such

decision support tool known as the Weather Delay Prediction

Tool. With this tool, the user enters the TAF for a given day

and airport and the tool provides AAR predictions which can

be derived to estimate delay and GDP time and duration.

Initially, this research focused on the CCFP as the weather

forecast. The CCFP is a thunderstorm forecast for the entire

United States and Canada and the research focused on its use

as a predictive tool. After conversations with traffic manage-

ment personnel and airline management, it was concluded that

they rarely used the CCFP for any weather planning and relied

on the TAF instead. The TAF has a good collection of available

archived forecasts, so it was a good fit for the research

objectives. To measure delays, a tool to predict GDPs was first

considered. Over the course of the research it was determined

that measuring delays may be more appropriate and then derive

GDPs from the results. However, after presenting the work to

air traffic management experts at the National Airspace System

Performance Workshop, it was determined that it was better to

use the AAR, since that was a common used factor to measure

degraded airport capacity due to irregular operations. Also,

GDPs and delays can be derived easily if the AAR is known.

III. METHOD

The general procedure used to determine a connection

between weather forecast and airport cpapcity was:

• Collect data from the various available data sources,

• using assorted tools, format the data into a usable layout,

• use a classification tool to connect the two sets, and

• test the data to ensure there is a correlation.

A. Data Collection

FAA officials, airlines, air traffic controllers and others

say Philadelphia plays a major role in delays up and down

the coast thanks to poor airport design, bad weather, heavy

traffic and close proximity to New York. Through September

2007, 68% of departures were on time in Philadelphia, better

only than New York’s JFK International, Chicago’s O’Hare

International and Liberty International in Newark, N.J. Fewer

than two-thirds of arrivals were on time in Philadelphia during

that period. The FAA has deemed Philadelphia a “pacing”

airport that, because it sits in the middle of the busy East

Coast air corridor, causes delays nationwide. Because of these

facts, Philadelphia was chosen as the airport to evaluate the

weather prediction tool [7]. The data used in this paper came

from three areas:

• The TAF data was collected from a website provided by

the National Climatic Data Center (NCDC).

• The Aircraft Arrival Rate data was collected from the

Aviation System Performance Metrics (ASPM) database

based maintained by the FAA.

• The delay data was found on the Bureau of Transportation

Statistics website for summary statistics for destination

airports.

1) Terminal Aerodrome Forecast: The TAF is an oper-

ational forecast consisting of the expected meteorological

conditions significant to a given airport or terminal. TAFs

always include a forecast of surface wind speed and direction,

visibility, and clouds. Weather type, obstructions to vision, and

low level wind shear are included as needed. The National

Weather Service (NWS) produces over 570 TAFs. A TAF

is a report established for the 5 statute mile radius around

an airport. In the U.S., TAFs are produced four times a

day starting at approximately 30 minutes before each main

synoptic hour (00Z, 06Z, 12Z, and 18Z). All the forecasts

produced starting one hour before the main synoptic hour up to

four hours past the main synoptic hour are considered to be for

the same cycle [8]. NWS is responsible for providing terminal

forecasts to commercial and general aviation pilots for the

protection of life and property and in response to requirements

levied by International Civil Aviation Organization (ICAO) via

the FAA in order to promote the safety and efficiency of the

NAS.

2) Aircraft Arrival Rates: A Strategic Plan of Operations

for managing flows during severe weather events in the NAS

takes into account reduced AARs due to weather constraints.

If the predicted capacity (number of aircraft that the airport

can safely land in a given time period) falls short of scheduled

demand (number of aircraft that wish to land at an airport in

a given time period), traffic flow managers may implement a

GDP [9]. GDPs are implemented by the Air Traffic Control

System Command Center (ATCSCC) after consultation with

regional Federal Aviation Administration (FAA) centers and

with airline operations centers. A GDP applies to a particular

airport, has specified start and stop times, and sets an allowable

arrival rate.

Originally this research we focused on predicting GDPs by

using the SVM. However, after discussions with air traffic

managers, it was decided that it was more appropriate to

predict AARs. AARs offer several advantages. First, each

airport tends to revert to a finite set of AAR rates when

airport capacity had to be reduced due to weather. This allowed

grouping the possible outcomes into only a few distinct bins.

Then a value was chosen between each bin and tested whether

the day was ≥ to the in between value or < the between value.

Finally, a predictor function was developed for each of these

values and from the results we were able to predict the future

AAR.

The second advantage of the AAR was that GDPs could be

predicted based on the conclusions of the predictor function.

GDPs occur when the AAR is below the rate for a normal

operations when the weather is favorable. AAR predictions are

made for four times during the day based on the demand level

of the airport. This generated a graph found in Figure 1. For

this airport, the greatest demand hours were at 0700, 1100,

1500, and 2000 local time. Table I shows the demand hour

and the assumed coverage hours for the airport. This airports

normal AAR was 44, so Figure 1 predicts a GDP from 1300

to 2400.
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Fig. 1. Aircraft Arrival Demand Chart

Demand Hour Assumed Time Block

0700 0500-0900
1100 0900-1300
1500 1300-1730
2000 1730-2400

TABLE I
DEMAND HOUR AND ASSUMED TIME BLOCK

B. Support Vector Machines

The Support Vector Machine (SVM) is a supervised learning

method that generates input-output mapping functions from

a set of labeled training data. In our case we are using the

mapping function as a classification function. In addition to

its solid mathematical foundation in statistical learning theory,

SVMs have demonstrated highly competitive performance in

numerous real-world applications, such as bioinformatics, text

mining, face recognition, and image processing [10]. SVMs

are based on the concept of decision planes that define decision

boundaries. A decision plane is one that separates between a

set of objects having different class memberships. A schematic

example is shown in the Figure 2. In this example, the objects

belong either to class square or circle. The separating line

defines a boundary on the right side of which all objects are

squares and to the left of which all objects are circles.

Figure 2 is a classic example of a linear classifier, i.e., a clas-

sifier that separates a set of objects into their respective groups

(square and circle in this case) with a line. Most classification

tasks, however, are not that simple, and often more complex

structures are needed in order to make an optimal separation,

i.e., correctly classify new objects (test cases) on the basis of

the examples that are available (training cases). This situation

is depicted in Figure 3. Compared to Figure 2, it is clear that a

full separation of the square and circle objects would require

a curve (which is more complex than a line). Classification

Fig. 2. Separating line defines a boundary

Fig. 3. Full Separation requires a curve.
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Fig. 4. Objects are mapped using a set of mathematical functions.

tasks based on drawing separating lines to distinguish between

objects of different class memberships are known as hyper-

plane classifiers. Support Vector Machines are particularly

suited to handle such tasks.

Figure 4 shows the basic idea behind Support Vector

Machines. Here we see the original objects (left side of the

schematic) mapped, i.e., rearranged, using a set of mathemati-

cal functions, known as kernels. The process of rearranging the

objects is known as mapping (transformation). Note that in this

new setting, the mapped objects (right side of the schematic)

is linearly separable and, thus, instead of constructing the

complex curve (left schematic), all one has to do is to find

an optimal line that can separate the square and the circle

objects. Support Vector Machine (SVM) is a method that

performs classification tasks by constructing hyper-planes in a

multidimensional space that separates cases of different class

labels. SVM supports both regression and classification tasks

and can handle multiple continuous and categorical variables.

For categorical variables a dummy variable is created with

case values as either -1 or 1. For this type of SVM, training

involves the minimization of the error function:

1

2
wT w + C

∑N
i=1

ξi

s.t. yi

(
wT x + b

)
≥ 1 − ξi

ξi ≥ 0, i = 1 . . . N

Where C is the capacity constant, x is the vector of

coefficients, b a constant, y the dummy variable, and ξi are

parameters for handling non-separable data (inputs). The index

i labels the N training cases. The kernel w is used to transform

data from the input (independent) to the feature space. It

should be noted that the larger the C, the more the error is

penalized. Thus, C should be chosen with care to avoid over

fitting [11].

C. Predictor Function

After collecting the TAF data as the independent variable

matrix and the ASPM AAR as the dependent variable vector

the SVM was applied to determine a function to predict future

AAR’s. The quadratic program introduced earlier was coded

into AMPL. AMPL is a comprehensive and powerful alge-

braic modeling language for linear and nonlinear optimization

problems, in discrete or continuous variables. After coding, the

program was submitted and the associated data to the NEOS

Server for Optimization.
1) Creating the TAF Vector: The x in the quadratic program

represented the 57 character long vector from the TAF weather

data collected from 2002 through 2006. To create the vector,

TAF data was collected from a website provided by the

National Climatic Data Center (NCDC). These files tend to

be long, up to 100 pages of text data, because all reports

received are placed in these files as they are received and they

are updated approximately every five minutes as data becomes

available. Also, forecasts may be duplicated within the files

and multiple forecasts received from a station may appear in

a file [12]. To transform the raw TAF data into usable vector

form, data was pasted into an Excel Spreadsheet. Then the text

to column function was used to put each part of the data into

a separate cell. After the data was transformed into a linear

format, it was then parsed down to include only the 0600 Zulu

TAF reports. It was assumed that planning would take place

early in the morning and the 0600 Zulu TAF, which equates

to 0100 EST, was the first of the day.
2) Support Vector Machine Method: The first step in the

process was to find the common AARs for each airport in the

study. Using the ASPM database, AARs were collected for

each of the four peak hours for the 1826 days in the dataset.

Airports tend to have a set of common AARs that they use, so

there are a consistent set of values to perform the classification

algorithm.

In the quadratic program, y represents a binary variable that

indicates whether or not an AAR was set at a certain numerical

rate for a given airport. Values equal to -1 indicate that day was

greater than or equal to the numerical rate while values equal

to 1 indicate that day was less than the numerical rate. One

advantage of the SVM method is the way it deals with data

outliers. For most methods, statistical techniques are used to

eliminate values that are considered abnormalities. The SVM

has an error function in the objective function, were the C

variable is set to a value that increases or decreases the number

of incorrect classifications within the data. A high C allows

fewer outliers, while a smaller C allows more. For our analysis

C was set at 1000 after experimenting with other values. This

helped to determine a ξ vector, which was only used to relax

the function, so a solution was possible. The ξ vector was not

used in the final prediction function.

For the independent variables, the five years worth of data

included 1826 days so this created an 1826 × 57 data matrix

for the independent variable. The AMPL code was run on the

NEOS Server and found a solution vector w and variable b for

each airport. After determining the w vector and the y variable

the current TAF forecast could be used to develop an x vector

using that data and then use Equation 1 to develop a prediction

value.

wT xi + b (1)

If the prediction value was greater than 0, then the algorithm

predicts that less than an AAR will occur on that day.
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Fig. 5. Philadelphia Airport Map

[13]

Fig. 6. PHL Hourly Demand

Conversely, if the value is less than zero then the algorithm

predicts greater than an AAR value on that day.

IV. RESULTS

Figure 5 shows that the primary runways at Philadelphia are

9L/R and 27 L/R. Poor runway arrangement limits the number

of planes that can take off from the airport at once, especially

during bad weather. Although a small runway was added in

1999, most of the layout dates back to the 1970s or earlier

[7].

The SVM only classifies the data for a given AAR value.

In order to create a useful tool, several SVM operations had

to be done for one airport. The first step in the process was to

find the average demand rates for each hour during the day.

These peaks are highlighted in Figure 6.

Figure 6 shows six peaks, but to reduce the dimensionality

of the problem we chose only 0800, 1200, 1600, and 1800. For

those time periods the most common AAR was 52, indicating

normal operations, which occurred 60% of the time. During

times of irregular operations the AARs are reduced to 48 for

20% of the time and 36 for 9% of the time. Because these

three AARs constitute 89% of the possible AARs, these were

set as the only possible solutions that the model will predict.

Two SVMs were solved for each time period. The first SVM

will classify whether or not the day had an AAR less than 52

or greater than or equal to 52. If the SVM classifies a given

Time Divider Sensitivity Specificity PPV NPV Correct

0800 48 0.38 1.00 1.00 0.84 0.86
52 0.61 0.90 0.79 0.78 0.78

1200 48 0.35 0.96 0.64 0.88 0.86
52 0.50 0.91 0.79 0.74 0.75

1600 48 0.31 0.98 0.75 0.89 0.88
52 0.49 0.91 0.74 0.76 0.75

1800 48 0.32 0.98 0.75 0.89 0.88
52 0.48 0.90 0.72 0.75 0.75

Combined 0.46 0.95 0.77 0.82 0.81

TABLE II
PHILADELPHIA TRAINING DATA

Time Divider Sensitivity Specificity PPV NPV Correct

800 48 0.40 1.00 1.00 0.83 0.85
52 0.49 0.94 0.81 0.79 0.80

1200 48 0.44 0.99 0.85 0.92 0.91
52 0.40 0.92 0.70 0.77 0.76

1600 48 0.36 0.98 0.77 0.89 0.88
52 0.39 0.92 0.66 0.80 0.78

1800 48 0.28 0.98 0.73 0.88 0.87
52 0.35 0.92 0.61 0.79 0.76

Combined 0.40 0.96 0.75 0.84 0.83

TABLE III
PHILADELPHIA TESTING DATA

day and time period as greater than or equal to 52, then the

tool will show a AAR of 52. This AAR would also indicate

no GDP during this period. If the SVM predicts less than 52,

then we would develop an SVM to test to see if the given day

and time period is less than 48 or greater than or equal to 48.

Again, if the SVM indicates greater than 48, then the tool sets

the AAR to 48 and indicates a GDP. If the SVM indicates less

than 48, then we set the AAR is set to 36 and also a GDP is

predicted during this period. The duration of a predicted GDP

is based on what time periods have GDP AARs.

A. Philadelphia Results

To evaluate how the SVM worked for Philadelphia, two

methods were applied. The first method observed the success

rate of the SVM prediction functions for the two test points

for each time period. Data was also separated between training

data, which was the data from January 2002 through December

2006, and testing data which is data from January 2007

through June 2007. The results for the training data are found

in Table II and the results for the testing data are found in

Table III.

Table II and Table III indicate that the SVM algorithm

was correct 81% of the time for the training data and 83%

for the testing data. To create a meaningful tool containing

these algorithms a set of rules was established to estimate

the AAR. The tool only considers three possible AARs, one

associated with normal operations, one associated with a slight

reduction in capacity, and one associated with a large reduction

of capacity.

The first rule tested whether or not the point, that represents

a day, was below 48. If it was below 48, then the AAR was

determined based on a weighted average of the observed AARs

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9231



Predicted AAR

Time Actual Accuracy 36 48 52

0800 36 0.718 158 41 21
48 0.409 102 135 93
52 0.778 96 187 993

1200 36 0.640 105 32 27
48 0.464 87 141 76
52 0.736 109 249 1000

1600 36 0.746 85 21 8
48 0.396 89 126 103
52 0.736 94 238 1026

1800 36 0.754 89 17 12
48 0.389 88 126 110
52 0.754 98 242 1044

TABLE IV
TOOL RESULTS FOR PHILADELPHIA TRAINING DATA

Predicted AAR

Time Actual Accuracy 36 48 52

0800 36 0.760 19 3 3
48 0.250 5 3 4
52 0.793 15 15 115

1200 36 0.923 12 0 1
48 0.300 6 6 8
52 0.772 8 26 115

1600 36 0.769 10 2 1
48 0.294 7 5 5
52 0.829 12 14 126

1800 36 0.727 8 1 2
48 0.278 7 5 6
52 0.810 15 14 124

TABLE V
TOOL RESULTS FOR PHILADELPHIA TESTING DATA

below the tested rate, which for all four time periods was 36.

If the SVM indicated the point was equal to or greater than

48 or less than 52, then we assumed the AAR was 48. All

other results were assumed to be 52. Table IV and Table V

show the tool performance for the training and testing data.

Table IV and Table V show that the accuracy is better at

the extreme points then the points in the middle. This shows

that the SVM method is better at finding extreme points on

the edge instead of points inside.

B. Delay Prediction

Within the airline industry and air traffic management the

AAR determines the airport capacity and is used to highlight

the severity of a GDP, therefore it is the preferred prediction

variable. Most flying consumers do not understand what AARs

are and prefer to know what are the potential delays. The

Weather Channel uses a Red, Amber, or Green rating system

to highlight the airport impact. Although, the website does

not explain the rating system, one would assume that Red

impact means the most delays and Green impact means little

to no delays. Amber is somewhere in the middle. To make

the Weather Delay Prediction Tool applicable to the traveler,

a delay prediction needed to be added.

1) Delay Prediction Method: Since the SVM model only

predicts three potential AAR outcomes, then the average

delays during the time of those AARs would provide not

Predicted AAR

Time Delay 36 48 52

0800 Low 0 0 0
Mean 9 0 0
High 19 8 1

1200 Low 0 0 0
Mean 15 0 0
High 37 9 3

1600 Low 1 0 0
Mean 25 6 0
High 48 19 9

1800 Low 13 0 0
Mean 54 19 7
High 96 42 22

TABLE VI
PHILADELPHIA DELAY PREDICTIONS

only a mean value, but also a range. Using the AAR data

from ASPM and the delay data from Bureau of Transportation

Statistics website, the average delay was calculated for each

corresponding AAR. To provide a range of values, the standard

deviation was calculated and added and subtracted to the mean

value to provide a range.

2) Delay Results: Delay values are negative if the average

arrival is early. Therefore, many of the average values are

negative. If this was true then the value was changed to zero.

Delay values and ranges are rounded to the nearest minute

in Table VI. Table VI indicates the delay mean and the high

and low range for each time period and predicted AAR. For

instance, for the 1800 time period, if the model predicts an

AAR of 36, then the delay mean is 54 minutes with a range as

high as 96 and as low as 13 minutes. Now the flying consumer

has information that they can use to plan their travel day.

C. Strategies for the Weather Delay Tool

Hub and spoke networks have become the most popular type

of airline scheduling. In this type of scheduling, several points

of departure feed into a single hub airport from which con-

necting flights carry passengers to their final destination. The

advantage of the cross-connections is the multiplier effect as to

the number of city pair that can be served. However, airports

that are designated as the “hub” are subjected to increased

congestion that are exasperated by irregular operations [4].

Meyer et al. (1998) [14] introduces the reliever and floating

hub concept in a 1998 paper. Since most airline schedules

are made without regard to unexpected daily changes due

to severe weather conditions, there is very little slack time

which means that any delay early in the day is likely to affect

the schedule for the rest of the day unless the airline can

take effective steps to correct the problem. Most carriers have

developed procedures to follow in the event of unexpected dis-

ruptions in operations. However, most of these procedures are

implemented manually, with little or no reliance on automated

decision support systems [4].

The reliever hub is a strategy to reassign and optimize

airport and airline schedules when experiencing a disruptive

disturbance at a major hub airport and still maintain reasonable

service. Figure 7 shows an example of a hub and spoke system.

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9232



Fig. 7. Hub and Spoke System

Fig. 8. Reliever Hub Option

The strategy is to temporarily use a nearby airport to act as

a connecting hub, which can reduce the delays caused by a

capacity reduction at the major hub. Figure 8 shows city 1 as

a reliever hub. All cities to the west of the hub are sent to

the reliever hub while all cities to the east continue to go to

the main hub which reduces the demand on the main hub and

decreases delays within the system. Service from city 1 to the

hub would probably have to use a larger plane or more flights

to insure passengers that need to get to the eastern cities or to

the hub city arrive at their final destination.

Determining the best location for a reliever hub is a complex

task. Even if the alternate hub is chosen ahead of time, the

airline still must reconfigure schedule and passenger itinerary

to minimize the total delay. Whether this reconfiguration is

done by hand or is automated, it still requires time and

employee manpower. It also requires a decision to use this

manpower. Manpower has a cost associated with it, so the

airline manager has to reasonably sure that the labor cost will

help reduce any future loss due to extended delays. Because

the TAF Delay Prediction Tool predict future delays it provides

time and justification. Since the tool has been trained by

historical data, it makes an AAR prediction based on what

happened with similar TAFs in the past. Now the manager

has justification to begin planning for the reliever hub.

Because the manager can enter the TAF a day in advance,

there is now time to implement the plan by rescheduling flights

and even informing passengers of any changes. Larger or

smaller aircraft can be swapped to account for the change in

passenger. This time also allows ground crews at the reliever

hub more time to ready themselves for unusually high activity.

The reliever hub may not have the permanent infrastructure

to support an increase in passengers, therefore temporary

solutions may have to be implemented. Since there may not be

enough gates, planes may have to be serviced on the apron.

This may require the use of buses and bus drivers to drive

passengers from the planes to the terminal. Temporary shelter

may have to be set up to shield passengers from the heat or

cold.

V. CONCLUSION AND FUTURE WORK

A. Weather Delay Prediction

The paper shows the possibilities of a Weather Delay Pre-

diction Tool and what it can do to help NAS stakeholders. The

algorithm is capable of classifying weather forecasts into three

sets, where each set represents a specific AAR. Typically the

highest AAR represents the airport during normal operations,

while the two lower values represent reduced capacity due to

weather or other congestion issues. Analysis showed that the

SVM was more effective at predicting the normal AAR and

the lower reduced capacity AAR. Therefore, for the weather

delay prediction tool, it is appropriate to set a red, amber, or

green scale. If the tool indicates green operations, then it is

likely that the capacity at the airport will be at the maximum

AAR and delays will be minimal. If the tool indicates red

operations, then it is likely that the capacity at the airport

will be significantly reduced and delays may be excessive.

The Amber response indicates that the prediction is more

uncertain, however, planners should prepared to have reduced

operations at that airport. This appears to be the same rating

system employed by the Weather Channel website, but it is

also used by the military to rate progress of projects, describe

the suitableness of terrain for armored vehicles, or any other

situation that requires a general rating. Since the tool provides

only a general assessment of airport capacity through AARs,

then a general prediction of delays is also included based on

AAR and time period. This tool helps the flying public know

how long they can expect to be delayed due to weather.

GDPs will be predicted based on the tool prediction for

each time period. The time periods for each airport were

determined based on the demand peaks during the operational

day. The two important pieces that came from a GDP are

the programmed AAR and the duration. Programmed AAR is

predicted based on the tool’s prediction for each time period.

The length of the GDP is determined based on which time

period are below the normal rate. For instance, the peak time

periods at Philadelphia were 0800, 1200, 1600, and 1800.

Therefore, if the AAR prediction at 1600 and 1800 were below

normal and the AARs at 0800 and 1200, then we assume that

the GDP begins half way between 1200 and 1600 at 1400 and

lasts until the the end of the operational day at 2400.
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B. SVM Disadvantages

A disadvantage of the SVM is that it does not show if

any factor has more influence on the outcome then another.

For each individual prediction equation developed, there were

same factors that were weighted higher than others. The

prediction equation is not an intuitive answer. However, across

all of the prediction equations, there was not a value that

consistently had more influence than another. By the nature of

the algorithm, recursive partitioning searches for the value that

best divides the data, so if determining which factors have the

most influence on the final solution, the recursive partitioning

method is more appropriate.

It is difficult to determine the effect of some of the data sets

on the SVM. For instance, construction and airport upgrades

at an airport can create inconsistent data. Analysts can attempt

to normalize the data to try to maintain a consistent data set.

However there was no way to determine how this affected the

actual results. Results from airports that required normalization

may not be as accurate as airports that had a consistent data set.

Also, the SVM can not predict rare occurrences. For instance

if a AAR rarely happened and the SVM tried to separate it

from the rest of the data, a prediction vector of all zeros was

the output with a b value of either 1 or -1.

C. Future Work

1) Proper Data Set Size: One of the issues with the SVM is

what is the right amount of training data needed to produce a

prediction equation that produces the most accurate predictions

without overfitting the data. The process in this paper was

to develop a prediction equation and then compare it to the

training data and then the testing data. The analysis used

57 factors in the prediction function. The number was based

on the factors found in the TAF for four time periods. If

more factors were added to the data, then the performance of

the predictor function applied to the training data improved.

Unfortunately this did not improve the performance of the

testing data which indicates that the data was overfitted. This

situation is similar to using a 8th order polynomial to predict a

line with 8 variables. It performs well with the 8 variables, but

has little prediction value for any new independent variable.

An optimization algorithm could be developed to determine

the proper mix of training data and factors. Additional data

factors could be added by adding time periods and the size

of the training data could be reduced, although not increased

since TAF data only goes back as far as January 2002.

2) Factors Other than Weather: This research focused on

weather and using a forecast product to predict reduced airport

capacity. Within the paper, it was discussed that other factor

such as schedule congestion and runway construction also

affect airport capacity. Further study should determine if there

are any factors, besides weather factors, that can be added to

the set of independent variables to produce a better predictive

model. Techniques such as linear regression, have methods

available to add or remove variables to the equation. At present

though, there is no such standard process for SVMs other than

adding the variable and testing the results to see if there is

improvement. Developing this technique in itself would entail

extensive analysis.

ACKNOWLEDGMENT

We would like to thank the Center for Air Transportation

System Research (CATSR) at George Mason University for

providing support to this study. We would also like to thank

Dr. George Donohue from George Mason University and Dr.

David Rodenhuis from the University of Victoria, British

Columbia. Earlier conversations with both were the genesis

of this work and their advice on air traffic management

and weather forecasting were vital. We would also like to

thank Ved Sud from the FAA, Mike Brennan from Metron

Aviation, and Mike Wambsgans from Flight Explorer for their

technical contributions. Danyi Wang and Bengi Manley from

the CATSR lab provided valuable information on delays and

ground delay programs and provided input to early study

results. I would also like to thank Dr. Rajesh Ganesan, Dr.

Andrew Loerch, and Dr. Aimee Flannery for the time and

effort they set aside to help us complete this research.

REFERENCES

[1] M. Terrab and S. Paulose, “Dynamic strategic and tactical air traffic flow
control,” Rensselaer Polytechnic Institute, Tech. Rep., August 1992.

[2] G. Donohue and W. Laska, United States and European Airport Capacity

Assessment Using the GMU Macroscopic Capacity Model. Lexington,
MA: American Institute of Aeronautics and Astronautics, 2001, vol. 193,
ch. 5, pp. 61–73.

[3] Y. Ageeva, “Approaches to incorporating robustness into airline schedul-
ing,” Masters Thesis, Massachusetts Institute of Technology, August
2000.

[4] F. Durso, T. Truitt, C. Hackworth, D. Ohrt, J. Hamic, and C. Manning,
“Factors characterizing en route operational errors: Do they tell us
anything about situation awareness?” in Proceedings of the International

Conference on Experimental Analysis and Measurement of Situation

Awareness, D. Garland and M. Endsley, Eds. Daytona Beach, Fl:
Embry-Riddle Aeronautical University Press, June 1996, pp. 189–196.

[5] D. Rodenhuis, “Hub forecast prototype test,” in Paper J3.9, Proc.

Aviation, Range, and Aerospace Meteor (ARAM), American Meteor. Soc,
June 2006.

[6] P. Walters, “Delays at Philly airport caused by poor design, bad weather,”
Aviation, p. 20, December 2007.

[7] National Air Traffic Training Program, Air Traffic Guide, Aviation

Routine, Weather Report (METAR), Aerodrome Forecast (TAF), Aviation
Weather Center, Washington, D.C., May 2007.

[8] B. Hoffman, J. Krozel, and R. Jakobavitis, “Potential benefits of fix-
based ground delay programs to address weather constraints,” Metron
Aviation, Inc. Herndon, VA 20170, Tech. Rep., August 2004.

[9] V. Kecman, “Studies in fuzziness and soft computing,” in Support Vector

Machines: Theory and Applications, L. Wang, Ed. Berlin: Springer,
January 2005, ch. Support Vector Machines - An Introduction, pp. 1–47.

[10] T. Hill and P. Lewicki, STATISTICS Methods and Applications. StatSoft,
2006.

[11] “HDSS access system, national climatic data center,”
http://Hurricane.ncdc.noaa.gov, June 2007.

[12] U.S. Terminal Procedure Publications, Federal Aviation Administration,
Washington, D.C., August 2007.

[13] E. Meyer, C. Rice, P. Jaillet, and M. McNerney, “Evaluating the
feasiblility of reliever and floating hub concepts when a primary airline
hub experiences excessive delays,” University of Texas at Austin, Tech.
Rep., 1998.

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9234



Pilot Support for Flying Curved Decelerating
Approaches in Realistic Wind Conditions

Alexander in t Veld, Rob Groenouwe, Max Mulder and René van Paassen
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Abstract—The most promising aircraft noise abatement ap-
proach procedures are those that combine flying longer at
high altitude with continuous descents in a near-idle thrust
setting. Although very effective at mitigating noise impact on the
populated areas that surround airports, these procedures reduce
runway capacity with respect to standard ILS approaches. Large
uncertainties in descent trajectories force air traffic controllers
to apply large separations in order to ensure safe operation. In
this paper, a solution is presented that addresses the problems of
variability in deceleration profiles and wind uncertainty. Spacing
is done by providing pilots with a required time of arrival. A
support system then helps the pilot in meeting this time goal.
A wind prediction algorithm has been developed that creates
a wind profile estimate along the intended three dimensional
approach track, using filtered wind data observations broadcast
by nearby aircrat. By combining accurate wind estimates with a
flap scheduling algorithm, accurate track and speed guidance is
available on-board. An interface has been designed that aids the
pilot both in flying a controlled continuous descent approach and
in meeting the time target set by air traffic control. To test the
combined support system, a piloted simulator experiment was set
up. Performance in terms of time goals was found to be consistent
under all tested conditions and significantly better in comparison
with the non-supported condition. Also, workload is significantly
lower with the display optimization present. Providing the pilot
with continuously updated time performance information based
on actual meteorological circumstances was shown to be an
important requirement for the implementation of CDAs in a
time based spacing environment.

Index Terms—continuous decent approach, wind prediction,
trajectory prediction, pilot guidance

I. INTRODUCTION

All over the western world, and especially in Europe,
aircraft noise is one of the major limiting factors of airport
capacity growth[1]. A lot of attention is paid to mitigating
airport nuisance from the surrounding communities. Many
different approaches are taken, for instance in the fields of air-
craft engine technology and airport infrastructure planning[2].
The approach under study here will focus on noise abatement
approach procedures, and how these can attribute to lowering
aircraft noise impact on the ground. In this field there is
still significant room for improvement, since the procedures
currently in place hardly make use of advances in guidance,
navigation and surveillance technology.

Over the years, several noise abatement approach pro-
cedures have been developed[3], [4]. Variants include gen-
eral procedures like the Low-Power Low-Drag Approach

or the Continuous Descent Approach, and airport-specific
measures[5], [6], [7], [8]. One characteristic aspect of many
of these proposed procedures is that part of the approach is
carried out with more or less idle thrust settings. Also, aircraft
should avoid flying level segments at low altitude, which
are typical for the current standard procedures, including ILS
approaches. These new procedures have been shown to reduce
aircraft noise, but at a cost: the different continuous descent
profiles of various aircraft cause air traffic controllers to apply
large initial separations to ensure safe operation. As a result,
runway capacity is reduced[6], [9].

In this paper a solution to this problem is proposed by
introducing a pilot support system that enables time-based
separation during the approach. In other words, pilots are given
a Required Time of Arrival (RTA), rather than radar vectors. It
then becomes the pilot’s task to comply, within bounds, with
this time goal, whereas final responsibility for safe separation
remains with ATC. The resulting system enables continuous
descents, while still guaranteeing safe separation. This re-
search focuses in particular on curved approach procedures
under realistic wind conditions. Wind has a major influence
on the accuracy of time based separation, and prediction of
the wind profile encountered during the approach could be
of great importance. A tool capable of accurately predicting
wind conditions along a three-dimensional approach track was
developed. Together with an algorithm that calculates the
optimum settings for parameters such as the altitude where
thrust is reduced to flight idle, this forms a support system
that helps the pilot in flying idle thrust, continuous descent
approaches while meeting arrival times commanded by ATC.
This should allow ATC to sequence and space aircraft in the
TMA more tightly, eliminating the capacity reduction currently
associated with many noise abatement procedures.

This paper discusses (i) the characteristics of the particular
Continuous Descent Approach procedure investigated in this
paper, (ii) the algorithms that form the pilot support system
and (iii) the results of a piloted simulator experiment that
was set up to test the behavior of the system under realistic
circumstances.
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➀

➁

➂

➃

Fig. 1. The approach route, top view. The starting points of the phases of
the CDA procedure are indicated. ➀ Level flight at FL70, ➁ Constant IAS
descent along 3

◦ glide path, ➂ Idle thrust descent, ➃ Constant final approach
speed along ILS.

II. CONTINUOUS DESCENT APPROACHES

A. Description of the procedure

Based on practical experience with Noise Abatement Proce-
dures at Amsterdam Airport Schiphol in the Netherlands and
previous research[9], [6], a procedure resembling a standard
nighttime transition[10] was chosen as the scenario for this
research. These transitions typically involve a number of
turns to avoid flying directly over the most densely populated
areas. Obviously, these turns will cause great variation of
the headwind and crosswind components when flying these
transitions.

As can be seen from Fig. 1, the procedure consists of four
parts. In phase ➀, the aircraft is flying level at a relatively
high altitude, but within TMA boundaries, for instance FL70.
Nominal airspeed in this part is 220 kts IAS. At about 22 nm
out, the aircraft intercepts a 3◦ glide path, but maintains its
nominal indicated airspeed (phase ➁). At a predetermined
altitude, thrust is reduced to flight idle, marking the beginning
of phase ➂. When the aircraft reaches its final approach speed,
thrust is reapplied and this speed is maintained (phase ➃)
until touchdown on the runway. For safety reasons, the air-
craft should reach this approach speed no later than when it
reaches 1000 ft altitude, approximately 3 nm from the runway
threshold. This point will be later in this paper referred to
as the reference window and is located at RNAV waypoint R

(‘Romeo’). At this point, the aircraft should be fully configured
for landing, with full flaps extended and landing gear down.
From here, the remainder of the approach is identical to a
standard ILS approach procedure.

This type of approach procedure requires certain tech-
nologies to be available in aircraft throughout the arrival
stream. For example, following a 3◦ glide path, while not yet
aligned with the runway centerline, would require VNAV-path
or Microwave Landing System (MLS) capabilities on board
of the aircraft. Although not yet widely implemented, these

technologies are already available today.

B. Time based separation

Variations in the characteristics of this approach trajectory
would make it difficult for an air traffic controller to space
incoming traffic. Three factors are identified as having an
important influence on the CDA’s characteristics[11]:

• Different aircraft types with their own characteristic idle-
thrust deceleration profiles,

• Varying wind conditions,
• Uncertainties in pilot behavior.

As all of these factors need to be accounted for in spacing,
uncertainty adds up and controllers apply large initial sep-
arations as a safety buffer. Transferring all or part of the
spacing task to the cockpit could greatly reduce the problem
of the different deceleration profiles, since in general the flight
crew will have access to more aircraft-specific and situation-
specific information on own aircraft characteristics than an
air traffic controller on the ground[12]. One way to go about
this is the concept of time-based separation, providing each
pilot in the chain with a Required Time of Arrival (RTA) at
touchdown and other waypoints along the approach trajectory.
These RTAs allow the controllers to increase runway landing
capacity, by providing the aircraft under their control with
optimized arrival times. It then becomes the pilot’s task
to navigate his aircraft to the runway, respecting the time
constraints as demanded by ATC. The focus of this research
is to investigate whether implementation of a system of time-
based separation is feasible under actual operating conditions
(curved trajectories, varying winds), without putting too much
workload on the flight crew.

III. SUPPORT SYSTEM DESIGN

To help the flight crew in meeting the goals stated above,
a support system has been developed. Its main aim is to
provide the pilot with continuous information on the aircraft’s
status with respect to the time goal and the execution of the
continuous descent approach. The support system consists of
four modules, shown as encircled blocks in Figure 2. In this
section the first three modules (wind prediction (➀), track
prediction (➁) and an optimization module (➂)) are explained.
The last module (module ➃) translates some of the parameters
in the system into information for the pilot, which is then
presented on the cockpit displays, along with time performance
indication. This is described in Section V.

A. Wind profile prediction

As listed in Section II-B, the wind encountered during the
approach is expected to have a large influence on the accuracy
with which the entire procedure is flown. It is, therefore, very
important to have a tool that accurately predicts the wind
profile ahead of the own aircraft. An algorithm was developed,
capable of predicting horizontal wind speed and direction
along any path in a three dimensional space. This wind profile
prediction algorithm is based on previous research [11], which
assumes measurements of wind data are available, for instance
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Fig. 3. Schematic of the filtering process in the wind prediction algorithm.

through ADS-B soundings from other aircraft in the vicinity.
These measurements are then filtered using a Kalman filtering
technique to produce an estimate of the wind profile the
aircraft will encounter. The Kalman filter is well-suited to deal
with integrating noisy measurements in the prediction[13]. In
addition, it is easily implemented in a recursive algorithm,
thereby reducing the need to store large quantities of wind
data on board. This model was modified to be usable in three
dimensions, making wind profile prediction along any curved
approach trajectory, from any position and altitude, possible. In
addition, functionality to use every incoming observation was
incorporated, where in earlier work only data around certain
fixed altitude intervals was used. This allows optimal use of the
information at hand, and is expected to make the prediction
more reliable, especially in situations where data density is
low. A description of the way the wind prediction algorithm
works is given below.

First, an initial wind speed estimate vector x̂ is set up. This
vector contains wind speeds for a number of altitudes. In this
study, the altitude interval is set to 500 ft. This interval is
arbitrary, since the accuracy of the prediction only depends on
the amount and accuracy of the available wind measurements.
The set up of this initial wind profile guess is arbitrary. It may
consist of unfiltered measurements of ADS-B soundings, or a
standard profile uploaded from an Air Traffic Services unit. In
this case a standard logarithmic wind profile is constructed as
follows:

x̂ = V0(
h

h0

)κ (1)

with κ the Von Karman constant, equal to 0.4[14]. This
equation bases the wind speed x̂ on the free stream wind
velocity V0 at a corresponding altitude h0. h Is the altitude
at which we want to determine the wind speed.

Whenever new data comes in, this profile is updated.
An incoming observation yk is split into North and East

components, to be able to estimate these separately. Next, a
weight matrix C is set up that determines the influence this
observation will have on the state estimation of the wind speed.
The weights in the matrix are determined based on the altitude
difference between the states of interest and the measurement.
With this C-matrix, the current estimate for the altitude of the
observation can be calculated, and its value can be compared
to the measured value to determine the innovation e. This
way, an incoming measurement only influences the states in
its altitude vicinity:

ŷ(k|k − 1) = C(k)x̂(k|k − 1) (2)

e(k) = y(k) − ŷ(k|k − 1) (3)

This innovation is multiplied with the Kalman gain to obtain
a new state estimate. The Kalman gain is based on the relative
magnitudes of the uncertainties in the current estimate and
the new measurement, represented by the prediction error
covariance matrix P and the measurement noise covariance
matrix R, respectively. Since data from aircraft on the same
approach track rather than elsewhere in the TMA is of more
use for this prediction, the measurement noise covariance
matrix R has been made dependent of the distance between
the point of the measurement and the own track d:

R(k) = f(R0, d(k)) (4)

Here, R0 represents the uncertainty in an incoming obser-
vation, mainly caused by measurement error. The accuracy
of wind measurements in ADS-B soundings is approximately
2 kts[15]. The prediction error covariance matrix P is given
by:

P (k|k − 1) = AP (k − 1|k − 1)AT + Q (5)

In this equation, the matrix A represents the system dy-
namics. However, since the filter is used only as a noise
filtering mechanism, no system dynamics are present and A
reduces to the Identity matrix. Q is the (constant) process
noise covariance matrix, which is determined empirically. At
the same time as when the initial wind profile is set up, the
P matrix is assigned a large value. This represents the large
uncertainty in the accuracy of the profile at this point, and
ensures that in the beginning, incoming observations have
a large influence on the wind profile estimate. With this
projection, the covariance of the innovation step e(k) can be
represented by the matrix S:

S(k) = C(k)P (k|k − 1)C(k)T + R(k) (6)

The covariance matrices together determine the Kalman
gain K:

K(k) = AP (k|k − 1)C(k)T S(k)−1 (7)

A high uncertainty in the current estimate (high P ) and
much confidence in the accuracy of the measurement (low S)
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Fig. 4. Wind profile prediction performance. A typical wind profile and its
estimate (in 500 ft intervals). For reference, a best-fit logarithmic profile is
also shown.

yield a high value of the Kalman gain, which in turn assigns
a large weight to the incoming measurement in updating the
state estimate through the innovation. By the same rationale,
much confidence in the current estimate and little in the
accuracy of an incoming measurement yields a small value
of the Kalman gain and consequently little influence of the
observation on the wind speed estimate:

x̂(k|k) = Ax̂(k|k − 1) + K(k)e(k) (8)

In the last step, the prediction error covariance matrix P is
updated, according to:

P (k|k) = AP (k|k−1)AT +Q−K(k)C(k)P (k|k−1)AT (9)

This iteration is repeated with a constant frequency of 1
Hz. It can be seen that when no new observation data are
available, there will be no innovation, and the loop will be
reduced to updating the prediction error covariance P . In this
way, the uncertainty about an estimate increases when time
goes by without new incoming measurements. A schematic of
this loop is shown in Fig. 3.

Interpolation between the updated elements of the state
vector yields the wind profile the aircraft is expected to
encounter during its approach flight. The results of one such
wind profile prediction are shown in Fig. 4. Here, a random
wind profile (crosses) is shown, together with its best esti-
mation (circles) based on the available observations. A best
fit logarithmic profile (diamonds) is shown for reference. It
becomes immediately clear that the Kalman filtering method
is much more capable of capturing the random variations in
realistic wind profiles. For the wind speed profiles used in
the piloted simulator experiment (see Section V), the average
root mean squared (RMS) of the wind speed prediction error
for the Kalman filter based predictor is 2 kts, corresponding
to the accuracy of the wind speed measurements available
through ADS-B soundings. Prediction accuracy is much lower
for a logarithmic predictor, with RMS values averaging 6 kts,
occasionally running as high as 9 kts.

B. Track and time prediction

In the proposed scenario, the track to fly is fixed and
determined by RNAV waypoints, as shown in Fig. 1. During the
flight, an algorithm estimates the speed and time profiles along
this track, taking into account the actual condition parameters
such as predicted wind speed profile along this track, aircraft
weight, flap setting, etc. The track prediction, consisting of
speeds and times calculated for every point on the track, is
repeated every second.

Between the constant speed segments of initial airspeed and
final approach speed, deceleration takes place by selecting a
flight idle thrust setting. This deceleration profile is influence
by in varying wind conditions. Flap extension towards landing
configuration also takes place in this phase, resulting in very
non linear aircraft behavior. To predict the aircraft motion in
this phase, a simple three degrees-of-freedom aerodynamic
model of the B747-200 was used. The model is a point mass
model that only looks at the forces along the flight-path and
perpendicular to it. The resulting accelerations along the flight
trajectory are integrated over time to yield speed, distance and
time profiles. Since the model is two dimensional, it is fed
with only the along-track component of the predicted wind
speed.

C. Optimization of support system performance

To introduce greater flexibility and robustness in the afore-
mentioned prediction modules, an algorithm was added to
optimize two CDA parameters, flap speeds and thrust cut
altitude. This third module is based on a flap scheduling
algorithm, used in previous research in various forms[16],
[11], [17]. It uses the same aircraft model mentioned in
Section III-B, to calculate the effects of changed flap settings
on the speed and time profiles in the trajectory ahead.

The flap schedule algorithm works in two modes: in HOLD

mode and CAPTURE mode. In CAPTURE mode the algorithm
calculates the thrust cut altitude, the altitude at which the thrust
should be set to idle so that VAPP can be reached at hR using
the nominal flap schedule. This information is communicated
to the pilot through a cue on the PFD, see Section V.

Once the thrust has been set to idle the module switches
to HOLD mode. In HOLD mode the algorithm determines a
flap schedule such that the aircraft reaches VAPP at hR. This
deviation from the nominal schedule can be used to cope with
errors caused by for instance an inaccurate wind prediction,
unexpected behavior from preceding aircraft, etc. In this mode,
the algorithm predicts the aircrafts trajectory based on the
current flap schedule. This yields an ETA, which is then
compared to the RTA commanded by ATC:

∆T = ETA − RTA (10)

Based on this difference, the flap scheduler does a rough
tuning of the flaps to either their upper or their lower bounds,
depending on the sign of this ∆T . In case the aircraft is
predicted to arrive early, deceleration needs to be faster than
the current (nominal) flap schedule will provide. The flaps
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will thus be set to their upper bounds, and the resulting
new trajectory is calculated. This process is repeated for the
consecutive flaps, until the target is overshot (∆T changes
sign). From here, the flap scheduler fine tunes the previous
flap speed so that the aircraft arrives exactly at its RTA.

The combination of thrust cut altitude and flap selection
speeds ultimately determines the CDA performance. Changes
in the one parameter necessarily cause changes in the other,
if the safety goal is not to be violated. For example, if thrust
reduction is delayed (executed at a lower altitude), the aircraft
will reach hR with a speed higher than the approach speed.
This can be prevented by selecting flaps at speeds higher than
according to the nominal schedule, in order to increase the
deceleration rate. The upper and lower bounds of the flap
speeds hence define the boundaries of the control space the
pilot has during the approach. Within this control space, the
pilot can maneuver the aircraft to anticipate or delay his arrival
time. The time goal requires that the aircraft touches down
within a small time window around the RTA. With the aircraft
on final approach, the majority of the work needed to reach
this goal is already done. The flap scheduler algorithm helps
the pilot to fine-tune his exact arrival time. Off-line simulations
have shown that for a straight-in continuous descent approach
from 7000 ft, 250 kts IAS, this control space is limited to 8-
30 seconds, depending on wind conditions[11]. For this reason,
it is important that the flight crew is able to steer their aircraft
to within these bounds, before they start the descent.

IV. PILOT INTERFACE

Conventional Display

In the base-line condition, the pilot interface consists of
a conventional Primary Flight Display (PFD), Navigation
Display (ND) and a display showing the Mode Control Panel
(MCP). The required information for the time based CDA
procedure is printed on two cue cards. This cueing system is
loosely based on one developed at the Massachusetts Institute
of Technology[18]. This system places gates at strategic loca-
tions on the track. These gates correspond to information on
thrust setting, aircraft configuration and time. One cue card is
designed to focus primarily on the safety goal, by providing
the pilot with continuous descent parameter information in
the final phase of the approach. The card shows a profile
view of the track to fly, comparable to conventional approach
charts. For four wind speeds (0, 15, 30 and 50 kts) and
three wind directions (headwind and crosswind from either
side on Final), the thrust cut altitude and speeds for Flaps 5,
Flaps 10 and Flaps 20 are given in a table. The pilot has to
interpolate between these parameters to match them with the
actual situation. The printed wind speeds assume a logarithmic
wind profile with the reference wind speed measured at 7000 ft
altitude.

The second cue card focusses on the time goal, by providing
the pilot with time gates at certain waypoints. The card shows
a top view of the track to fly, comparable to Figure 1. The
time slots at these gates are based on the aircraft following
the nominal speed (IAS) profile. Taking the wind conditions

(a) Primary Flight Display (b) Navigation Display

Fig. 5. Display Modifications. (a) PFD, with ➀ the Flap Cue and ➁ the
Thrust cue. (b) ND, with ➂ Elapsed time and RTA, ➃ Time performance and
EARLY/LATE indicator and ➄ Ghost symbol.

mentioned above (4 wind speeds, two directions) into account
then yields a series of time-over-waypoint datasets. These
datasets are displayed in a table.

Augmented Display

The information produced by the prediction and optimiza-
tion algorithms described in Section III must be presented to
the pilot in a logical and intuitive way. Display modifications
and augmentations must also be designed to minimize clutter
on the current lay-out of displays. The modifications explained
below are shown in Figure 5.

One cue was added to help meet the safety goal. To indicate
the altitude where thrust should be reduced to flight idle in
order to meet the approach speed VAPP at hR, a letter ’T ’ is
added on the altitude tape of the Primary Flight Display. This
is shown as item ➁ in Figure 5(a).

To help meeting the time goal, a series of display augmenta-
tions was introduced. To minimize ∆T in the final phase of the
arrival, a letter ’F ’ is presented on the speed tape of the PFD
at the optimal speed for the next flap selection. This is shown
as item ➀ in Figure 5(a). On the Navigation Display, several
augmentations are present. The elapsed time since the start
of the approach and the Required Time of Arrival are shown
as item ➂ in Figure 5(b). At ➃ an indication of the current
situation with respect to the RTA is given as ∆T in seconds,
combined with an amber EARLY/LATE indication in case this
deviation is greater than 10 seconds. This time indication is
also shown in a ghost symbol, through item ➄. This ghost
is an image of the own aircraft flying the intended approach
track, keeping a position where the aircraft should be if ∆T
were zero. The ghost symbol is a dashed variant of the white
(solid line) own aircraft symbol.

V. PILOTED EXPERIMENT

To test the effectiveness of time-based spacing and identify
the operational constraints of implementation, a piloted exper-
iment was conducted. Seven professional airline pilots tested
the system under various operating conditions in a fixed base
flight simulator.
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TABLE I
PILOT EXPERIENCE.

Age Aircraft types Flying hours

Pilot A 68 DC3, CV640, DC8, B747-3/400, C550 13200
Pilot B 31 F100 1200
Pilot C 31 B747-400 300
Pilot D 23 PA28, DA42 190
Pilot E 50 military, B737, BA146, DC10, A320 12500
Pilot F 33 B757, B767 6000
Pilot G 26 B747-400 1650

Independent variables

First, two displays were defined. One, corresponding to
the baseline condition, was a conventional display layout
consisting of a Navigation Display (ND) and Primary Flight
Display (PFD). The second display, for the augmented condi-
tion, consists of an ND and a PFD extended with information
derived from the flap scheduler and optimization algorithms,
as described in Section IV.

Second, four different wind conditions are defined that
together represent a realistic set of wind conditions that
could be encountered during any approach. A typical wind
profile is shown in Figure 4. These profiles are all taken
from data sets of actual wind measurements, but scaled and
rotated to correspond to the wind speeds of interest. These
wind conditions, listed in Table II, comprise two headwind
conditions on Final, and two crosswind conditions. For each
wind direction, two wind speeds at the starting altitude of
7000 ft are defined. The choice for wind speed values is
such that the lower value could be encountered under normal,
regularly occurring circumstances. The higher wind speed
occurs in more rare situations. The wind speeds for crosswind
approaches are lower, in correspondence to crosswind and
headwind limits for landing.

Experiment design

The experiment design matrix is factorial, combining the
four wind conditions with both displays. This yields eight
experiment runs per pilot. Seven professional airline pilots
(over 4500 flying hours on average, see Table I) flew a set
of these eight runs, yielding 56 experiment runs in total. Each
set was preceded by four to six practice runs, to familiarize
the pilots with the procedure and wind conditions.

Apparatus

The experiment was conducted in the fixed base research
simulator at the Control & Simulation Division. The pilots
were seated on the co-pilot side, controlling the aircraft with
a side stick. The Primary Flight Display, Navigation Display
and the Mode Control Panel were shown on two 18” screens.
An outside visual was shown of a landscape with a fictitious
airport with two parallel runways.

Aircraft

The aircraft model used is a non-linear six-degrees-of-
freedom model of the Boeing 747-200. The flight is executed
with the autopilot in LNAV mode, leaving only manual pitch

TABLE II
INITIAL CONDITIONS

Wind speed Wind dir. Airspeed Distance to go RTA
[kts] [◦] [KIAS] [nm] [min:sec]

A 26 90 270 47.7 11:23
B 26 180 270 46.3 11:46
C 44 180 250 31.6 09:39
D 12 90 250 30.8 07:59

control and throttle control to the pilot. The reason for
maintaining partial manual control throughout the flight was
to introduce a basic level of workload during the approach.
With autopilot engaged and no radio traffic or ATC present,
an experiment run would comprise a lot of idle time between
autopilot inputs. For guidance along a three-dimensional glide
path, a Microwave Landing System (MLS)-type vertical guid-
ance was available. This allows the pilot to fly a continuously
descending path, irrespective of his position with respect to
the runway. To improve lateral stability, a yaw damper was
added.

Scenario

Initial conditions, such as position along the track and
airspeed, are varied per wind condition, to limit the influence
of learning effects on the way the track is flown. The required
arrival times are tuned to each initial condition, based on a
relative deviation from the nominal RTA for that condition, so
that only the effects of the wind conditions influence the pilot’s
performance. The initial conditions are listed in Table II. In
the level flight segment following each initial condition, the
pilot can position the aircraft as good as possible for meeting
the RTA. This is done by choosing a higher airspeed (in case a
pilot is late), or a lower airspeed (in case a pilot is early) than
the 220 kts chosen for the nominal speed profile. The pilot
then has to maintain this airspeed until his ∆T is reduced to
zero, after which he can return to the nominal 220 kts until
the point of thrust cut.

Procedure

The pilot’s task is to fly a Continuous Descent Approach,
while meeting both safety and time goals. The aircraft starts
in one of the initial conditions listed in Table II at an altitude
of 7000 ft, with Flaps 1◦ extended and with autopilot and
autothrottle engaged. The pilot is given an RTA, which is
entered through an interface window in the Mode Control
Panel. After this, the autopilot is switched to LNAV mode,
and the autothrottle is disengaged.

Dependent measures

The dependent variables consist of both objective and
subjective measures. Objective measures include operational
performance and pilot control activity. Operational perfor-
mance was judged by measuring the accuracy with which
the targets were reached. For the safety goal, the deviations
from the final approach speed VAPP at the reference window
and in the remainder of the approach were measured. For
the time goal, the deviation from the RTA was measured.
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TABLE III
DEPENDENT MEASURES

Measure Description

Safety goal
∆VAPP Deviation from VAPP at ‘R’
∆V

final
RMS of the deviation from VAPP at ‘R’

Flap setting Aircraft should be fully configured at ‘R’
Time goal ∆T Deviation from the RTA at ‘R’

Workload
Number of throttle setting changes
NASA Task Load Index (TLX) score

Pilot control activity was measured by counting the number
of thrust changes during a run. The subjective measures were
taken from a questionnaire, aimed at giving an insight into
pilot acceptance of the system, and a NASA Task Load Index
(TLX)[19] sheet to assess pilot workload for each run. The
dependent measures are listed in Table III.

Hypotheses

The first hypothesis is that for the augmented display
time performance will improve with respect to the baseline
condition. The reasoning for this is that with the help of the
support system, the pilot has continuous information about his
time goal performance at hand, which will allow for smoother
and more accurate transitions between the different phases in
the flight. When time information is only provided at discrete
points (the gates), own performance estimation is clearly more
difficult.

Secondly, CDA performance (reaching the approach speed
of 150 kts at ’R’, preferably no sooner but definitely not later)
is expected to increase. The idea is that this performance
mainly depends on the moment of thrust cut. The altitude
where this is done depends heavily on the wind speed and
direction on Final, so a more accurate prediction of this wind
profile will increase the safety goal performance.

Finally, it is hypothesized that workload will be higher for
the baseline condition, since in this case the pilot will have to
interpolate continuously between the data on his cue cards to
retrieve the appropriate parameters. Moreover, the wind used
to set up the cue card data resembles standard logarithmic
profiles. The discrepancy between this profile and the actual
wind will require extra corrective pilot action, hence increasing
the workload.

VI. RESULTS AND DISCUSSION

A. Operational Performance

Two types of performance measures are selected, each
related to either the safety goal (mandatory performance
targets) or the time goal (optimization). It appeared throughout
the experiment that the variation in wind speed does not
have a significant influence on performance (F2,6 = 0.244,
p = 0.784 for the safety goal, F2,6 = 1.930, p = 0.156 for
the time goal). For that reason, the four wind conditions are
reduced to two clusters, defined by the wind direction.

Safety goal: To investigate how well the aircraft is estab-
lished for landing at the reference window, three performance
parameters are defined. The first one is the deviation from
the target approach speed of 150 kts IAS, when passing the
reference window (waypoint ‘R’, 3.14 nm from touchdown,
1000 ft altitude). The means and 95% confidence intervals
for this score per wind condition (headwind or crosswind)
are plotted in Figure 6(a). In this figure the deviation for
the optimized configuration is lower in both headwind and
crosswind, but this effect is obscured by the large spread in the
data. An analysis of variance (ANOVA) shows that this spread
is indeed too large to see any differences; the effect of the
display configuration on the speed deviation is not significant
(F1,6 = 0.023, p = 0.883).

What can be seen from the error bar plots, is that crosswind
has a negative effect on safety performance. Although most of
the time hidden by the relatively large variances, this effect
is significant for the deviation from VAPP at ‘R’, when
the optimized display configuration is used (F1,6 = 9.160,
p = 0.023). This can be explained by the fact that the
display optimization only uses the headwind component of the
estimated wind speed to predict its time and speed profile. In
a headwind condition, this works out well, but in a crosswind
on Final, an error is introduced: the algorithm assumes a near-
zero headwind component, while in reality the aircraft needs
to compensate for the crosswind in order to stay on its ground
track. As this is usually done by ‘crabbing’ the aircraft, the
actual ground speed will be lower than the predicted ground
speed. As a consequence, the airplane starts lagging behind
the original predicted time profile, which in turn causes pilots
to delay flap selection in order to maintain a higher airspeed.
In many cases, the safety goal suffers from this decision, with
the average approach speed going up from little over 151 kts
to 156 kts. For the baseline condition, the data on the cue
cards is based on trial runs, instead of predictor data. So, since
the accuracy of the wind information on the cards (based on
logarithmic profiles) is always the same, the deviation from
VAPP is not influenced by the direction of the wind.

The fact that speed performance goes down when the
track prediction is less accurate (in the crosswind condition)
suggests that pilots closely followed the cues presented on
the displays. At the same time, the large spread of the
speed performance in the baseline condition indicates big
differences in the flying strategies, adopted by each pilot. This
is confirmed by the pilots’ answers to a questionnaire, which
showed that they used the CDA-parameter cue card mostly
to determine the thrust cut altitude, but thereafter relied more
on their pilot experience to determine flap selection. In the
optimized display configuration, the need to look away from
the instruments to check the cue cards is eliminated, and pilots
use the displayed instructions.

Time goal: The main check on the time performance is
the deviation from the RTA at the reference window. The
means and 95% Confidence Intervals for this parameter are
shown in Figure 6(b). Clearly, the average time performance
is better with the aid of display optimization. An ANOVA
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Fig. 6. CDA performance scores.

shows that this influence is indeed significant (F1,6 = 7.368,
p = 0.033). Average time performance is within 4 seconds
of the RTA. This is definitely accurate enough to guarantee
safe separation. This result would allow air traffic controllers
to space incoming traffic more tightly, increasing runway
throughput capacity. The addition of the proposed automation
to existing cockpit displays enables pilots to fly a time based
CDA.

The explanation for this improvement is twofold. First,
by providing the pilot with continuously updated information
on his ETA status, he is able to very accurately adjust the
aircraft’s speed profile to minimize ∆T . In the baseline, the
number of intermediate time gates is limited to four (for
conditions C and D in Table II) or five (for conditions A
and B). Second, the more accurate wind prediction that is
available in the enhanced display condition yields a better
estimate of the optimal altitude for thrust reduction. This can
be seen in Figure 6(c), showing the altitude where pilots cut
back on thrust to decelerate the aircraft to 150 kts. Regardless
of wind direction, this altitude is significantly lower in the
optimized display condition than in the baseline condition
(F1,6 = 3.560, p = 0.098). With the used wind profile class
in mind (see Figure 4), it becomes clear that the logarithmic
profile prediction is not able to deal with the increase in wind
speed around 3500 ft. The aircraft encounters more (head)wind
than expected, so its thrust cut altitude should be lowered. The
track prediction and optimization routines take this effect into
account.

Although the automation provided a major improvement in
time performance, speed performance (deviation from V APP )
was still in the same range as in the baseline situation. This
might be due to the fact that the the automation mainly
focussed on achieving the time goal. To strike a better balance
between the two performance criteria, and to provide a more
logical lay out of the presented clues, it is recommended to
let the cues on the Primary Flight Display focus on CDA
performance (arrive stabilized at the reference window), while
the cues on the Navigation Display (ghost and ∆T ) focus on

the time goal. Another improvement would be to integrate
the cues more tightly with current procedures. For example,
in many aircraft the landing gear should be lowered between
two fixed consecutive flap settings. To incorporate such infor-
mation in the pilot support system would ease implementation
and increase acceptability by airlines and flight crew.

B. Pilot workload

The results for the subjective workload measurements are
represented by the normalized NASA TLX rating scores in
Figure 6(d). From this it becomes clear that the workload ex-
perienced by the pilots is lower for the optimized display con-
dition, in all wind conditions. This effect is highly significant
(F1,6 = 50.390, p < 0.001), an observation that is confirmed
by the questionnaire answers with all pilots indicating a higher
workload in the baseline condition. In contrast, the workload
in this type of noise abatement procedure with the optimization
present was considered comparable to that of a conventional
ILS approach.

Furthermore, it can be seen that for the baseline condition,
the workload score also depends on the wind direction. The
score is significantly lower in crosswind conditions on Final
(F1,6 = 12.797 , p = 0.012). Several factors could influence
this phenomenon. First, in a headwind condition, the full force
of the sharp changes in wind speed along the altitude profile
is felt. In a crosswind, only one component of the wind is
of influence, so the absolute change in wind speed is smaller.
Another factor might be that the crosswind condition on Final
means a headwind condition between waypoints TILDA and
EH608 (see Figure 1). In many cases, this is the phase where
pilots reach the on-time schedule (∆T = 0 and reduce speed
from 250 or 270 kts to the nominal speed of 220 kts. This
is not always an easy task, since a B747 in this situation
(Flaps 1◦, gear up, 3◦ glide path, no speed breaks) has a very
low deceleration rate. A headwind in this situation reduces
the kinematic flight path angle, which makes it easier for the
pilot to decelerate the aircraft. This increases the chances of
a stabilized approach and hence reduces pilot workload.
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Flying a CDA already puts more demand on the flight crew
than a regular arrival, where the basic control task is following
ATC vectors. Although the tasks of flying and navigation are
normally shared between the Pilot Flying and the Pilot Not
Flying, the persons interviewed indicated that they would find
the sharp increase in workload as experienced in the base-line
scenario unacceptable.

VII. CONCLUSIONS

This paper investigated the feasibility of introducing time
based spacing in realistic, three dimensional continuous de-
scent approaches under actual wind conditions. For reasons of
safety, it is important that (1), the continuous descent ends in
a stabilized approach configuration and speed some distance
before the runway and (2), pilots adhere to the required arrival
times demanded by ATC, in order to maintain safe separation
throughout the approach.

The development of an FMS based prediction and optimiza-
tion system combined with a pilot support interface enables
the flight crew to reach these two goals. A wind prediction
algorithm that makes use of weather information broadcast
by other aircraft in the TMA makes accurate wind profile
prediction along the approach trajectory possible. Wind speed
prediction error along a 30-45 nm approach trajectory is 2 kts.
An accurate knowledge of the wind ahead makes sure an
optimal thrust cut altitude and flap speed schedule can be
selected. The piloted experiments show a strong improvement
in time performance when continuously updated information
on this goal is present on the display. Pilots are able to reach
their RTAs within an average margin of 4 seconds, regardless
of wind conditions. The average speed performance (being
stabilized at a reference window) is unaffected by display
optimization, although the presence of automation reduces the
spread in this performance criterion. The addition of time
constraints without extra aids would result in an unacceptable
increase in workload, due to the continuous calculation and
interpolation the pilots have to perform. Workload is signifi-
cantly lower with the display optimization present, and at the
same level as in current ILS approach procedures.

VIII. RECOMMENDATIONS

The piloted experiment shows the feasibility of time-based
continuous descent approach procedures under realistic wind
conditions, along a fixed trajectory. The pilot’s control space
to reach an RTA could be greatly enlarged by adopting a more
flexible approach route. Shortening or extending the length
of the track to fly, similar to the ’tromboning’ technique
currently used by ATC, should reduce the need for speed
changes, thereby improving predictability of the speed profile
during the approach.
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Abstract—this paper is a research proposal to develop a tool to 
analyze logistic concepts of the air taxi service of Aeolus Aviation 
in different scenarios. Based on this analysis recommendations 
can be done for a suitable logistic concept for Aeolus.   Based on 
background analysis of the air taxi service three objectives are 
formulated; analyzing the air taxi service on strategic level, 
developing a decision support tool to analyze logistic concepts 
and finally developing a suitable logistic concept for Aeolus 
Aviation. Based on these objective research questions are 
formulated and research methods to answer these questions are 
given.  
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I. INTRODUCTION 

Business travelers are more and more concerned of efficient 
flying. When time and money can be saved when traveling, 
value is added to their business processes. Recent events in the 
aviation have not made it easy to gain efficiency. For example 
the security measures after 9/11 have increased airport 
congestion. But also the congestion on the road decreases the 
efficiency of traveling. These developments point to an 
increase demand for efficient and low cost means of ad hoc 
point to point transportation.  

Aeolus Aviation will provide efficient traveling solutions in 
Western Europe, adding value to customer processes. Where 
competitors focus on luxury, Aeolus has a more no-nonsense 
approach: cost and time efficiency. In this effort Aeolus will 
continuously attempt to improve efficiency and accurately 
match capacity with demand.  The main goals are to develop an 
air taxi service, which has the lowest price and travel time and 
the highest profit.  Because many factors are still unknown it is 
hard to develop an optimal logistic concept of the air taxi 
service. A logistic concept of an air taxi service is a certain 
service concept providing transport between selected airports 
influenced by a certain schedule for the crew, a certain price 

structure, a certain amount of aircrafts with maintenance 
schedule and a certain location of a maintenance base. To find 
a suitable logistic concept for the air taxi service of Aeolus a 
decision support tool can be built to analyze the logistic 
concepts. First the air taxi service of Aeolus Aviation will be 
strategically analyzed. What are the potential customers? 
Where are those customers? And what are the competitors? 
Secondly on operational level a tool will be developed to 
analyze logistic concepts of the air taxi service. When this tool 
is developed logistic concepts will be developed and tested to 
come up with a suitable concept for the air taxi service.   

In the next chapter the background of the purposed air taxi 
service of Aeolus Aviation will be analyzed. In the last chapter 
the research project will be discussed. Based on the 
background analysis the research objectives will be formulated. 
Next the main research question and the respective definitions 
will be described. Based on the research objectives and the 
main research question a research approach is developed.  
Finally the research methods and planning will be discussed.  

 

II. BACKGROUND ANALYSIS

This paper is a project proposal of the logistic concepts of 
the air taxi service of Aeolus Aviation. To get a better view of 
the background of an air taxi service in paragraph A the air taxi 
concept in general and the advantages and disadvantages will 
be discussed. In paragraph B the complexity of operating an air 
taxi service will be elaborated to get insight into the factors 
influencing the air taxi service. In paragraph C Aeolus Aviation 
and their plans will be discussed.  

A. The air taxi service concept 

To get a better idea of an air taxi service, in this paragraph 
the air taxi service concept will be discussed. First the concept 
of the air taxi service will be described; next the strengths, 
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weaknesses, opportunities and threats will be analyzed by 
means of a SWOT analysis.  

The demand for air travel is increasing [1]. This larger flow 
of passengers combined with more strict security measures 
results in congestions at the major airports, resulting in 
irritations of business travelers[2]. But on the road an increase 
of congestion is remarked as well and transport by rail only 
reaches the bigger cities. A solution for these developments is 
an air taxi service: on demand point to point business aviation 
for short distances. This air taxi service results in shorter 
waiting times at airports, the possibility of choosing the 
departure time, pick up and deliver at an airport closer to the 
destination. To achieve this, a large amount of smaller, 10-200, 
aircrafts will be used to fulfill the demand. Such aircrafts are: 
the new very light jets, piston and propeller aircrafts.  These 
aircrafts can normally carry 4 to 6 persons, as a shared flight or 
for a group, can be operated just by one pilot, depending on the 
type of aircraft, and can land on smaller airports than bigger 
planes. They are cheap in comparison with current similar jets 
and have lower operating costs, due to the lower fuel 
consumption [3]. With significant lower costs than the current 
unscheduled air service operators, these new air taxi operators 
promise to provide low fare on-demand personal 
transportation.  The concept of an air taxi is born.  

To get a better view of the positive and negative sides of an 
air taxi service in table 1 an SWOT analysis is shown. In a 
SWOT analysis the strengths, weaknesses, opportunities and 
threats are analyzed. The strengths of air taxi services are the 
efficient and lower door-to-door travel time, its reliability and 
its personalized way of transport. The efficient and lower door-
to-door travel time is the result of the possibility to use a wider 
set of airports. When using a wider set of airports it is possible 
to use uncongested, smaller airports closer to the customer’s 
door. The difference in travel time will even become larger 
when the capacity crisis at general airports will generate more 
delays. An air taxi service is more reliable because the amount 
of delays will be lower.[4] The personalized way of transport 
by an air taxi is a strength as well. Customers can choose their 
own trip and are not depended of other customers. Weaknesses 
are the complexity, which can cause inefficiency for an air taxi 
service company [5] and the price of a ticket, which is still 
higher than the price of scheduled flights. The complexity of an 
air taxi service will be discussed in the next paragraph. Another 
weakness is the dependency on the weather and daylight. For 
example, according to JAR OPS 1 a single engine propeller 
aircraft cannot fly when the visual range is low, for example in 
bad weather or at night. JAR OPS 1 is the Joint Aviation 
Requirement for the operation of commercial air transport 
(aero planes). Any commercial airline within the European 
Union flying jet or propeller aircraft has to comply with this 
standard. The opportunities of an air taxi service are the better 
affordability for customer in comparison to current comparable 
services. The better affordability, in comparison to the past, is 
the result of the lower acquisition and operating costs, lower 
airport landing fees, but also the result of operational 
efficiencies. Other opportunities for the success of an air taxi 
service arise when the congestion on the road and at the airport 
increases and the demand for efficient flying increases as well. 
Another opportunity is the decreasing of the strictness of 

regulations in Europe. This will result in lower costs and more 
possibilities. The threats are congestion in the air. When more 
airlines will provide in air taxi flight, more aircrafts will be in 
the air, which can cause delays. Another threat is the possible 
safety problems. When more aircrafts are in the sky, the sky 
will become busier and less safe. Another threat is the entrance 
in the market of large scheduled airlines. Differentiation of 
those airlines will be a threat because those airlines will have a 
large budget. Finally ageing of the present pilots and more 
upcoming airlines can result in a scarcity of pilots in the future.  

TABLE I.  SWOT ANALYSIS OF AIR TAXI SERVICE

Strengths Opportunities 

Efficient and lower travel 
time 

Lower price for customer 

Reliable for customer Increased airport congestion 

Personalized transport Increased road congestion 

 Decreasing strictness 
regulations 

Weaknesses Threats 

Complexity for Aeolus Congestion in the air 

Higher price than scheduled 
service 

Safety problems 

Depending on weather/ 
daylight 

Entrance in market of air taxi 
services by large scheduled 

airlines 

 Forecasted scarcity of pilots 

B.  Complexity of an air taxi service 

As mentioned in the previous paragraph the air taxi service 
business is complex, which can cause inefficiencies for the air 
taxi airlines. In this paragraph the complexity will be 
elaborated to get a better view of the aspects influencing the air 
taxi service. This complexity can be divided into three levels: 
strategic, tactic and operation. Figure 2.2 [6] is based on the 
flight schedule development process of scheduled airlines of 
Bootsma and is adapted to the air taxi service of Aeolus. In 
Figure 2.2 left the general process of planning is shown for 
each level. As shown on strategic level the market will be 
analyzed to end up in a plan. In the case of a scheduled flight 
on tactical level the flight schedule will be developed. On 
operational level that schedule will be executed. For an air taxi 
service the tactical level can be combined with operational 
level because the activities on tactical level of a scheduled 
service happens during the operational level of an air taxi 
service, because there is no schedule. In figure 2.2 on the right 
the process of an air taxi service is presented. On strategic level 
the service concept, existing out of service between different 
airports, and fleet planning will be developed and on 
operational level this service concept of the air taxi will be 
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executed. First the complexity on strategic level will be 
described, second the complexity on operational level will be 
discussed.  

     

Strategic

Tactic

Operation

Feedback results

Plan resource

Market/product

Service 
concept/

fleetplanning

Flight schedule 
development

Air taxi 
operations

Feedback results

Service concept

Figure 1.  Flight schedule development of scheduled airline 

1)  Complexity on strategic level
In this sub-paragraph the complexity of an air taxi 

service on strategic level will be discussed, based on the 
strategic activities of an air taxi. First the complexity of 
the demand will be described, next the complexity of the 
airports will be discussed and finally the complexity of 
revenue management of an air taxi service airline will be 
discussed. 

a) Complexity of demand  

The first factor influencing the complexity is forecasting 
the demand of on demand air taxi flights. Analyzing the 
demand for an air taxi service is different than in the 
case of a scheduled service. First of all the demand for 
scheduled flight is larger than for air taxi services. 
Second for scheduled services the fulfillment of travel 
requests are driven by the supply in terms of the amount 
of seats on given airline network mostly defines months 
ago. The demand for air taxi service is driven by 
individual demand. The passenger can determine the 
origin, destination and earliest departure time and latest 
arrival time without being constrained by flight 
schedules.[7] The individual demand of an airport is hard 
to determine, because it is very insecure. To make a 
strategic choice regarding the environment of the air taxi 
service, the market for air taxi services is based on [8]:  

• Type of potential clients:  

• Origin and destinations of potential clients 

• Competitors 

b) Complexity of airports 

The complexity of the airports is determined by the 
constraints of the operated airports. Constraints of 
airports are: 

• Closing times 

• Accessibility 

• Runway length 

• Fueling possibilities 

• Landing fees  

• Other regulations 

Partners are playing a part as well. When developing a door 
to door service, cooperation with other transport services is 
needed. Therefore more partners need to be considered when 
developing an air taxi service.  

c) Complexity of service concepts 
A service concept of an air taxi service consists of a set of 

airports with the constraints belonging to those airports and a 
transport service transporting the passengers by aircraft. The 
service concept of an air taxi service is complex because an air 
taxi aircraft flies not often the same route twice consecutively 
and generates less there and back traffic than scheduled flights: 
it is a more unbalanced network. It will be unlikely that the 
arrival airport of a revenue flight corresponds to the departure 
airport of other revenue flights. Therefore non revenue flights, 
also called repositioning flights, must exist to connect the 
destination airport of one revenue flight to the departure airport 
of the next revenue flight operated by the same aircraft. 
Because repositioning flights are only generating costs and no 
revenue and so have influence on the ticket price these 
repositioning flights needs to be minimized [9].  Several 
network structures can be developed. Examples of structures 
are: 

• Shuttles between airports with a high stable demand

• Operating a large amount of airports in Western 
Europe 

• Operating a limited amount of airports in Western 
Europe with a high demand 

d) Complexity of ticket pricing  
When determine the price of a ticket for an air taxi flight 

several techniques are possible:[10] 

• Ticket price based on fixed costs per mile  

• Ticket price based on forecasted demand (revenue 
management scheduled service)) 

• Ticket price based on true costs per action plus profit 
margin (revenue management air taxi service) 

Revenue management techniques are techniques to 
optimize the revenue earned from a fixed, perishable 
resource. The challenge is to sell the right resources to 
the right customer at the right time[11]. The demand for 
scheduled flight is known earlier and can be used easier for 
pricing of tickets. Revenue management for air taxi flights can 
be compared with the ticket pricing technique based on true 
costs per action plus profit margin depends more on the 
demand at other airports and than for scheduled flights. When 
implementing revenue management for air taxi service it is 
important to know the demand on other days and at other 
airports to minimize repositioning flights. For example when is 
known that tomorrow the demand at airport b will be large and 
today it isn’t and the customer wants to go from airport a to b, 
Aeolus can increase the price, because the chance of a 
repositioning flight is big, or the customer can be advised to 
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travel a day later for a cheaper price. These options need to be 
considered.  

2) Complexity on operational level 
In this sub-paragraph the complexity of an air taxi service 

on operational level will be discussed based on the operational 
activities of the air taxi. First the complexity of crew 
scheduling will be elaborated and the complexity of the 
aircrafts and their maintenance will be described. Finally the 
complexity of the costs will be explained. 

a) Complexity of crew scheduling 
As mentioned in the previous paragraphs the standards for 

operating a commercial airline are registered in JAR OPS 1.
One example of such a requirement is the scheduling of the 
crew:  A pilot’s scheduled duty period cannot exceed 14 hours 
and may not include more than 8 scheduled hours of flight time 
when one pilot is present and 10 hours when there are two 
pilots. Furthermore within 24 hours period a pilot must have a 
rest of 10 consecutive hours[12]. Crew scheduling of an air taxi 
service is different than of a scheduled service, because of the 
unbalanced network. For example it can happen that a pilot 
reaches a destination of a client, he is not allowed to fly back. 
A new pilot needs to be mobilized or the pilot has to stay the 
night and fly back the next day. This will influence the air taxi 
operations significantly and needs to be considered. To 
schedule the crew for flights crew rotations can be created. A 
crew rotation, presented in figure 2 is the path that a single 
crew performs to execute any number of scheduled flights. 
Crew rotations are created to minimize the number of crews 
needed. After crew rotations are created, the rotations can be 
assigned to specific crews. This process is called rostering. The 
rostering process has to take the strict regulation on duty 
periods into account.  

Figure 2.  Crew rotation [13] 

A schematic representation of a crew rotation is presented 
in Figure 2. During a single work duty, a crew can perform 
multiple legs. Between these legs, a crew often spends time on 
the ground. This ground time is considered resting time if the 
time spend on the ground is greater or equal to the prescribed 
resting time. Additionally, the maximum working time is 
regulated by flight regulations. A series of work duties are 
separated by a rest after returning to the crew’s home base. 

b) Complexity of fleet and maintenance scheduling 
The complexity of the fleet is determined by the 

characteristics of the fleet influencing the air taxi service. Each 
type of aircraft has a different range, speed, weight and 
minimum altitude. The size of the fleet is important as well. 

Operating an air taxi service network will be different with 10 
aircrafts than with 100 aircrafts. 

The maintenance of the aircrafts needs to be considered as 
well. The maintenance schedule is different for each type of 
aircraft. The limitations regarding maintenance of aircrafts 
have three components: number of hours flown, number of 
cycles and number of days since last maintenance service[14]. 
Due to this maintenance the fleet will change. This will 
influence the position of the platform where aircrafts will be 
maintained as well and is therefore important.  

        c)    Complexity of  of costs 
The costs of operating an air taxi service can be split into 

direct and indirect operating costs. Direct costs are costs 
directly related to an aircraft and its flight operations. Direct 
costs for an air taxi services are: 

• Crew costs, based on flight hours 

• Aircraft costs 

• Acquisition costs 

• Depreciation costs 

• Insurance costs 

• Fuel costs 

• Airport fees 

• Third party fees (for door to door service) 

Indirect operating costs are costs not directly related to the 
operation of the air taxi, like food and beverages, advertising, 
reservation and sales etc 

C. Aeolus Aviation 

Aeolus Aviation is an air taxi start up, founded in 2006 by 
Stefaan Ghijs, a former Aerospace Engineering student. The 
company is in its early stage of development. Aeolus wants to 
obtain a position in the business aviation, not just as a business 
charter but also as a business facilitator. Picking up clients 
from their offices and delivering them at their destination. The 
main objectives of Aeolus Aviation are to offer the air taxi 
service for the lowest price and the lowest travel time and to 
have the highest revenues. On strategic level this means that 
the demand needs to be maximized by marketing strategies and 
the price minimized. On operational level it means that the 
service needs to be cost efficient and non revenue flights needs 
to be minimized. In this paragraph Aeolus Aviation will be 
discussed on strategic and operational level.  

1) Aeolus Aviation on strategic level 
In this paragraph the air taxi service of Aeolus Aviation 

will be discussed on strategic level. First the market in which 
Aeolus will operate will be described, next the type of aircraft 
Aeolus will use and some customer service specification will 
be elaborated 
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a) Market of Aeolus Aviation 
As been mentioned the market in which an air taxi service 

will operate depends on the potential customers, where these 
clients are and what the competition is. Aeolus will focus on 
customers more sensitive to higher costs and until now they 
have not thought of the advantages of business charters. But 
because of the low price and travel time Aeolus will be 
remarked. Aeolus wants to attract customers from scheduled 
flights where time-efficiency is lacking, due to passengers 
handling and mass transport. And Aeolus wants to attract 
customers from road transport, where time-efficiency is 
lacking, due to congestions of the roads. The specific potential 
customers and their locations and their influence are unknown, 
so are the competitors. In the near future an extensive market 
research will be done. 

b) Type of aircrafts 
To achieve the objectives Aeolus Aviation uses a different 

type of aircraft than most air taxi services in Europe. Most of 
the air taxi services are using jets, but Aeolus Aviation is going 
to use propeller aircrafts. These propeller aircrafts can be 
especially used for flights of 300-1000 km. In figure 2.3 can be 
seen that the demand for air taxi flights with a turboprop starts 
to increase for flights of 100 km and approximately 50 percent 
of the business flights are flight of less than 500 km. After that 
the demand is decreasing, but still present till flights of 1000 
km.  Thus for a propeller aircraft a large amount flight can be 
executed on a range of 200 to 1000 km. IFR movements are 
movements according to the instrument flight rules.

Figure 3.  : IFR Movements/day[15] 

Especially for these distances the turboprop aircrafts have 
advantages. The advantages are that propeller aircrafts:  

• have cheaper types to purchase 

• are economic  

• have a shorter runway length  

The disadvantages are that propeller aircrafts: 

• less comfortable 

• slower[16]  

• have stricter regulations  

But the lower price for flights will compete with these 
disadvantages, because the customer’s top priority is the lowest 
price[17].   

The amount of aircrafts is not yet determined. It will be 
likely that the amount of aircrafts will increase throughout the 
years, so that needs to be considered in the trade off of the 
different logistic concepts.  

c) Pricing of tickets 
Another difference between Aeolus and other air taxi 

services is the fact that passengers pay for the aircraft and not 
for a seat. Seat sharing will therefore not be possible. This will 
influence the pricing of tickets of the air taxi service of Aeolus 
Aviation. Which pricing technique Aeolus will use is not yet 
determined.   

Other customer service specifications of Aeolus Aviation 
are[18]: 

• Door to door air service 

• Within 6 hours airplane is ready to take-off everywhere 
in Western Europe 

• Flexible route planning 

• Capacity  for  6 passengers 

• Hotel arrangements when necessary 

2)  Aeolus Aviation on operational level  
Operations are needed to fulfill the strategy of Aeolus. Off 

course providing transport for customers is the main operation 
of an air taxi service. But the transport of these customers is 
influenced by many factors. In paragraph 2.2.2 the most 
important factors influencing the air taxi service on operational 
level are described. These are: 

• Crew scheduling 

• Aircraft characteristics 

• Maintenance scheduling 

• Location of the maintenance base 

All these aspects, together with the service concepts 
between airports, can be combined into logistic concepts of the 
air taxi service of Aeolus Aviation.  

Thus a logistic concept of an air taxi service is a certain 
service concept providing transport between selected airports 
influenced by a certain schedule for the crew, a certain price 
structure, a certain amount of aircrafts with maintenance 
schedule and a certain location of a maintenance base. Several 
logistic concepts can be developed, so it is not easy to develop 
an optimal logistic concept of the air taxi service network of 
Aeolus Aviation with the lowest costs and the highest 
revenues.  A tool needs to be developed to analyze logistic 
concepts to eventually come up with a suitable logistic concept.  
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D. Conclusions 

Aeolus Aviation is starting up an air taxi service. Operating 
an air taxi service is complex on strategic and on operational 
level. The complexity on strategic level is caused by insecurity 
of the demand, constraints of airports, minimization of the 
repositioning flights and pricing techniques. The complexity on 
operational level is caused by the scheduling of the crew and 
maintenance and the location of a platform. So many factors 
are influencing the logistic concept of an air taxi service 
network.  

The main goals of Aeolus Aviation are to develop an air 
taxi service, which has the lowest price and travel time for 
flights and the highest profit.  Because many factors are still 
unknown, it is hard to develop an optimal logistic concept with 
the lowest costs and highest revenues. A tool is needed to 
model logistic concepts and to analyze the factors influencing 
the air taxi service of Aeolus Aviation 

. 

III. RESEARCH PROJECT 

As mentioned in the previous chapter many factors influencing 
the air taxi service of Aeolus Aviation are still unknown and it 
is hard to find an optimal logistic concept. Therefore in this 
research the discussed issues will be further investigated to 
eventually find a feasible solution for a logistic concept of the 
air taxi service of Aeolus Aviation.  

In this chapter the research project will be discussed. First the 
main objectives of the research will be mentioned. Next the 
main research questions and definitions are formulated and 
finally the research approach with sub questions will be 
discussed.  

A. Research objectives 

The analyses of the previous chapter result in three objectives: 

• Analyzing the air taxi service of Aeolus Aviation on 
strategic level 

• Developing a tool to analyze logistic concepts of the 
air taxi service  

• Developing a suitable logistic concept for the air taxi 
service of Aeolus Aviation 

B. Main research question and definitions  

In order to reach the objectives, mentioned in the previous 
paragraph, the following main research question need to be 
answered:  

How to analyze logistic concepts of the air taxi service of 
Aeolus Aviation on strategic and operational level using a 
decision support tool and what logistic concept would be 
suitable for Aeolus Aviation? 

The strategic level of the air taxi service of Aeolus Aviation 
can be analyzed by answering the following sub questions.  

• What are the requirements, assumptions and criteria
influencing the logistic concept of the air taxi service 
network of Aeolus Aviation?  

• What are the potential clients for air taxi flights of 
Aeolus Aviation and what are the most important 
regions in Europe to operate from to be able to reach 
them?  

• What are the most important competitors in the 
network and what is their influence on the service 
concepts of Aeolus Aviation?  

• Which airports in those regions are most suitable to 
operate from, regarding Accessibility, regulations,
costs, future developments of those airports and 
cooperation with other parties? 

To be able to develop a tool to analyze logistic concepts of 
the air taxi service the following sub questions need to be 
answered.  

• What are the requirements for the tool to model the
logistic concepts?  

• How can the network of airports be modeled? 

• How can the demand for air taxi flights be modeled?

• How can the crew schedules be modeled? 

• How can the maintenance schedules be modeled? 

• How can the expected costs and revenues be modeled?  

To be able to develop a logistic concept suitable for Aeolus 
Aviation the following sub questions need to be answered.   

• What logistic concepts of the air taxi service can be 
developed, regarding the strategy of Aeolus Aviation?   

• What logistic concept fulfills the requirements and
scores best on the criteria?   

• What recommendations can be done, regarding a 
suitable logistic concept of the air taxi service of 
Aeolus Aviation 

• What would be the implementation trajectory for this 
logistic design of the air taxi service network? 

C. Research methods  

In this paragraph the methods to answer all sub questions will 
be described. For each part of the research the research 
methods will be described.  

1) Methods to analyze the strategic level of the air taxi 
service 

To analyze the requirements, assumptions and criteria 
influencing the air taxi service of Aeolus Aviation the 
environment of Aeolus will be analyzed in detail. Several 
requirements, assumptions and criteria are already mentioned 
in the background analysis. Existing air taxi services or 
researches about it, in Europe, but in the USA as well, can 
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provide more information about the requirements, assumptions 
and criteria.  

When analyzing the strategic level of the air taxi service, 
the first step is to determine the type of potential customers and 
competitors for the air taxi service of Aeolus and the location 
where those customers are. The market of the air taxi service of 
Aeolus Aviation will be analyzed by means of interview with 
mr. Ghijs. Mr. Ghijs has the knowledge of his potential 
customers and competitors. Based on that interview the 
customers and competitors will be analyzed in detail by means 
of a  literature research  

Based on the market analysis the most important regions 
can be determined by means of a research on data of
demographic factors. An example for such a data base is 
Eurostat and interviews with professionals in the business. 

Within these regions airports needs to be chosen. Data for 
this choice will be gathered by interviews with pilots and an 
analysis of the airport as well on the internet or by phone. The 
pilots will have knowledge about airports in West Europe. To 
eventually make a choice between airports this data is used in 
multi criteria analysis. 

2) Methods to develop a tool to analyze logistic concepts  
To be able to indicate the requirements to model logistic 

concepts all variables influencing the air taxi operations, which 
have to be modeled, will be identified. Based on these 
requirements the decision support tool can be built.  

To develop a tool to analyze the logistic concepts 
simulation software will be used. With the ARENA, simulation 
software of Rockwell Software, the network of airports and the 
factors influencing this network can be simulated. The choice 
for a simulation model is made because in this way the current 
situation can be analyzed and experiments can be done to 
distinct the best alternative transport manner. ARENA is 
developed based on flow oriented simulation. This means that a 
real situation can be presented as a chain of delays and 
operations an entity needs to go through[19].  

3) Methods to develop a suitable logistic concept  
To be able to generate logistic concepts the strategic 

analysis of the air taxi service will be used and interviews with 
professionals in the business will be done. This will finally end 
up in several logistic concepts.  

These logistic concepts will be modeled to compare them to 
each other. The output of these models will be analyzed.  

This will end up in recommendations for Aeolus Aviation. 
A part of these recommendations is the implementation 
trajectory. The implementation trajectory will be determined by 
means of a literature research and interviews with professionals 
in the business.. 

D.  Status of Project 

At this moment the analysis of the strategic level of the air taxi 
service is almost finished. A questionnaire is send to several 
parties to ground the choice for important regions of potential 
customers. Based on demographic data and busy business 
travel routes the most important cities are determined. Based 
on these cities and the constraints mentioned in the research 
proposal the most important airports are selected. 

The development of a simulation tool is in progress. This is 
done with the Rockwell software ARENA. ARENA is discrete 
simulation software and is based on flow-oriented simulation. 
ARENA is perfectly able to show the consequences of
processes during air taxi operations.  
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Abstract — From 2005 onward, a number of new low-cost all-

business airlines have emerged in the transatlantic market. All of 

these airlines have aggressive plans for expanding their route 

network. This paper describes the development of a preliminary 

forecasting tool, to be used by such airlines in a preliminary 

profitability study of new or current routes. This means the 

model can be used to assess both the profitability of a new route 

of interest and of continuing an existing route. The model in its 

current state indeed provides this capability. This is shown using 

a rough validation calculation, carried out using the model and 

based on the business case of Eos Airlines, one of the recently 

erected all-business airlines. The model’s forecasting accuracy is 

still fairly limited. To improve this, more research should be 

conducted on both the refinement of the model as on the data 

required for using the model. 

Keywords – all-business airlines, demand forecast, demand 
drivers, air travel routes, business travel. 

I. INTRODUCTION

Recently, from 2005 onward, a number of new low-cost 
airlines have been erected aiming specifically for transatlantic 
business air travelers [1]. These airlines provide services with 
aircraft equipped solely with business class and/or first class 
seats. Such airlines include MAXjet (which has already filed 
bankruptcy at the end of December, 2007), Eos Airlines, both 
operating between the US and the UK (mainly between 
London and New York), Silverjet, with destinations London, 
New York and Dubai, and L’Avion, flying between Paris and 
New York. These airlines, according to reference [1], all have 
expansion plans with respect to their routes. For instance, Eos 
Airlines will open a new route between Paris and New York in 
2008 [2] and Silverjet has shown interest in flying to Chicago, 
Miami, India and South Africa [1]. 

In order to determine whether these relatively new all-
business airlines will be able to compete in the fiercely 
competitive environment that the airline business is composed 
of, it is important to forecast demand as accurately as possible. 
According to reference [3], forecasting of demand is the most 
important and critical aspect of managing an airline, since so 
many important decisions are based on it. Obviously, demand 
forecasting is a very complex issue, as a lot of the determining 
factors, or drivers, for demand are unknown or cannot be know 
in advance. In short, one is dealing with the uncertainty of the 
future. Reference [3] also states that forecasting of demand is 

extra difficult when applied to new air routes. In the case of the 
new all-business airlines, this is particularly difficult because of 
their lack of long term historical demand data and experience. 

The aim of this paper is to develop and describe a basic 
demand forecasting tool for these new airlines that can be used 
to quickly determine whether or not on a (new) route of interest 
enough demand is present and what the requirements are to 
satisfy this demand. This can subsequently be used to 
determine whether or not it is worthwhile to open or continue a 
certain route, i.e. the model’s forecast can be used to make 
operational decisions. In this paper, only the basic framework 
for the model will be presented. This means that a number of 
assumptions is made throughout the paper in order to facilitate 
the ease of model development. These, however, limit the 
capabilities of the model. The assumptions and limitations are 
summarized in section VI. 

In order to devise a market demand model for all-business 
airlines, first the factors that drive the demand will have to be 
found and valued according to their importance and influence. 
These factors are numerous and a lot of them are 
interconnected. The initial discussion of this paper will be on 
these factors and their importance (section II). The next section 
will express the importance of each driver in a quantitative 
manner in order to use them for the development of the model. 
Section IV will deal with the full-scale development of the 
demand forecasting model. Section V will apply the model 
based on the route expansion and fleet plans of an existing all-
business airline. Section VI will discuss limitations of the 
model and resulting recommendations for further research and 
model development. Finally, section VII will conclude this 
paper.

II. DEMAND DRIVERS

Before fully developing the market demand model, first the 
determining factors for the demand will be presented. A 
distinction can be made between five different types of drivers; 
economic drivers, so-called demand inherent drivers, service 
quality, promotion and competition. These are the drivers that 
affect business travelers in the making of their choice for a 
certain airline and service. 
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A. Economic Drivers 

This category of drivers is quite extensive and the future 
variation of the drivers in this category is most difficult to 
predict, let alone the measure to which they affect the market 
demand. A number of sub-drivers determine the main driver in 
this category, which is the relative or perceived ticket price. 
These sub-drivers are the global and regional economic 
climate, the currency exchange rates between the currencies in 
the destination areas, and price elasticities for the targeted 
passenger types. The currency exchange rates are influenced by 
the global and regional economic climates. Together with the 
ruling price elasticities, the economic climate, the currency 
exchange rates and the absolute ticket price influence the 
relative or perceived ticket price for the passenger. 
Furthermore, they also are of influence to the intensity of 
business activities globally and between the regions of interest, 
which will be discussed in the next subsection. Of course the 
economic climate also influences the absolute ticket price. 
These interconnections are shown in Fig. 1. The arrows and 
lines in this figure merely indicate the influence of the different 
aspects on each other. 

1) Economic Climate and Currency Exchange Rates 
“Air transport has experienced rapid expansion since the 

Second World War as the global economy has grown and the 
technology of air transport has developed to its present state” 
[4]. Furthermore, “The world economic climate and the rate of 
economic growth in particular countries or regions of the world 
influence demand in a variety of complex ways” [3, p. 196]. 
They determine both the level and distribution of personal 
income and, more relevantly, company revenues and nature of 
international business activities and trade and through this the 
demand for air transport services. 

According to reference [4], air transport has traditionally 
undergone larger growth than most other sectors in the 
economy. Furthermore, according to reference [3, p. 196], the 
demand for the total air travel grown roughly twice as fast as 
the world GDP. In this paper, the effect of changes in global 
and regional GDP are assumed to be incorporated in the trade 
elasticities, which will be discussed later on. This is valid 
according to reference [3], which states that the effect of 
changes in income, and thus in economic climate, on demand 
can be measured through an income elasticity. For business 
travel a trade elasticity is often used as an income-related 
variable. 

It is well known that the US Dollar has recently followed a 
devaluating path for quite some time now. On the one hand this 
will cause goods from the US to be relatively cheaper for 
European companies and consumers. On the other hand, for US 
based companies and customers, doing business with European 
companies will become increasingly more expensive. 
Similarly, effects will be acting on ticket prices. It is assumed 
in this report that the net effect of changing currency exchange 
rates on demand is zero. 

2) Price Elasticities 
Next to income, a second factor that has a large impact on 

the financial drivers of air travel market demand is price [3]. 
The response of market demand with respect to price is 
expressed through the price elasticity coefficient (EP).

Figure 1. The interconnections between the different economic factors. 

This elasticity coefficient is similar to the trade elasticity [3] 
and is expressed through: 

P%
D%

PE

In this equation, D is the change in demand and P is the 
change in ticket price. Unlike the trade elasticity, price 
elasticities are always negative, due to the fact that a higher 
price will induce a lower demand. 

Price elasticities are different for different passenger types. 
Because business travelers usually do not pay their own travel 
expenses, one would expect them to be less sensitive to 
changes in ticket prices. Indeed, whereas leisure travelers 
expose a price elasticity of around -2.0, the price elasticity for 
business travelers is generally less (absolute sense) than -1.0 
[3]. This is affirmed by reference [5], from which an average 
price elasticity for business travelers of almost -0.8 can be 
found. 

Other reasons for this low price elasticity may be that air 
travelers have less substitute methods of transport. 
Furthermore, they have no choice in destinations. Business 
travelers usually also have a higher valuation of time, so their 
need for their journey to be as short as possible is greater. 
Finally, business travelers often have to go straight to work 
after their flight. In order to better cope with this, a higher level 
of comfort may get them across less tired and with more 
energy.

3) Relative or Perceived Ticket Price 
The absolute price is simply the price in true units of 

currency. This is different from the relative, or perceived, price 
since this is dependent also on overall economic climate and 
income and revenue standards. Also inflation can play a role. 
Inflation is, however, neglected in this paper, because prices 
and revenues are assumed to automatically adapt to this. The 
relative price is not directly determined in this paper. Rather, 
the effect on demand is immediately determined through the 
use of elasticities because this circumvents the need to first 
determine the perceived ticket price and its influence on 
demand. 

B. Demand Inherent Drivers 

1) Trade Elasticity 
Besides influencing the relative or perceived ticket price, 

price elasticities, exchange rates and the economic climate also 
determine the intensity of global business and thus also 
between the US and Europe. This effect can be expressed using 
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a trade elasticity [3], which was already mentioned before. The 
trade elasticity (ET) is defined as: 

T%
D%

TE

In equation (2), T is the change in trade. Reference [6] states 
that international business travel for the UK seems to be linked 
with changes in the volume of trade between the UK and 
important overseas markets. 

With respect to business travel, reference [3] states that the 
growth of demand for business travel is directly affected by the 
level of economic activity and trade. According to reference 
[7], trade elasticities, elasticities where trade is used as an 
income-related variable, for business travel for Schiphol 
Amsterdam Airport are between 0.8 and 1.0. 

2) Seasonality and Peak Problems 
As is the case in many industries, the airlines business is 

exposed to seasonal variations in demand. These variations can 
be divided in daily, weekly and seasonal variations [3], and can 
be identified in an airline’s flight schedule as peaks and 
troughs. A high difference between demand in peak periods 
and in off-peak periods can be severely unbeneficial to an 
airline. The reason for this is that a lot of extra capacity is 
needed to be able to satisfy the demand during a peak period. 
However, this capacity is not utilized or at best underutilized 
during the off-peak periods. 

Peaks and troughs in demand for business travel are mainly 
dependent on the pattern of annual holidays, such as the 
Christmas holiday season, and working days and weeks for 
factories and offices. Daily demand for business travel is 
usually highest in the mornings and evenings. Similarly, 
weekly demand is usually highest at the beginning of the week, 
on Mondays and sometimes Tuesdays, and the end of the week, 
on Fridays [3]. Thus, certain peak demand variations for 
business air travel are dependent on each other. The reason for 
this lies in the scheduling of normal working days and weeks in 
Western countries. 

This also causes the demand for business travel to slack off 
during the weekends. For all-business airlines, a possibility 
could be to fill excess capacity during the weekends and 
holidays with leisure passengers. These airlines could for 
example attract wealthier British leisure travelers that want to 
go shopping in New York. Additionally, they could decrease 
their capacity during the off-peak periods. An optimal way in 
which to do this would be to schedule maintenance and repair 
activities during these periods. 

A general trend that is visible within the airline industry is 
that the peak problem is less severe in case there is a lot of 
business travel on a certain route [3]. The reason for this is that 
business travel is less prone to seasonality than leisure travel. 
Most companies simply keep on running during holidays and a 
lot even during the weekends. This means that business will 
also keep going. Furthermore, business travel is not dependent 
on seasonal climate and weather variations, contrary to leisure 
travel. Still, the peak problem can also be quite a challenge for 
airlines that transport a lot of business travelers. 

C. Service Quality as Demand Drivers 

1) Passenger Treatment and Service 
References [8] and [9] state that service quality is defined 

by the end customer and that the quality the customer perceives 
is related to the difference between the customer’s expectations 
and perceptions. Factors that are of relevance for the perceived 
quality of service are on-time performance, (schedule) 
flexibility, baggage handling, quality of food and beverages, 
seat comfort, check-in service and in-flight service and 
treatment [10]. 

Reference [11] concludes that there are two types of 
business travelers; “luxury-loving” and “no-frills”. Clearly, the 
one of most interest to an airline having only business class 
seats is the first type. Reference [12] found service quality to 
be a major driver for demand for an airline’s services.

In case an airline can increase its standards (over that of the 
competition) without increasing its ticket price, this will surely 
increase the demand for its services. In contrast, in case of a 
severe economic downturn, an airline may be forced to lower 
its standards and increase its ticket price, which would have a 
negative impact on demand. 

2) Passenger Importance Segments 
According to reference [13] there are five segments to be 

distinguished in the business traveler market. This 
segmentation is based on the importance given to different 
aspects of the travel experience and expenses by the traveler. 
The five segments are based on: 

Punctuality. 

Comfort. 

Price.

The Price/Performance ratio. 

Catch-all/Flexibility (all of the above are important). 

Which one is of importance to a particular airline is 
dependent on its exact business model. Whereas price is mostly 
important to lower and middle management employees, the 
other four segments are highly valued by middle to senior 
management executives that are frequent flyers [13]. 
Furthermore, the price/performance ratio is of more importance 
to entrepreneurs that have to pay for their flight themselves. 

D. Promotion 

A driver that an airline can actively influence to a large 
extent is the promotion of its services. This can be done using 
all kinds of advertising, frequent flyer programs, publications, 
etc. Through promotion, an airline can also influence its image 
as perceived by the outside world. To this respect, also 
performance in respect of safety, service quality and on-time 
delivery of passengers is critical. Especially for young airlines, 
promotion can be an important tool to gain market share, as 
these airlines are still well in the process of expanding and 
implementing major operations, i.e. they still have to prove 
their worth in the market. 

Reference [14] indicates that advertisement programs 
aimed for business passengers should put extra emphasis on 
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high quality ground and in-flight services, connection options 
and on-time service, since these aspects are of most concern to 
business travelers. The reason for this is that business travelers 
usually have inflexible travel plans and do not personally pay 
the ticket fares [14]. 

Reference [15] has found that frequent flyer program 
membership induce the willingness for business passengers to 
pay significantly extra in order to fly with their carrier of 
choice. This thus means that frequent flyer programs can 
increase the demand for an airline’s services. 

E. Drivers from Competition 

With respect to competition, the new all-business carriers 
are operating in quite a fierce market. The route between 
London and New York is one of the busiest air transport routes 
in the world. A large part of this stems from the demand from 
business travelers, since London and New York are actually 
among the most important business centers in the world. 

Within this highly competitive market, quite a number of 
rivals is aiming at the business traveler. These include low-cost 
all-business (LCAB) carriers and regular airlines’ business 
class (RABC). The latter are a major source of competition [1], 
mainly through their business class and/or first class services. 
Compared to the recently emerged low-cost all-business 
carriers, regular airlines’ business class can offer more 
frequency and connectivity, but at the cost of higher ticket 
prices (roughly up to five times as much as the new low-cost 
all-business carriers. Furthermore, regular airlines are well 
established in the market, whereas the new airlines still need to 
gain trust from the market [1]. 

Another source of competition is the branch of airlines that 
provide on-demand business air travel (ODBA), generally 
called air-taxi services. Also, some large companies may 
operate their own corporate jets. 

Currently, the low-cost all-business airlines have filled a 
niche in the air travel market. However, economic conditions 
may change and competition may be overlapping to a much 
larger extent that it currently is. Therefore, it should be noted 
that the exact threat from competitors is very difficult to 
estimate and forecast. It is, however, also not in the scope of 
this paper to do so. 

III. DRIVER QUANTIFICATION

Having described all relevant factors, this section will 
indicate the amount of influence of each driver on the total 
demand within the model that will be developed in the next 
section. This will be done by indicating their specific method 
of use within the model. 

1) Economic Drivers 
With respect to the economic drivers, the basic model 

framework will only take into account the price and trade 
elasticities. These will constitute the model’s back bone, 
providing a basis for the rest of the model. Thus these 
elasticities are considered the most important drivers for the 
demand forecasting model. As was stated in section II, an 
average price elasticity of -0.8 was found from reference [5]. 

The trade elasticity was found to typically range between 0.8 
and 1.0. The exact value is dependent on the exact route and 
airline business model considered. It will simply be assumed 
that the trade elasticity is equal to 0.8 in this paper as a result of 
a lack of accurate data. When a more detailed demand 
prediction is needed from the model, more research should be 
performed on the exact value of both elasticities. 

Based on these elasticities and predicted or assumed price 
and trade changes, a current demand can be extrapolated to a 
future demand. Obviously, for this method to be accurate, 
accurate predictions of the future price and trade levels 
compared to current price and trade levels are needed. 

2) Demand Inherent Drivers 
Apart from the price and trade elasticities, the model will 

include a correction for seasonality and peak occurrence. 
Basically, for this a so-called peak factor will be used, which 
will indicate the difference between peak and off-peak periods. 
In fact, any peak pattern can be corrected for using this factor. 

Reference [3] finds a peak to trough ratio of 1.54 to 1.00 for 
the route New York – London. Thus this would mean the peak 
factor is 1.54 on that route. Note, however, that this peak factor 
is valid for the total passenger air travel, including all non-
business passengers. Once again, for more accurate results 
from the demand forecast model, more research should be 
conducted on the true peak factor ruling on the particular route 
of interest. 

3) Service Quality Standards 
This driver is actually a lot harder to materialize. In the 

model, use will be made of an efficiency factor for the service 
quality standards to gain market share (ESQ). In order to 
establish accurate values for this variable, the effect of service 
quality on demand should be further researched based on the 
particular airline of interest. Already quite some research has 
been performed on the effects of service quality on demand, 
some even of a quantitative nature [15], [16], [17].  References 
[15], [16] and [17] provide a good basis for this further 
quantitative research. 

4) Promotion 
With respect to promotion, the model will employ a so-

called promotion efficiency factor (EPR), which is similar to the 
service quality efficiency factor. The promotion efficiency 
factor is simply expressed as a percentage increase in demand 
resulting from a certain promotional activity. Further research 
on a per airline and route basis should establish exact values for 
the promotion activities’ efficiency to induce more demand. A 
good starting point for such research is provided by reference 
[12]. 

5) Competition 
While three important sources from competition were 

found in the previous section, in the model, these sources of 
competition will be grouped into one competition variable. 
This is done because this paper focuses on the total model and 
not on the specific characteristics of competition (or any other 
variable in that respect). Thus: 

ODBARABCLCABCOMP MSMSMSMS
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In this equation MScomp stands for competition Market Share. 
Now, any airline’s future market share is given by the sum of 
the current total market (MTot i) and the change in total market 
( MTot) , minus the market share of the competition: 

1COMPTotTot1airline MSMMMS
iii

Note that the future is denoted by the subscript i+1, while the 
current is denoted by i. 

Thus, it is evident that an airline’s market demand is 
dependent on the market share it can capture, which it can 
partly influence by increasing its internal capabilities of service 
quality, its ticket price and its promotion intensity for example, 
and on the developments in the total market, which it cannot 
influence. The change in total market is by definition of the 
trade elasticity determined from the change in trade and the 
trade elasticity. 

IV. DEVELOPMENT OF THE DEMAND FORECAST MODEL

A. Model Back Bone 

As was stated, the model’s back bone is based on the use of 
price and trade elasticities. When the current total demand for 
business air travel is known, as well as a trade elasticity value 
and an expected growth or decline in trade levels for the future 
time or period of interest, the total demand for that future time 
frame can be found through: 

TE1MM TTot1Tot ii

Before being able to apply a price elasticity on this, in order 
to assess the effect of a ticket price change, first the market of 
the particular airline of interest in the future period (MAL i+1)
must be determined. This is done by multiplying by one minus 
the competition’s market share in the future period of interest: 

1COMPTTot1AL MS1TE1MM
iii

What remains now is the total expected demand for the airline 
in the future, should no changes with respect to price, service 
quality and promotion and airline image occur. It should be 
clear that for the model to be accurate, the expected market 
competition market share should be carefully predicted. 

As was already hinted, the next step is to include the effect 
of ticket price on the demand through the use of the price 
elasticity. Equation (7) shows the result: 

PE1

MS1TE1MM

P

1COMPTTot1AL iii

B. Model Refinement 

The back bone of the model is now firmly established. The 
model can now be refined by adding corrections for service 
quality and promotion and image. Furthermore, also a variable 
peak factor can be implemented in order to take into account a 
variable peak and trough pattern in demand. First of all, a 
correction for service quality changes is added: 

SQCOMPTot

P

1COMPTTot1AL

EMS1M

PE1

MS1TE1MM

ii

iii

Thus, an increase (or decrease) due to changing levels of 
service quality is added. It is assumed in this that a current 
improvement (or deterioration) in service quality results in an 
increase (or decrease) in demand in the future, because an 
increase in service quality is assumed to only reach the 
passengers that are currently flying with the airline of interest. 
Thus, this increase (or decrease) is based on the current time 
market demand. 

Similarly, an addition for the promotion effect on demand 
can be made. The effect of promotion is acting on the market 
share the airline of interest can obtain in the future time period. 
Thus, the factor (1-MSCOMP i+1) is determined from  
(1-MSCOMP i) multiplied by (1+EPR) (9).

EMS1M

PE1

E1MS1

TE1MM

SQCOMPTot

P

PRCOMP

TTot1AL

ii

i

ii

9)

Finally, a peak factor (PF(x)) provides the final refinement 
to the demand forecasting model. From the notation, it should 
be clear that the peak factor is a variable. One could either use 
a continuous peak function or a number of discrete peak factor 
values, both obtained from experience or general market 
trends. The final model thus becomes: 

PF(x)

]EMS1M

PE1

E1MS1

TE1M[M

SQCOMPTot

P

PRCOMP

TTot1AL

ii

i

ii

C. Using the Demand Forecasting Model 

There are basically two instances in which this model will 
provide a preliminary demand forecast. The first situation is 
when an all-business airline is intending to open a new route 
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and needs to know its potential. The second case is when an 
airline is unsure of whether or not to continue servicing a 
certain route or when it is unsure of how much (extra) capacity 
will be needed. 

1) Opening a New Route 
For this case the model is somewhat simplified, because in 

this case the new entrant on a certain route does not yet have 
any market share, i.e. (1-MSCOMP i) is equal to zero. In effect, 
the market share the airline can obtain in the future period 
needs to be obtained through a prediction. Also, it is assumed 
that the influence of service quality is negligible, because on 
the new route nobody has had the opportunity to actually 
experience the quality of service. Thus, the model becomes as 
in (11). 

PF(x)

]PE1

MS1

TE1M[M

P

1COMP

TTot1AL

i

ii

This means that the effect of promotion of the airline on the 
new route is incorporated in the (1-MSCOMP i+1) variable, i.e. it 
is taken along in the prediction for the market share the new 
airline on the route can obtain. 

2) Continuing an Existing Route 
In this case, the model is used in its full extent, as given in 

(10). The variables that are needed to operate the model are: 

The trade elasticity ET.

The expected change in trade between the two ends of 
the route T.

The price elasticity EP.

The expected change in ticket price P.

The current total market MTot i.

The current competition market share MSCOMP i.

The expected gain in market share due to promotion 
EPR.

The effect of a change in service quality on demand 
ESQ.

A peak function or peak factor PF(x). 

V. MODEL APPLICATION

Now that the model has been fully developed, its 
forecasting ability can be assessed based on specific data for 
one of the new all-business airlines performing transatlantic 
operations at the moment. For this, Eos Airlines has been 
selected for no other reason other than that it is still in 
operation, contrary to MAXjet. Firstly, an existing route will be 
investigated using the demand forecasting model. This is Eos 
Airlines’ route between London and New York. Secondly, its 

plans to open a new route between Paris and New York will be 
compared to the model’s predictions. 

A. The London – New York Route 

Because this is an existing route, the full model will be 
applied. Table 1 summarizes the data applicable to this route. 
Because no adequate data is available for most variables, most 
data is (partially) based on assumptions. This is, however, not a 
problem, because the assumed values are close enough and are 
capable of demonstrating the use and functioning of the 
demand forecasting model.  

The trade elasticity is assumed from the previously found 
range to be equal to 0.8. The trade change is an average from 
trade growth factors that actually occurred between 2004 and 
2006 between the US and the EU, obtained from reference 
[18]. The price elasticity was already found to be equal to -0.8 
for business travelers, whereas the change in ticket price is an 
average determined from reference [19]. All three the current 
total market, current competition market share and the peak 
factor have been obtained from analysis of the flight schedules 
of all carriers operating between London and New York, where 
average load factors of 50 and 80 percent have been assumed 
(due to a lack of accurate data) for business class and first class 
seats respectively. From these schedules all business class and 
first class seats are seen as part of the total market for Eos 
Airlines. Note that the current total market is a monthly 
average over the months December 2007 to February 2008. 
Finally, the promotion and service quality efficiencies have 
simply been estimated at 30 and 70 percent respectively. This 
may seem high, but note that promotion is likely to be quite 
high for a new airline like Eos Airlines, for a large part also 
due to word-of-mouth promotion. Similarly, by opening up 
extra routes and increasing capacity [1], Eos Airlines will 
drastically improve its service quality with respect to its 
connectivity and schedule characteristics (more flights a day). 

Substituting all these values in the model (10) will result in 
an average forecasted demand over the months December 2008 
to February 2009 (the off-peak period) of 3675 passengers per 
month. For the peak period, which is from June to August 
2008, this is 3909 passengers per month. 

Knowing that Eos Airlines will operate 29 one way flights a 
week in 2008 [2], that it holds 48 seats per aircraft [2] and has 
an average load factor of 70 percent [1], one can determine that 
it has a capacity of almost 4200 seats per month.  

TABLE I. LONDON-NEW YORK ROUTE DATA

Variable Symbol Value Unit 

Trade elasticity ET 0.8 - 
Trade change T 9.5 % 
Price elasticity EP -0.8 - 
Ticket price change P 7.75 % 
Current total market MTot i ~38000 pax/month 
Current market share competition MScomp i 95.2 % 
Promotion efficiency EPR 30 % 
Service quality efficiency ESQ 70 % 
Peak factor PF 1.064 - 
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This can be seen to comply quite good with the forecasted 
maximum demand of 3909 passengers per month, yielding a 
difference of about 6.4 percent. 

B. The Paris – New York Route 

Quite similarly, the Paris – New York route can be 
investigated. Because this is a new route for Eos Airlines, the 
simplified version of the demand forecasting model is used. 
Table 2 presents the data for this case. 

Note that most variables are the same as for the previous 
case. The current total market share and the peak factor have 
been obtained from analysis of the flight schedules of all 
airlines operating between Paris and New York, where, once 
again, load factors of 50 and 80 percent have been assumed for 
business class and first class seats respectively. Furthermore, 
the future market share of the competition is simply assumed to 
be equal to that of Eos Airlines’ competition on the route 
London – New York because no adequate means for estimation 
is available. 

Once again, substituting all values into the model, this time 
(11), will result in a forecasted demand of 680 passengers per 
month for the off-peak period December 2008 to February 
2009. Similarly, for the peak period June to August 2008 this is 
903 passengers per month. 

Unfortunately, no announcements have been made yet 
about the number of flights to be operated between Paris and 
New York. However, when assuming an initially low load 
factor of 35 percent, as Eos Airlines experienced during its first 
months of operation between London and New York [20], it 
can be found that the airline needs to perform 14 (one way) 
flights per week from London to New York and vice versa. 
This is in accordance with reference [21], which was created 
during the airline’s initial months of operation. 

VI. LIMITATIONS AND RECOMMENDATIONS

A. Forecasting Model Limitations 

With the demand forecasting model developed and found to 
operate seemingly well, its limitations will be shortly discussed 
below. 

First of all, the model in its current state is limited to use 
applicable to all-business airlines only. Modifications could be 
made in order to prepare the model for use for all airlines, yet 
this would require quite some additional research to occur (see 
below). The difference in the model as it is and the model as it 
would be to be valid for any airline is mainly making the model 
as it is simpler. In order to make the model valid for any 
airline, one would have to incorporate quite some complexities, 
related to having more than one service class and more than 
one type of passenger, each type having different specifics and 
requirements. For leisure travelers for example, also destination 
becomes important and for them, rather than trade elasticities, 
income elasticities become important. All these complexities 
would make the model a lot more elaborate, as well as the 
research that would be needed to obtain the model. 

TABLE II. PARIS-NEW YORK ROUTE DATA

Variable Symbol Value Unit 

Trade elasticity ET 0.8 - 
Trade change T 9.5 % 
Price elasticity EP -0.8 - 
Ticket price change P 7.75 % 
Current total market MTot i ~14000 pax/month 
Future market share competition MScomp i+1 95.2 % 
Peak factor PF 1.328 - 

Furthermore, the model is only suitable for the short term 
use, depending on the exact accuracy of the variables 
introduced in the model, and provides a preliminary demand 
forecast only (back of the envelope calculations). More detailed 
demand forecasting may be required. 

Finally, the model neglects any interrelations between the 
service quality, promotion and competition threats (except for 
the relation between the competition market share and the 
promotion efficiency). 

B. Recommendations for Further Research 

Recommendations for further research are numerous, all 
aimed at improving the forecasting ability of the model or the 
accuracy of predicting the variable values needed for the 
model. 

1) Recommendations with respect to Model Refinement 
The most important recommendation would be for the 

investigation of the exact quantification of the promotion 
efficiency and service quality efficiency. In the model’s 
application (section V), quite crude assumptions have been 
made for these variables, seriously limiting the accuracy of the 
predictions. Further research could take away this shortcoming. 
This research will then also yield possible better ways to 
express these factors in the model. For example weight factors 
could be used in the model itself or within the factors that are 
input to the model. 

Next, the model uses one variable with respect to the 
competition, i.e. its market share. The reason why the factor (1-
MSCOMP) was used is because this forces the model user to 
carefully assess the threats from the competition, rather than 
simply estimating a market share that the user feels can be 
achieved by the own airline. In order to increase the accuracy 
and predicting power of this model feature, further research 
into the distinctive competitive threats from different 
competitions (LCAB, RABC, ODBA) should be performed. 

2) Recommendations with respect to Data Accuracy 
In order to improve the accuracy of the model’s back bone 

structure, the most stringent recommendation for further 
research with respect to data accuracy would be to investigate 
the exact value and possible variation of price and trade 
elasticities between two destinations of interest. Similarly, also 
the expected trade and ticket price changes should be 
investigated. 

An important consideration with respect to all parameters 
used, is their variability and sensibility and their effects on the 
model results, i.e. the model’s accuracy, given a certain 
variability in the parameters. For this, Monte-Carlo simulations 
would be well suitable. The reason why these have not yet been 
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performed is because some of the more “abstract” parameters, 
such as the effects of promotion and service quality, should 
first be further investigated. Once the way in which these 
parameters influence the demand is more clearly determined, 
Monte-Carlo simulations should best be performed in tandem 
with further research on how to incorporate these factors. 

Finally, as a user of the model, the current total demand 
should be more accurately deduced. The same holds for the 
exact peak factor or, better, peak function for the particular 
airline and route of interest used in the model. 

VII. CONCLUSION

The purpose of this paper was to develop and demonstrate a 
preliminary demand forecasting tool for the newly emerged all-
business airlines operating across the Atlantic. The model 
incorporates a number of demand drivers, being the effects of 
trade and ticket price changes, the effects of service quality 
changes and promotion, the effect of competitive threats, and 
finally the effect of seasonality. This is also the difference of 
this model with respect to generic demand models as described 
by reference [3] for example. This model takes into account the 
“physical” parameters instead of only empirical factors and 
trade and/or price elasticities. 

Using data and estimated data for Eos Airlines, the model 
has undergone a first validation calculation. Even though the 
data input was for a large part based on assumptions and 
estimations, the model’s first forecasting accuracy for Eos 
Airlines’ existing route between London and New York was 
found to be around 6.4 percent. 

Although quite a lot more future research is needed for the 
model to perform with accuracy, the model interrelates a lot of 
previously separate areas of research, such as marketing, 
service quality, seasonality and trade and price changes and 
effects. Furthermore, the model does provide an initial 
framework, suitable for adapting if needed, to build on, as well 
as the crude forecasting abilities to be used in a preliminary 
route profitability assessment. 
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Abstract Air Traffic Control systems display information with 

multiple visual entities. The research described in this paper is an 

initial effort to develop a theory-driven approach to the 

characterization of visual entities. We enhance the state of the art 

in data visualization to characterize four comet  designs. This 

work helps to understand visualization more precisely and 

provides a basis to help the designer to formally assess the 

effectiveness of their work. 

Information Visualization, design, taxonomy, graphical coding. 

I. INTRODUCTION

In current Air Traffic Control (ATC) environments, air traffic 
controllers use several visualization systems: radar view, 
timelines, electronic strips, meteorological views, supervision 
etc Each of these visualizations is rich and dynamic: it 
displays numerous visual entities that move and evolve over 
time.   

The objective of our work is to develop a suitable set of tools 
based on established theoretical methods, in order to evaluate 
the effectiveness of visual entities before testing them with 
users. 
displayed information, how are they displayed and how can 

Our goal is not to answer the question: what makes one type 
of visualization better than another?  This answer is linked to 
controller activity. First, the user is always able to perceive 
information that is visually coded, but the cognitive resource 
varies depending on the nature of this visual information, e.g. 
the difference of perception between text and color.  Second,  

controllers or en-route controllers do not need the same 
information although they might be able to work with the 
same HCIs). We are not trying to answer the following 
question either: how can we help designers improve 
perception?

 is nevertheless very important. These kind 
of issues have already been addressed in the Information 
Visualization field (IV). These tools will help us to give an 
accurate description of visual entities. 

Because the characterization of a full image may be tedious, 
the paper focuses on one visual entity through four designs: 
the radar comet. In the ATC field, a comet represents aircraft 
position. In order to understand each comet design, we will 
have a look at each software feature that uses this design. 
Then, we will detail the design of each comet, find out their 
design properties and their associated semantic. 

A. The design issues 

The design process is very tricky. It takes time and intuition.  
Joahnnes Itten [12] p7, a design teacher and an artist, claims 
that if satisfying painting it 
means that you are not (yet) an artist. But you can still draw 
nice paintings with a theoretical approach. You can learn rules 
and apply them. Most artists know these rules but did not learn 
them; they just rely on their genius. 
It is very difficult to create a new design based on nothing. We 
identify four different approaches when building a visual 
entity: 

Empirical approach : design based on trial and error 
methodology, 
Historical approach: design based on the continuity 
of previous work with a concern for adaptation to the 
given context, 
Ecological approach: design based on the respect of 
both human physical and perceptual characteristics, 
Technological approach: design based on 
technological opportunities. 

Those four approaches shall not be considered as separate 
spaces; each design process mixes a bit of the other. Of 
course, there is no clearly defined boundary between the 
sources of design, and there is a lot of overlap. 
The four sources of design inspiration help to understand and 
justify design choices. By extension, they will give clues on 
how to perform an exhaustive characterization. 

B. The characterisation issues 

Characterization is a precise and minimal description that 
unveils differences and allows comparison. Characterization is 
a very helpful tool for designers along the design process. To 
perform this characterization we need tools, and the only one 
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available is the human perception through its eyes and brain. 

perform an exhaustive description of the displayed 
information. This is the reason why characterization is 
awkward, and this paper is an initial effort to fill this gap. 

II. THE INFOVIS FIELD

As said in the previous section, human perception is involved 
in the transmission of information. The design and study of 
human perception of representations is a subfield of the 
Human Computer Interaction (HCI) field, called Information 
Visualization, or Infovis (IV). Information visualization is the 
visual presentation of abstract information spaces and 
structures to facilitate their rapid assimilation and 
understanding. 

Text-based interfaces require cognitive effort to understand 
their information content. Humans have remarkable perceptual 
abilities of graphical entities; they can rapidly and 
automatically detect patterns and changes in size, color, shape, 
movement, or texture. Information visualization seeks to 
present information visually, to offload cognitive work to the 
human visual perception system. 

Figure 1 : Scientific and InfoVis 

Figure 1, display the difference between visualizations. 
Scientific visualization display canonical representation of real 
object and phenomenon. Infovis displays data in an abstract 
way [11][17][18]. Its goal is to optimize the bandwidth 
between the displayed data and the perceived data.  

The correct perception of visualization has nothing to do with 
artistic design. There are tools for the IV that can help us to 
answer the following questions: 

What kind of data is being displayed? 
How is the data processed or updated? 
How can we characterize the suggested visualization? 

In the next chapter, we present some of the Infovis Tools 
which suitable to the analysis of ATC images. 

A. Data type 

The major distinction we can make for data type is whether 
their values are: 

 Nominal: are only equal or different to other values 
(e.g. aircraft call sign), 
 Ordered: obey a <  

the landing sequence), 
 Quantitative: can be manipulated by arithmetic (e.g. 

the aircraft speed). 

The quantitative type can be split into two parts: Interval and 
Ratio. Interval can be the gap between values but cannot be 
null, e.g. the time lapse between 7.00am and 8.00am is the 
same than 14.00am to 15.00am but we cannot say that 
15.00am is twice 7.00am. 
The ratio type is the full expressive power of real numbers. 
The Table 1 summarizes the different terms used in the 
literature. 

Bertin [4] Stevens [19] Ware [21] 

Nominal Nominal Category 
Ordinal Ordinal Integer 

Quantitative 
Interval 

Real number 
Ratio 

Table 1 : data types

1) Design and Data type 
Bertin[4] was the first one to study representation rules. He 
identified three distinct levels for a visualization analysis: 
elementary (for a single item), intermediate (for a group of 
items), and overall (for all the items). He finds out rules to 
code information in a monosemic way: there 
ambiguity in the perception of displayed information. 
Afterward, Cleveland[8], McGill[9] and then Mackinlay[15] 
built scales of expressivity and effectiveness (dependant on 
the human perceptual capabilities) to assess alternative designs 
(Figure 2).  This scale depends on the data type. The visual 
property ranked higher in the chart is perceived more 
accurately than those that are ranked lower in the chart. In the 
Figure 2 Gray items are not relevant to the concerned type of 
data. 
The quantitative data type ranking has been experimentally 
verified by Cleveland [9]. Independently of the data type, the 
best way to represent the data is to code it with a position on a 
scale. To represent the speed of an aircraft (quantitative data), 
we can use the length of a line (speed vector). The aircraft 
position number in the landing sequence (Ordinal) is better 
coded using the color saturation than length. 
Despite the fact that the text involves perceptual and cognitive 
processing that helps one to decode a graphic in the same way 

spatial structures, location, and detail, whereas words are 
better for representing procedural information, logical 

[21]p301-307. 
Graphical perception is highly parallel which works on visual 
properties such as position and color, but has limited accuracy. 
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Text representation is accurate but is limited in capacity. The 
cognitive workload is very high when we are reading a text. 
That are the reasons why the text is not integrated in the 
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Figure 2 : Mackinlay ranking of perceptual task [15]

This ranking was built for statistical graphs. Air traffic control 
displays, and other iconic representations of data addressed 
quite different tasks. Still this approach remains a promising 
starting point of research to answer the question: What is the 
most suitable visual property I can use?

B. The data flow model 

Card, Mackinlay and Shneiderman[6] created a model (Figure 
3) which describes visualizations as a data processing 
sequence from the raw data to the views. The processing is 
based on structures of intermediate data which is easy to 
handle by the user. Chi [7] detailed the various stages of this 
model. This data flow model is still widely used. 

Raw Data Data Tables
Visual

Structures
Views

Data
Visual

Form

Data

Transformations Visual Mappings
View

Transformations

User

Figure 3: Schematic Dataflow of Information Visualization [6]

This model is based on the management of a data flow. It is 
used in many toolkits (InfoViz[10], prefuse, VTK, Tulip, 

[1] , ILOG 
Discovery[2] , nVizN[22]
This model formalizes the transformation process from raw 
data to a screen and is the foundation of a compact and precise 
characterization.  

C. Characterization model 

Card and Mackinlay[5] attempted to establish comparison 
criteria of the images with their work. They propose a table for 
each function of transformation (Table 2). 

    automatic 
perception 

Controles 
 perception 

Name D F  X Y Z T R - [] CP 

            
Table 2: C&M representation model 

The lines correspond to the input data. The column D 
indicate the type of data (Nominal, Ordered, and Quantitative). 
F is a function or a filter which transforms or creates a subset 

of D. Columns X, Y, Z, T, R, -, [] are derived from the visual 
variables of Bertin[4]. 
The image has four dimensions: X, Y, Z plus time T. R 
corresponds to the retinal perception which describes the 
method employed to represent information visually (color, 

noted with - , and the concept of encapsulation is symbolized 
by [] . Finally a distinction is made if the representation of 
the data is treated by our perceptive system in an automatic or 
controlled way. The C&M table is filled with the notations in 
the Table 3. 

L Line 
S Size 
Sh Shape 
f Function 

N, O, Q Nominal , Ordered, Quantitative 
Lon, Lat Longitude, Latitude 

Pt Point 
Orien Orientation 

T Text 

Table 3: C&M Model notations

The previous chapter was a stat of the art of the InfoVis tools. 
The next chapter deals with the historical design of the comet 
and its initial use in a non ATC environment. 

III. COMETS 

The comet visual properties have been used for the first time 
in the early seventh century by Edmond Halley[16] who coded 
the trade wind direction on a map [20] p23[21] p 203 . He 
coded the flow with a stroke. 
The comet has accurate design properties; it displays the 
direction of the shape and its tendency. The comet is 
composed of a bigger part, its head, and a smaller, its tail. Its 
head indicates the comet heading. The tendency indicates the 
future position of the aircraft. The curvature of this shape 
indicates if it is turning right or left and the amount of 
steering. 

Figure 4 : Detail of Halley's chart of the Trade Winds 1686.
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ATC visualization derives some benefit of this comet. To do 
so, designers use different design options to display the 
aircraft position with a comet. In the next chapter, we will 
have detail different ATC systems which use the comet.  

A. The ODS comet 

ODS is the main French radar view for the air traffic 
controllers. Its main goal is to display aircraft positions and to 
help controllers space aircrafts beyond the security minima. 

Figure 5 : radar track 

Figure 5 displays the terms used to depict a radar track. The 
radar track presents the aircraft position, its speed, its name, 
altitude and speed as text. The design of the comet is built 
with squares, whose size varies with the recentness of the 
aircraft position: the biggest square displays the last position 
of the aircraft, whereas the smallest square displays the oldest 
aircraft position. 

The design of this comet is historical. It is not based on the 
Halley design but on early radar equipment which relied on 
scope persistency (Figure 6). Old radar scope retained the 
previous plot position with the fading of the screen phosphor. 
This kind of design has the same remarkable properties as the 
Halley comet: it displays curvature 
tendencies and shows if an aircraft is turning and the amount of 
steering. 

     

Figure 6 : Spot decreases in intensity over time on a scope (left 
picture). ODS comet metaphor (right picture). 

B. RadarGL 

The goal of the RadarGL project is to develop a prospective 
visualization of the aircrafts position using the latest 
technologies. This project uses the latest rendering techniques 

 (Human 
Computer Interaction) techniques for the interaction and the 
control of the image. RadarGL displays a top view of the 
aircraft position. The Xscreen is the latitude and the Yscreen 
the longitude of each aircraft. 

C. ASTER 

The ASTER [3] tool was initially designed to assist Air 
Traffic Controllers in their task on terminal sectors, notably by 
providing controllers with an efficient way to feed the system 
with clearance data.  
context is characterized by the construction of a proper 
sequencing of arrival flights towards a geographical point 
called the Initial Approach Fix (IAF, sector exit point) 
respecting airport capabilities.  

The vertical view constitutes one of its specific tools. It 
allows a better monitoring of the vertical profile. Former 
studies have proved that controllers tend to be even deliberately 
blind in the vertical profile in the current environment. 

Figure 7 : ASTER comet 1 (left), ASTER comet 2 (right)

In the Figure 7, the aircraft comets show the position of the 
aircraft in the vertical view, among many other information. 

IAF

Reference

Beacon

speed

Horizontal

plan

Deepest

position

Pojected

speed

Latitude

L
o

g
it
u

d
e

Closest

position

Figure 8 : Aster projection plan

The displayed information in the ASTER project is based on a 
projection along an axis. The IAF is the first point of this axis 
and a reference beacon is the second. This axis split the sector 
into two parts. The aircraft behind this axis are deeper than the 
aircraft in front. Actually, the aircraft speed representation is 
the result of the projection of the current speed on this axis, 
whereas the aircraft position is the distance between the 
aircraft projected position and the IAF. All the information are 
summarised in the Figure 8 and in the C&M characterisation 
(Table 5). 

Speed vector 

Label 

position 

Comet 
plots
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IV. COMET CHARACTERISATION

This section deals with the comet characterisation. Firstly, we 
will apply the C&M model; secondly we will discover that 
this model is a partial characterisation. Finally we will 
characterise comets with a table inspired from the IV tools. 

A. Applying C&M characterization  

Figure 9 : the comet of an evolving aircraft, the image exhibits 
direction  and acceleration changes

The last positions of the aircraft merge by effect of Gestalt 
continuity [14], from which a line does emerge with its 
particular characteristics (curve, regularity of the texture 
formed by the points, etc). In this case, it is not possible to 
characterize the radar comet directly using the C&M 
transformation model. But we can characterize individually 
the shapes that build the comet (Table 4). With this intention, 
we introduce the concept of current time (Tcur: the time when 
the image is displayed). The size of the square is linearly 
proportional to its age.  

Name D F X Y Z T R - [] CP 

X
Q

Lon 
f

Q
Lon 

P    

S
ha

pe
 

em
er

ge
 

Y
Q

Lat 
f

Q
Lat 

 P     

T Q f(Tcur) Q S   

Table 4 : C&M Radar Comet 

Name D F X Y Z T R - [] CP 

Plot 
Lat Lon 
(QxQ) 

f Q P    

S
ha

pe
 

Afl Q f Q  P       

Vert. speed Q f Q     O    
speed Q f Q     S    

Table 5 : ASTER Comet characterization

The characterization cannot integrate analysis of 
the evolution of aircraft latest positions (speed, evolution of 
speed and direction). Thus, in Figure 9, the shape of the comet 
indicates that the plane has turned 90° to the right and that it 
has accelerated. These data are emergent from the comet 
design. In other words, they were not directly used to generate 
the image. 

1) ASTER and the Speed Vector 

The characterization of the radar speed vector (Table 6) shows 

Name D F X Y Z T R - [] CP 

speed Q f Q     S    
direction  f      O    

Table 6 : C&M Speed vector characterisation 

In addition, the same information is coded by the length of 
ASTER comet and by the speed vector of the radar .
The ASTER comet is thus equivalent to 
vector, modulo a translation. It is the characterization and its 
comparison which allows us to link two visualizations, and 
thus to give to the designer elements of analysis. This result 
shows the importance of the work carried out. 

2) C&M characterisation conclusion 

The characterization of C&M does not allow to highlight 
essential information for end users, and does not allow any 
exhaustive comparison of different design. The ODS comet is 
richer than the Aster comet; although the characterization of 
C&M seems to indicate the opposite. The wealth of 
information transmitted by each representation is thus not 
directly interpretable in the characterizations: the model of 
C&M is therefore not fully adapted. 

The next part of this paper will take into account the 
knowledge of the InfoVis field and apply it to characterize 
four design of the comet. 

B. Alternative characterization 

In this part, we present all the available information on each 
comet. These information are classified into three categories:  

The design process: how to draw the comet ? 
The design properties: what are the design 
characteristics  ? 
The semantic: what are the displayed information ? 

Tableau 8 lists all the terms used to characterize the comet 
design (Tableau 7). 
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Comet ODS ASTER Design 1 ASTER Design 2 RadarGL 

Design 

Refresh rate steps steps steps continuous 

Enclosure 
Same shape and 

progressive change in 
the squares size 

shape texture shape 

Design

properties 

Zoom 
invariants 

squares size gradient texture, color, thickness gradient, thickness 

Background 
occlusion 

partial: holes in the 
texture

full opacity 
partial : holes in the 

texture 
partial : (transparency) 

Screen depth yes : priority comet 
fake (automatic toolkit  

Z sorting) 
no : texture blending no : alpha blending 

Overlapping 
resistant 

Yes + Yes ++ Yes + Yes ++ 

Background 
and comet  
contrast 

Fixed shape no yes yes no 

Semantic 

Acceleration 
reflected in the varying 
distance between the 

squares 
no no 

gradient and dynamic 
stretching 

Depth not implemented thickness no not implemented 

Radar track 
death 

progressive dot fading fade fade lock up and fade 

Direction 

horizontal plan : the 
direction given  

by the tangent at the 
first point 

in the vertical plan : 
orientation 

in the vertical plan : 
orientation 

horizontal plan : orientation 
curvature 

Tendency curvature 
No : unless you perceive the 

screen refresh 
no: unless you perceive 

the screen refresh 
curvature tendency 

Speed 
horizontal speed : 

length of the comet 
horizontal projected speed : 

length 
horizontal projected 

speed : length 
horizontal speed : length of 

the comet 
Highlight 

comet head 
yes no yes yes 

Highlight 
comet tail 

no no no yes 

display old 
positions 

yes no no yes 

Tableau 7 :  description of four comet designs
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Refresh rate Continuous: The aircraft positions are 
interpolated between two data updates (or 
frames). 
Steps: no interpolation, no transition 
between two frames. 

Enclosure Explains how the comet is perceived as a 
whole. 

Zoom 
invariants 

The visual properties not affected by the 
zoom variation. 

Background 
occlusion 

Is the background still visible through the 
comet design? 

Screen depth In case of comet overlapping, can we 
perceive an ordering along the Z axis 
(screen depth) and how?  (Painter 
Algorithm) 

Overlapping 
resistant 

When comets overlap, can we distinguish 
between comets? 

Background 
and comet 
contrast 

Display the range of luminosity of the 
background and the comet. Displays if there 
is a risk of confusion between the 
background and the comet. 

Fixed shape Does the design always display the same 
shape? 

Acceleration The aircraft acceleration. 
Depth The depth in altitude (RadarGL and ODS). 

The depth (ASTRER) with respect to the 
projection axis (Figure 8). 

Radar track 
death 

How does the comet show the lost of data? 

Direction The aircraft direction. 
Tendency The evolution of the aircraft direction. 

Speed The aircraft speed. 
Highlight 

comet head 
Does the design highlight the current 
aircraft position? 

Highlight 
comet tail 

Does the design highlight the oldest aircraft 
position? 

Display old 
positions 

Does the design display more than the 
current aircraft position? 

Tableau 8 : Comet characterization legend

1) ODS : historical design 

Figure 10 : ODS comet
The design of this comet has already been depicted. The unity 
of the resulting shape comes from the Gestalt[14] properties. 
The progressive change in the square size and the squares 
spacing glue together the squares. This is helpful when comets 
overlap: although plots may interfere, we are still able to 
distinguish between two comets. 

2) ASTER design 1 : ecological design 

ASTER comet thickness codes the position (or depth) of the 
aircraft compared to the IAF-reference axis (Figure 8). If the 
aircraft is deeper than this axis, the comet is darker and 
thicker. This is an ecological design because far object are 
small and dark. But this design can lead to perception issues 
with the background. 

Figure 11 : Aster design 1 comet

The size of the comet is a function of the ground speed. The 
vertical speed is coded by the orientation of the comet. 
The comet length corresponds to one minute flight. The 
background has an altitude scale. Thus, if we compare the 
altitude of the end with the altitude of the beginning 
of the comet we read the vertical speed in Fts/Min (Figure 11). 

3) ASTER design 2 : technical design 

Figure 12 : ASTER comet 

The designer wanted a slightly different comet, because 
ASTER will be used with an ODS screen, and the controller 
must not confuse the two screens (one code a vertical view, 
the other a top view). 
Due to technological constraints, the first version of ASTER 
could not code old aircraft positions. Thus the designer used a 
texture to display the current aircraft position, the length to 
code the speed and the orientation to code the vertical 
direction. 

4) GLANCE: empirical, prospective design 

Figure 13 : RadarGL comet

This comet is a shape created with the previous aircraft 
positions. To draw this comet, five points are needed. Each 
point has the same color but not the same transparency 
(alpha). A two pixel width border is added around the shape to 
smooth the edges. The color choices are empirical, and 
because the end of the comet blends with the background, the 
last point of the comet is highlighted with a white dot. 
The refresh rate is continuous, the animation is smooth. The 
acceleration is code with the stretching speed of the comet.  
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5) Comet Comparison 

RadarGl and ASTER first design (ASTER design 1 in the 
table)  have a better occlusion resistance. It means that if they 
are many overlapping comet you can still figure out each 
comet? With the ODS and the ASTER second design, the 
comet is created with several entities (texture with holes and 
squares). This is a design misleading with the texture form 
ASTER first design; by analogy with the ODS design, we may 
think that each line is an old aircraft position. 
The comet tendency (direction evolution) in the ASTER 
design can be seen only if we see the transition between two 
comets states, which is unlikely. With the ODS design, the old 
position are always visible and then the tendency. 
The ASTER deep of an aircraft (to the projection line) is 
Quantitative information, but it is coded with the Ordinal 
luminosity which means you may lose some efficiency. 
The comet thickness is not invariant with the zoom, and the 
thickness code the aircraft deep. This is a software mistake 

In a nominal use of ASTER, the zoom ratio remains the same. 

V. CONCLUSION

In this article, we have explored the characterization tools 
available in the InfoVis field, and applied them to rich and 
dynamic visualizations. Whereas Card and Makinley depicted 
some InfoVis visualizations without explicitly demonstrating 
how to use their model, we have shown the practical 
effectiveness of the C&M model in our comparison of the 
ASTER comet and the ODS speed vector. Although existing 
characterization tools are evidently valuable, they are not 
sufficient to characterize emerging data and image dynamics. 
In addition, we have built an exhaustive description of four 
comet designs with the exception of user activity and 
perception. With this strong constraint, we can still make 
comparisons, find design justifications and even detect design 
errors.
This paper describes the first steps toward building a method 
to describe visual entities systematically. In particular, we try 
to characterize them, i.e. to find a precise and compact 
description that unveils differences and allows comparison. 
We seek to answer the following questions: what information 
is displayed on the screen? How many information are 
displayed? How is it displayed? At first sight, it seems that the 
answer is trivial: the information on the screen is exactly what 
the designer wanted to put there when he designed the 
visualization. However, we saw that the answer is more 
complex, as it does not take into account information built up 
from our perception system, or from the dynamic aspect of the 
image. We want to insist on the fact that we do not try to 
assess the effectiveness of different representation. We only 
identify what is displayed and not how well a user perceives it. 
The ability to characterize visualizations would bring several 
benefits to the design process. It would help designers to 
assess their designs, reuse existing designs in new contexts, 
communicate with other designers and write compact and 

unambiguous specifications. The research described in this 
paper is an initial effort to develop a theory-driven approach to 
the characterization of visualizations. 
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Abstract—The objective of this study is to understand the 
cooperation building process within Human-Human 
Interaction (HHI) during Collaborative Decision Making 
(CDM) at a distributed decision making environment 
across objective functions. It is based upon functional HHI 
analysis within typical Air Traffic Management (ATM) 
operation situations.1

In this paper, different flight and turn-round operation 
situations are compared and characterized by: (1) a 
synchronous interaction mode, where all participating 
operators interact with each other at the same time, and 
(2) an asynchronous interaction mode, where the 
participating operators interact with each other at 
different times. In both situations, only HHI which require 
cooperation among operators across different locations 
and objective functions are contemplated. Interactions 
take place through a written text or speech. Task and 
decision making for all situations is distributed between 
operators. The aircraft pilot’s perspective and their 
information requirements during these flight and turn-
round situations are used to identify critical information 
processing during CDM: All situations are usually time 
constrained, change quickly, and require a highly dynamic 
information transfer. Thereby, information sharing for 
decision making can be either homogenous having all 
operators the same information required or heterogeneous 
where information is not equally shared among operators.  

This study relies on a structural model of team 
collaboration, developed for analysis on the cognitive 
mechanisms of CDM, and to handle both synchronous/ 
asynchronous and collocated/ distributed collaboration 
environments like in geographically distributed and time 
delayed situations of the military or flight operation. 

1 This study is conducted with the financial support from 
EUROCONTROL Experimental Centre and FRAPORT Foundation ‚Erich 
Becker’ 

Index Terms—Air traffic management, asynchronous distributed 
collaboration, collaborative decision making, human-human 
interaction 

I. INTRODUCTION 

PDATED from ealier projects in United States, the 
European CDM approach was introduced during field 
trials at selected European airports with the aim to 

achieve cooperation at planning level via information sharing 
and common situational awareness (CSA). However, from 
aircraft pilots’ perspective on current air traffic operation, 
many problems encountered with CDM arise from human-
human interactions (HHI) at action level; whereby HHI at 
action level refer to interactions with a shorter time span and 
less abstraction than HHI at planning level (Hoc, 2000). 
Further problems for CDM operation are conditioned on the 
specific situation of decision making in an asynchronous,
distributed collaboration environment like it can be found in 
ATM operational decision making. Operators like aircraft 
pilots or ground handlers communicate with the operational 
centers of the airlines, ATC, and the airport through speech 
(e.g. via phone or radio) or written text (e.g. via ACARS). 
Hence it will be addressed, how the airport CDM information 
sharing process is influenced by the following variables:  

• Interaction  Mode (synchronous versus asynchronous)
• Information Distribution (homogenous versus 

heterogenous) 
This functional analysis of flight situations also includes micro
level (neural-cognitive) aspects on CDM. Even little 
understanding of operators think during CDM in 
asynchronous, distributed environment exists [25], an analysis 
of HHI within CDM via the perspective of a single operator 
(aircraft pilots) is used in order to cope with the still very 
inadequate mechanisms of collaborative problem solving 
during operators’ decision making. According Ferber [1], HHI 
situations can be classified as antagonistic, cooperative, or 
indifferent depending on three main variable components like 
aims, resources, and abilities, hold by each participating 
operator.  This classification is applied in order to understand 
micro level cognitive aspects of HHI in Airport CDM flight 
operation situations. The advantage of using aircraft pilots as 
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reference group is that there is a non punishment philosophy 
against pilots in dealing with punctuality problems: The 
presently use method of delay assignment intends to find out 
the reason of delay and assign the responsibility to a single 
operator via delay codes. Usually each operator tries to avoid 
assignment of a delay because a pay deduction has to be 
expected.  
In this paper, prototypical HHI situations between all operators 
involved in flight and turn-round operation are introduced. 
They all take place in a distributed collaboration environment. 
Four proposed situations concern the turn-round of aircraft, 
where coordination of processes is necessary; processes 
include parking, ramp side, land side, and special ground 
handling processes. Within these situations, cooperative HHIs 
are mandatory: pilots have to coordinate processes with other 
operators like representatives of the ground handling 
companies, airport, airline, air traffic control, and Central Flow 
Management Unit. Cooperation and decision making is 
distributed between pilots and other operators: Decision 
making for the begin of all turn-round process which are in 
direct relation with the aircraft (e.g. boarding, de-boarding, 
refuelling, cleaning..), is within responsibility of the pilots: 
other operators are concerned with decision making for 
coordination and execution of these processes, and again 
cooperate with each other. While any delayed process start can 
result in an overall delay of the subsequent flight, coordination 
of a standard turn-round (defined as a reference model) is 
usually predetermined.  
During normal turn-round operation, interactions between 
pilots and other operators are usually synchronous.
Coordination of actions takes place via predetermined key 
events (milestones) [8], organized as a sequence of interactions 
between operators within the airport operation centre; if a non-
standard situation like aircraft change, technical repair, 
adverse weather operation, etc. occurs, ad hoc coordination of 
all necessary events via face-to-face communication between 
pilots and ramp agents or via radio/ phone between pilots and 
other operators coordinating from airport operation centre 
takes place. The milestone approach used for CDM, includes 
all events which are necessary for an uninterrupted turn-round 
process, whereby some key events take place already far ahead 
of the turn-round itself. Information distribution during turn-
round is mainly heterogeneous between participating operators 
on action and planning level caused by the information 
dynamics in the highly dynamic environment of the turn-round 
operation and the varying tasks in the different domains itself. 
However, in order to cope with the usually limited time span 
for turn-round operation, CDM targets homogenous
information processing to achieve a CSA between all 
participating operators and to avoid departure delay caused by 
non-standard operation. 
Another four proposed situations concern the flight, starting 
from aircraft leaving the parking position until reaching 
parking position at destination. Coordination here is also 
necessary for departure and arrival sequencing with other 
aircraft, usage of taxiways, airways and airspace/ sectors. It is 
pilots’ responsibility to execute the flight according defined 
rules under consideration of highest degree of safety possible. 

Other operator involved during flight for coordination of 
traffic is air traffic control (ATC) by keeping safe separation 
distance between aircraft and managing air traffic flow by 
issuing clearances to the pilots. The different level of control 
between pilots and other operators like ATC in this situation is 
that ATC has authority about assigning the airspace in form of 
clearances to the pilots and again depend on cooperation from 
pilots, to adhere to these clearances. Decision making is shared 
between pilots and ATC within their domain relative to the 
situational need, but has to be executed under mentioned 
safety constraints. Other operators like the airline company or 
CFMU are only marginally involved in decision making during 
flight operation.  
During flight operation, interactions between pilots and air 
traffic control are synchronous or asynchronous via radio 
during flight through one sector or when ATC issue clearances 
to the pilots; interactions between different ATC sectors can 
also be synchronous or asynchronous, resulting in a non-
coordinated flight through different sectors; interactions 
between pilots and other operators during flight are usually 
asynchronous and distributed. They are coordinated by 
milestone events within the airport control centre. Information 
distribution for clearances concerning airspace and routing is 
always homogenous, while information distribution for e.g. 
reasons of deviations from clearances can be homogenous or 
heterogeneous depending of the impartation willingness or 
time in hand from ATC and aircraft pilots.  
Like during turn-round operation, the highly dynamic 
environment of the flight operation results in high dynamic 
information content. Some information dynamics like 
variations in flight progress occur on standard basis and 
changes are automatically accessible to all participating 
operators via data link transmission. However, non-standard 
information dynamics like operational changes or technical 
issues are transferred by non-synchronized interactions and 
need to be manually transferred between operators. This 
requires cooperation among operators’ interactions and defines 
the need to achieve a CSA among all operators.    

The resulting objectives for the study are: 
• To understand the cooperation building processes of 

the HHI during day-to-day flight operation which are 
necessary in context of an distributed collaborative 
decision making environment across objective 
functions of all operators. 

• To identify the information sharing components 
which should be employed to optimize the CDM 
concept in ATM typical standard & non-standard 
flight situations. 

• To understand how agents can support humans in 
achieving collaborative knowledge during distributed 
collaborative problem solving.  

As a result of study, a new CDM process design will be 
evaluated during quasi-experiments in the natural CDM setting 
at Munich International Airport which aims at achieving 
cooperation of all partners involved. 
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Aims Ressources Abilities 
Type of 
Situation Category 

compatible sufficient sufficient Independence Indifference 

compatible sufficient insufficient 
simple working  
together Indifference 

compatible insufficient sufficient blockade Cooperation 

compatible insufficient insufficient 
Coordinated 
 collaboration Cooperation 

incompatible sufficient sufficient 
pure individual 
competition Cooperation 

incompatible sufficient insufficient 
pure collective  
competition Antagonism 

incompatible insufficient sufficient 
individual 
resource conflict Antagonism 

incompatible insufficient insufficient 
collective 
resource conflict Antagonism 

Figure 1: Classification of Interaction Situations (Source: Ferber, 2001) 

II. THEORETICAL BACKGROUND

In our context of flight operation, HHI are seen as dynamic 
relations between pilots and other operators via a number of 
mutual actions. Each action by one operator has consequences 
which influence the behavior of the prospective behavior of 
the operators. Series of actions form events, and a number of 
events form the turn-round or flight situation (e.g. ATC assigns 
a parking position for the aircraft to the pilots (event) via 
mutual communication usually by two-way radio 
communication (HHI) in a turn-round situation). Ferber [9] 
defines interaction situations as a number of behavioral 
patterns which evolves from a group of agents, who have to 
act in order to reach their targets and thereby have to regard 
their more or less limited resources and capabilities. By using 
this definition, interaction situations can be described and 
analysed, because it defines abstract categories like 
cooperation, antagonism, and indifference via differentiation 
of observed key commonalities and different interaction 
situations. The relevant components for classification of 
interaction situations are the aims and intentions of the 
different agents, the relations of the agents to available 
resources, and abilities of the agents in regard to their assigned 
task. These criteria are used to define different types of 
interaction situations (Figure 1). 

Each type of interaction situation has its own relation 
towards cooperation: In an Indepence situation, no interaction 
takes place and sufficient resources and abilities allow a 
coexistence of operators without any constraint. This situation 
has no relevance for ATM at congested airports. A Simple 
Working Together situation defines a collaboration situation 
which does not require coordination between operators, while 
a Blockade, Coordinated Collaboration, Pure 
Individual/Collective Competition and Individual/Collective 
Resource Conflict are situations which are expected to 
dominate in our contemplated HHI situations. These situations 
require coordination between operators and, depending on 
resources, aims, and abilities, can result in cooperative or 
antagonistic behavior. 

During flight operation situations, HHI are usually not 
binding relations between involved actors and no mutual 

influence is exercised between pilots and other operators; 
therefore social components of the interactions are not 
contemplated.  

According Hoc [12], cooperation can exist within various 
levels in terms of distance from the action itself: A cognitive 
architecture of cooperation model classifies cooperation in 
abstraction level and process time depending on the proximity 
to the action itself (Figure 2). 

Figure 2: Processing Architecture of Cooperation (Source: Hoc 2000) 

For the study of HHI situations, we focus on cooperation (or 
antagonism, if relevant) on action level. At action level, the 
operators perform operational activities related to their 
individual goals, resources, and abilities. Hoc [14] has defined 
four types of activities at action execution level which are 
interference creation (e.g. mutual control), interference 
detection, interference resolution, and goal identification (Goal 
identification also embodies identification of other operators 
goals). Cooperation at action level has short-term implications 
for the activity, as opposed to the more abstract type of 
cooperation at planning level. Interference creation relates to 
the deliberate creation of interactions; interference detection to 
the ability of detecting interferences, especially in non-
deliberate interference situations; and interference resolution 
to the actual interaction in order to find a cooperative solution. 
Mutual domain knowledge is the basis for other operators’ 
goal identification, to facilitate operator’s own task, the other’s 
task, or the common task.  

At planning level, operators work to understand the 
situation by generating schematic representations that are 
organized hierarchically and used as an activity guide [13]. 
Schematic representations include the concept of situation 
awareness [23], and operators’ goals, plans, and meta-
knowledge [13]; therefore current approach to CDM operation 
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in ATM is seen as an approach towards cooperation on 
planning level. De Terssac and Chabaud [7] use the term 
COFOR (Common frame of Reference) as a mental structure 
playing a functional role in cooperation and as a shared 
representation of the situation between operators likely to 
improve their mutual understanding [3]. The topmost level in 
Hoc’s model, the meta-cooperation, as a level developed from 
knowledge of the other two levels, is not contemplated in the 
study.  

Also Piaget [20] distinguishes between cooperation seen 
from structural (e.g. network organization) or functional point 
of view which looks at cooperation as activities performed by 
individuals within a team in real time. Two minimal conditions 
must be met in cooperative situations: (1) each actor strives 
towards goals and can interfere with other actors on goals, 
resources, and procedures. (2) Each actor tries to manage 
interference to facilitate individual activities or common task. 
Both conditions are not necessarily symmetric, because goal 
orientation or interference management depend on individual 
behavior or time constraints. 

Hoc [12] argues that current air traffic management (ATM) 
is more concerned with operators’ plans, goals, or role 
allocation instead of common situational awareness. But Lee 
[17] determines situational awareness, responsibilities and 
control, time, workload, and safety constraints as key factors 
driving collaborative behavior in air traffic control operation: 
To have proper awareness of the situation, a controller and/or 
pilot needs to initiate or be informed of actions taken by other 
operators. But time pressure and safety issues have negative 
effect on communicative behavior and therefore also 
cooperation or common situational awareness.  

Share of responsibility and control are often different but 
determined through situation (e.g. air traffic controllers issue 
clearances which have to be executed by pilots). Nevertheless, 
the more assistance, the more anticipative the mode of 
operation in controllers and the easier the human-human 
cooperation [13].  

Collaborative Decision Making means applying principles 
of individual decision making on groups, whereby groups are 
established with the aim to show collectively a specific 
behavior [15]. This implies that cooperation of participating 
individuals should be beneficial for CDM operation, also in air 
transport management.  But how does cooperative work look 
like at day-to-day basis? Cooperation has a wide variety of 
connotations in everyday usage [24]. Do people only 
cooperate, if they are mutually dependant in their work or is 
mutual dependency sufficient for cooperation to emerge? In 
context of CDM operation, confrontation and combination of 
different perspectives of cooperation is an issue: how is pilot’s 
perspective embedded in the current CDM approach? For 
Schmidt [24], the multifarious nature of the task can be 
matched by application of multiple perspectives on a given 
problem via articulation of the perspectives and transforming/ 
translating information of different domains.  

The challenge of CDM operation in ATM is the unique 

cognitive mechanisms in a distributed and highly dynamic 
environment like it can be found in flight operation. Similar 
situations can be found in military teams with asynchronous, 
distributed teams for mission planning and mission execution, 
but in general it is a relatively new area [16]. Other domains 
which have related aspects to asynchronous distributed 
collaboration are not contemplated. Warner [7] describes the 
major factors impacting  collaboration which are the 
collaborative problem environment, operational tasks, 
collaborative situation parameters, and team types (Figure 3).   

Figure 3: Problem Area Characteristics for Collaboration (Source: 
Warner, 2003) 

His structural model of collaboration focuses on team 
decision making, course of action selection, developing shared 
understanding, and intelligence analysis. Thereby, various 
parameters can influence the collaboration performance [26]. 
The collaborative decision parameters can be adapted to fit the 
specific environment of CDM in other domains using the 
respective characteristics under operational tasks,
collaborative situation parameters, and team types.  Werners’ 
structural model of team collaboration uses the minimum 
number of unique stages identified in team collaboration 
literature and the results from a Collaboration and Knowledge 
Management Workshop (Figure 4). 

  Figure 4: Structural Model of Team Collaboration (Source: Warner, 2003)

Problem Area Characteristics 

Collaborative Situation Parameters:

 time pressure 
 information/knowledge  
  uncertainty 
 dynamic information 
 large amount of knowledge  
  (cognitive overload) 
 human-agent interface  
  complexity 

Team Types

 asynchronous 
 distributed 
 culturally diverse 
 heterogeneous knowledge 
 unique roles 
 command structure  
   (hierarchical vs. flat) 
 rotating team members 

Operational Tasks

 team decision making 
 develop shared understanding 
 intelligence analysis 
   (team data processing)

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9274



This structural model is based on the meta cognitive processes 
of an information processing and communication approach. 
For Davidsen [24], meta cognition is the knowledge of one’s 
own cognitive processes in explaining how human cognitive 
processes are used for problem solving. According Werner, 
there is ‘no generally recognized unified theory of human 
cognition’. By implementing Ferbers’ component approach, a 
micro level cooperation perspective is applied into the 
structural collaboration model. This approach allows to adapt 
the structural model of team collaboration to an distributed 
decision making environment under consideration of decision 
making across objective functions (e.g. like Airport CDM). 

III. METHODS

A methodological approach is used for the analysis of the 
cooperative mechanisms within HHI. First, all flight & turn-
round situations which are seen as critical for CDM operation 
in terms of punctuality are determined via in-depth interviews 
with senior commanders of different airlines. All situations 
were decomposed in elementary activities and thereafter 
grouped into event classes. The classes within turn-round 
situations include the subclasses gate assignment, standard 
ramp services, standard land-side services, and non-standard 
turn-round services. Flight situations include the subclasses 
clearance variations ‘ground’, clearance variations ‘flight’, 
information processing, and information forwarding. Some 
event classes have only one possible event as problem cause.  

For each event class, the collaboration stages analogous 
Werner’s structural model were identified. To understand how 
participating operators think during each stage, a self-
administered questionnaire was developed which aims to get 
knowledge about information processing (meta-cognitive 
level) and interaction components (micro cognitive level) 
between participating CDM operators within distributed 
collaborative decision making. All questions were designed 
from the perspective of the airline pilots as members of 
distributed airport collaborative decision making. 
(Perspectives of other operators could also usefully be 
researched). As reported by airline pilots, all event classes 
have critical elements concerning collaboration. Therefore the 
questions are designed to find the most problematic stage 
within the collaboration process.   

Team Knowledge Base Construction is the first stage in 
team collaboration and includes steps like identifying relevant 
domain information, selecting team members, setting up the 
communication environment, individual team’ members own 
mental model of the situation, and developing individual and 
team task knowledge. In ATM, information processing is 
established in day-to-day operation via various communication 
modes like phone, ACARS, or radio. Whereby, agreed 
methods of information sharing or filtering are established 
among all operators within the airport operation centre, while 
information sharing between distributed operators like airline 

pilots or air traffic control is not taking place on an agreed 
standard. Therefore, an overall cognitive process of how to 
understand elements, relations, and conditions that compose 
the emerged problems, is not established among operators 
(meta cognitive), even some operators may have a mental 
model of situation parameters and their relationship. The 
airline pilots as operators of distributed site are asked to state, 
if information sharing for this stage is seen as sufficient for 
knowledge building and how important information sharing is 
for them. No further details like how or which information 
should be collected, how to understand problem task, or how 
communication mechanisms should be established, are 
analysed at this stage of research. 

For the stage of Collaborative Team Problem Solving a 
closed-end question is designed to again catch the overall 
airline pilots’ perspective from distributed participation in 
CDM. This stage can only successfully be accomplished, if a 
shared situational awareness of the emerged problem exists, 
because it builds on the identified and understood problem 
among all operators. This stage starts after information are 
processed among operators and has the aim to find a viable 
problem solution. Since each participating operator has its’ 
unique domain constraints, the definition of a global goal and 
solution alternatives among all operators is the challenge for 
this collaboration stage. For the functional analysis, an 
approach at micro cooperation level is pursued and questions 
are developed analogous Ferbers’ component model, which 
are commonality of aims among participating operators, 
amount of resources available, and ability of function to 
perform assigned task. All three components together form 
different interaction categories and give evidence about 
cooperation (or antagonism). 

The stages of Team Consensus and Outcome Evaluation 
and Revision will not be used for this first phase of research.   

The components from Ferber [9] which classify the 
interaction situations are: 
• Compatibility and Incompatibility of aims: Effect on 

cooperation can be negative, if aims are not compatible. 
Therefore critical activities during turn-round and flight 
are questioned for possible conflicting goals between 
pilots and other operators.  

• Availability of resources: Resources are limited, therefore 
conflicts can arise which result in disturbances of HHI. 
Increasing airport congestion and abridged turn-round 
time of aircraft contribute to possible shortage of 
resources and result in reduced latitude of action or even 
individual competition between operators. Questions are 
out to test, if resources in terms of the time available for 
ground processes are aligned with the operational and 
safety requirements. Current approach on CDM operation 
is an attempt to challenge resource constraints via 
coordination of actions.  
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In this context, information is also seen as a resource
which has to be available to each operator in order to 
execute individual task: Information has to be shared 
between pilots and other operators to achieve common 
situational awareness. Initial data from interviews relate 
numerous problems regarding to cooperation on failures in 
information sharing. A number of elementary activities/ 
events are used to obtain data about possible reason for 
failed cooperation and effects on flight punctuality caused 
by information sharing problems. Questions are out to test, 
if there is a relation between failures in information 
sharing and delay (departure or arrival delay). Failure is 
seen, if a part of information is missing or if information is 
not delivered on-time.  

• Ability of operators in relation to their assigned task: It 
can not be assumed that knowledge and abilities of 
operators are automatically sufficient for executing 
assigned task. This is of course also appropriate for pilots, 
but it is unlikely to get realistic results from questioning of 
pilots, if the person asked has to determine or admits its’ 
own inability. On the other hand it is unlikely that pilots 
are familiar with all other domains involved and can 
determine necessary abilities from other operators. 
Therefore only random questions are out to test pilots’ 
perspective in a few events like failed information sharing 
or unpunctual process execution.  

Finally, semi-structured in-depth individual interviews with 
further representative commanders will be conducted to clarify 
the content of the questionnaire results. This is necessary to 
capture the meaning behind the essential results and to 
understand operators’ attitude towards cooperation.  

IV. DEMONSTRATION

Data collection is still ongoing, only primary results are 
available to demonstrate usefulness and applicability of the 
survey.  

A. The Environment of the Cockpit 

Activity analysis on flight decks of commercial aircraft 
shows two pilots sharing flying and other duties like 
communication with ATC, monitoring flight instruments and 
all other tasks necessary. While pilot flying is responsible for 
steering and navigation of the aircraft, pilot not flying 
disburdens him with all other duties necessary in order to 
maximize safety by clear task sharing, since primary 
responsibility of the pilots is to steer the aircraft from 
departure to destination airport under maximum possible 
safety considerations.  

In various situations they encounter interactions and 
interrelations with other actors involved in ATM operation. 
Flight relevant and operational information is shared with 
them.  

The environment of the aircraft specifies a special case of 
decision making: the commander of the aircraft has the 
topmost responsibility of all decision making on board the 
aircraft. This can be compared as decision making with an 
individual decision maker and a group of advisers. He can 
either use his position to listen to his various advocates of 
different positions or actions or execute a structured analysis 
by the use of help from experts or advisers (airline company, 
ATC, ground handlers….). It is his final responsibility to 
identify key uncertainties in decision making and either adhere 
to objectives for the organization or his personal goal. 
Conflicts can arise through levels of authority and 
responsibility between advisers and the cockpit. Further losses 
of efficiency in this kind of decision making may result from 
other players’ interactions, lack of information or limited 
ability of decision making. The advantage from this individual 
decision making is that a group of advocates is involved and 
therefore has more resources available [21]. Decision making 
seen from cockpits’ perspective is also distributed since a 
number of decisions necessary for the flight operation remain 
in responsibility of the advisers (ATC, airline company, 
airport….).  

Figure 5 shows a typical flow of HHI from cockpit’s 
perspective identified from own experience: Aims, resources, 
and abilities form the basis for information exchange, decision 
making, and possible negotiation. Information exchange again 
is the basis for common situational awareness and coordination 
among operators. Decision making anticipates information 
exchange among actors which can also be used for mutual’s 
goal identification. 

Figure 5: Cockpit’s Perspective of Human-Human Interactions in ATM 
(Source: Own Illustration)  

B. The Collaborative Decision Making Approach in ATM 

The basic Airport CDM includes Airport CDM Information 
Sharing and the CDM Turn-round Process as a requirement 
for all subsequent airport CDM applications. Information 
sharing uses existing infrastructure at airports, but combines 
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data from different sources and operators. Quality of 
information at each phase of flight is determined by defined 
rules in order to establish a common situational awareness 
between all operators involved.  

The Milestones Approach defines the airport CDM turn-
round process which links the flight and ground segments via a 
set of milestones in the aircraft turn-round process, ranging 
from planning of the inbound flight until the take off of the 
flight at the subject airport. Each milestone is monitored and 
allows participating operators to identify possible deviations 
from schedule by the use of an alarm system.  

Subsequent Airport CDM levels are the Variable Taxi Time 
Calculation and the Collaborative Management of Flight 
Updates (Level 2). Variable taxi time calculation aims the 
introduction of a realistic taxi time in order to increase 
punctuality and slot adherence. Collaborative management of 
flight updates aims an improved operation and flexibility by 
slot swapping and slot shifting to take aircraft operators’ 
preferences into account.  

A Collaborative Predeparture Sequence (Level 3) aims to 
replace the present ‘first come first serve’ practice by 
consideration of aircrafts’ and airport operators’ requirements. 
[8]. 

C. Shared Situational Awareness between Pilots and Other 
Operators 

Technological advances now allow communication and 
collaboration without being physically together. ATM systems 
today have adopted these technologies; however the highly 
dynamic environment of flight operation requires a fast and 
flexible adaptation to the changed situation. CDM is an answer 
to tackle problems with the short time span in hand for 
decision making, but no procedures are established to include 
interactions with airline pilots as standard CDM process. 
ACARS, phone, or radio are in place as possible collaboration 
support tools for synchronous or asynchronous decisions 
between airline pilots and other operators to contribute to the 
information sharing/ knowledge building process. Current 
approach to information sharing/ knowledge building is the 
issue of a Target Start Up Approval Time (TSAT) and a 
Target Off Block Time (TOBT). TSAT is a reference start up 
time for coping with air space constraints, TOBT has airport, 
airline and turn-round constraints as determining factors. Both 
should match as close as possible and be communicated to 
distributed decision makers. Constraining factors from airline 
pilots are not considered for calculation of TOBT or TSAT. 

D. Critical Human-Human Interactions  

30 pilots from different airlines were asked during 
unstructured questionning to name processes with problems in 
regard to HHI during day-to-day flight and turn-round 
operation. From all mentioned examples, a number of nine 
situations were defined and figure 6 provides an overview of 
critical HHI as reported by the airline pilots. The situations do 
not have any statistical relevance in terms of importance or 
frequency; the aim was to find a wide spectrum of possibly 
critical HHI.  

Figure 6: Critical Information Sharing Situations (Source: Own Data 
2007) 

E. Responsibility and control allocation between pilots and 
other actors 

‘The allocation of functions between humans and machines is 
a very old topic in human engineering’ [14]. Function 
allocation in terms of responsibilities and control has been 
identified as key factor for collaborative human-human 
behavior in ATM [17].  

While air traffic controllers are responsible to separate the 
aircraft during flight, the responsibility of the pilots is the 
safety of the aircraft. The environment of the aircraft is a 
special case of interaction mode: final decision making on 
board of the aircraft is not shared between equitable partners, 
but is in the hand of the captain of the aircraft. Other actors 
take the role of advisers for an individual decision maker. 
Nevertheless all actions and decisions are obligatory on 
achievement of safety. The captain may either use his position 
to listen to his various advocates of different positions, or 
executes a structured analysis by the use of help from experts 
or advisers (airline company, air traffic control, ground 
handler…) It is his final responsibility to identify key 
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uncertainties in decision making and either adhere to 
objectives for the organization or his personal goal.  

The research shows that antagonistic or cooperative 
behavior can arise through different levels of authority and 
responsibility between the captain and his advisers [21]. 

Responsibilities on ground are shared among actors: the 
flight manager is responsible for boarding and check-in 
processes, ramp agent for delivery of flight documents and 
other operational information. To achieve cooperation, all 
actors should have the same aim [14] which implies that HHI 
take place between equitable partners.  

F. Modes of Information Sharing in Pilot – Other 
Operators’ Relationship  

Central concern of CDM is information sharing and 
common situational awareness. Many studies have been 
devoted to information sharing at the airport control centre of 
CDM participating airports, but no focus has been made on 
exchange of information to the cockpit or receiving 
operational information from the cockpit.  

Information sharing between airline pilots and other 
operators involves human activities, but as fare as humans are 
involved for information provision and creation, failures may 
occur and have obvious consequences on reliability [19]. 
Pilots were asked to identify different classes of information 
failures during all phases of turn-round and flight. From 
cockpit perspective, the main concern is how information 
sharing and common situational awareness between flight 
crews and ground parties is accomplished in order to achieve a 
predictability and punctuality during flight and ground 
operation. It has to be addressed:  
• How all necessary information is delivered to the cockpit 

or weather it is jammed at any interface.  
• If necessary information delivered on time.  
• How the information, forwarded from cockpit, is handled 

by other actors.  
• How much delay is encountered, if information delivery is 

late or not executed?  
• Which information not delivered has the greatest risk of 

producing delay.  
• Which information, forwarded by crew, has greatest risk 

of producing delay?  

G. Time Constraints  

Time pressure can have opposite effect on cooperative 
behavior. During peak traffic and short turnaround, pilot 
workload is very high for several reasons: Available time for 
coordination of necessary ground handling processes on 
ground is short or voice congestion over busy radio frequency 
demands high attention. Any failures in coordination or any 
retarded process on ground holds the risk of encountering 
delay. During flight on busy frequencies, issued clearances by 

air traffic control need to be executed promptly and often no 
time is left for negotiation. Especially during approach, high 
workload does not leave much time to gain situational 
awareness. Air traffic controllers’ constraints are normally not 
visible to the pilot, but also controllers’ time is very limited 
during busy approach hours, and therefore not much time is 
left, to share situational constraints or negotiate with the pilot. 
Especially in these situations, controllers depend on 
cooperation from pilots. 

V. CONCLUSION

The analysis of micro level cooperative elements 
represented by the airline pilots’ perspective within a 
distributed collaborative decision making environment across 
objective functions, is the first attempt to implement individual 
group members think into a structural decision making model 
within the domain characteristics of ATM operation. This 
study is expected to be useful, because the distributed CDM 
environment shows unique interaction characteristics and 
therefore requires a focus on operators’ thoughts. The airline 
pilots’ perspective is chosen because a non-punishment policy 
for pilots when causing flight delays is in place, opposite to 
other operators who have to expect pay deductions. De 
Ferbers’ interaction classification identifies potential non-
cooperative flight situations and results from questionnaire 
will be used for the design of experiments and possible further 
interactions in form of negotiations between operators. 
Experiments will also include modifiaction of interaction e.g. 
via representation models. The unique situation of individual 
operators’ objective function distinguishes decision making in 
ATM from decision making in other environments like e.g. 
military. 

Further outcomes of the study are expected to include 
empirically based elements or design characteristics for 
collaboration in a distributed decision making environment 
across objective functions including information processing 
components. Empirically gained data will be used for 
development of an agent support in airside flight operation 
situations.  
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Abstract— The management of uncertainty is a recurring theme 

in Air Traffic Management and in understanding the way 

operators accomplish their objectives in a complex, dynamic 

environment. The current study reports on the verbal 

communication processes of crews and controllers during the 

approach flight phase and faced by uncertain situations. A 

conversation analysis of six (6) accident transcripts was 

conducted, with dynamic environmental interactions as a 

complexity factor. The results are presented in the forms of 

correlations among factor pairs. Results indicate a large 

variation (5.46%-32.09%) of the detection of uncertainty across 

accidents. Air Traffic Control and Ground Services 

(ATC/Ground) rarely initiated problem-solving exchanges (7%) 

in uncertain situations, as compared to crews (93%). Crews 

initiated 80.6% of problem-solving exchanges based on the direct 

perception of environmental cues while ATC/Ground initiated 

19.4% of exchanges based only on indirect cues. Finally, our 

results indicate that ATC/Ground account for 68.8% of 

overlapping and 88.9% of compounded verbal exchanges. We 

conclude that the response to uncertain situations arising from 

hazardous conditions seems to correlate with a management by 

crews on approach. The effective transfer of uncertainty cues 

between crews and controllers does not appear to correlate with 

collaborative and communicative practices. 

Keywords- Uncertainty; Adaptation; Environmental Hazards; 

Verbal; Conversation Analysis; Air Traffic Management. 

I. INTRODUCTION

The ability to detect and adapt effectively to uncertainty in 
naturalistic situations is a crucial requirement for preserving 
the control of a system faced by dynamically changing 
environmental factors. In a divided labour setting, the detection 
and reaction to uncertain situations by an operator, often 
involves the heedful interrelating of one’s own work to that of 
others [1]. This interaction between system entities occurs 
differently, depending on the work setting where they are 
placed – thus, operators working within a proximal physical 
space can use the full variety of verbal and non-verbal 
communicative abilities. Conversely, operators located far 
from each other can communicate verbally through technology, 
although with perceptually impoverished cues.  

Verbal communication between pilots and controllers 
during the approach flight phase is one of the main perceptual 
means of interaction. The verbal exchanges consist of task-
related information accompanied by coordinative cues to allow 
both teams to work synchronously [2]. In uncertain situations, 
the effectiveness of verbal interactions can be negatively 
affected due to the quality of the radio-link, the informational 
efficiency of the message and also by the informative 
effectiveness of the message. While the quality and efficiency 
of exchanges have been addressed by much research (cf. [3-
10]) the role of effective verbal interactions on approach needs 
to be clarified. 

For verbal information to be effective, it needs to relate 
succinctly with its context of use [11]. Thus, an effective 
message does not supply more or less information that is 
required and subsequently, the message sender needs to 
understand the context within which the information will be 
integrated. The current study investigates the collaborative 
effectiveness of crews and controllers by analysing the 
messages they address to each other during uncertain 
situations. Due to the wide variety of factors which can lead to 
uncertain situations, we chose to focus on some specific 
interactions with the environment – the relationship of weather 
to other approach factors such as runway choices, checklist 
executions and plan changes are of interest. 

II. HAZARDOUS SITUATIONS IN ATM

The qualification of a situation as being hazardous is 
considered from two perspectives, namely in hindsight and in 
foresight. Accidents and incidents are an undesirable state of 
the ATM system and indicate with a high degree of certainty 
that a hazardous situation might have been present. In 
retrospect, the contributory causes of occurrences (accident 
and/or incident) can be determined by measuring the 
performance variability of different parts of the system with 
respect to accepted safety standards. However, the analysis of 
occurrences tends to provide a picture of performance 
variations which can readily be deemed hazardous even though 
the same performances also contribute to effective ATM 
operations, on a routine basis [12]. 
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In foresight, the determination of a situation as being 
hazardous cannot be objectively defined using a fixed set of 
criteria. Risk analysis addresses this problem by mapping 
known system interactions into complex linear models. 
However, linear models such as event and fault-tree analysis 
cannot represent factorial interactions which do not exist a-
priori [12]. Therefore, more powerful models which allow 
dynamic relationships to be represented have been proposed 
such as the Functional Resonance Accident Model (FRAM) 
[13]. According to the FRAM safety hazards may arise when 
separate functions which are designed to tolerate a range of 
performances, resonate with each other. This interference 
might be gradual (such as the slow erosion of approach 
procedures), or abrupt (for instance, a dynamic wind direction 
change late on approach) but can potentially lead to incidents 
and accidents. 

III. MANAGING UNCERTAINTY ON APPROACH

Two main ways by which organisations which face 
significant safety-risks handle uncertainty, are described [14]. 
The first is to try and minimise uncertainty at work and the 
second tries to teach workers to respond effectively to 
uncertain situations when they arise. These approaches have 
very different implications. 

A minimisation of uncertainty approach mainly deals with 
the adequate positioning of safety barriers within the system. 
Highly procedural work settings such as ATC and piloting 
consist of an enormous amount of rules, regulations and 
physical constraints to dampen the variety of the complex 
environment such that control is preserved over flight 
operations. Pilots and controllers are formally trained to 
comply with constraints, primarily as a means of preserving the 
predictability of the system, and hence its safety. In the event 
of unexpected situations, pilots are instructed to execute the 
appropriate remedial procedures, as and if provided in their 
operations manuals. It is to be noted that such procedures 
mainly relate to mechanical failures and not psychological 
issues occurring in the dynamics of the group. It should also be 
noted that the execution of a procedure entails first of all, an 
adequate diagnosis which is carried out by the crew members. 
Hence, given the wrong diagnosis, not only will the remedial 
measures prove to be inadequate, but the ensuing effects of 
those measures will be imputable to the captain.  

Despite the large amounts of constraints presented by the 
minimisation of uncertainty approach, expert controller and 
pilot teams often deviate from procedures as a means of 
achieving expected performances [15]. The need to remain 
flexible to an uncertain environment forms the core of the 
second approach: adaptation to uncertainty. This approach 
levies some of the system control from the blunt end of 
organisation and relies on the local competences of operators at 
the sharp end, to cope with uncertainty. This approach is core 
to the socio-technical design principle of handling variances at 
their source (cf. [16]). Figure 1 shows some basic principles for 
managing uncertainty in organisations. Instead of a choice 
between the two approaches for managing uncertainty, a 
compromise or balance forms the target. The feed-forward 
control approach and the feedback control approach each have 
their own advantages and disadvantages which need to be 

addressed by organisations that wish to remain adaptive at the 
sharp end although retaining enough control at the blunt end 
[17]. 

Figure 1. Basic Principles of Uncertainty Management Arising from 
Organisational Design [17]. 

IV. ANALYSIS OF VERBAL INTERACTIONS

During the approach flight phase in ATM, the verbal means 
of communication between crews and controllers is primarily 
used for co-ordinating actions. The informational structure of 
verbal exchanges needs to abide by standard aviation 
phraseology, although exceptions are tolerated [18]. The radio 
communication protocol is sequential in nature between any 
two operators, because radio communications are half-duplex – 
simultaneous voices can still be heard on the radio channel to 
produce the commonly called ‘party-line’ effect. Verbal 
exchanges can also be seen as sequential according to turn-
taking models of speech – such models regard simultaneous 
exchanges as a communication breakdown which informs us 
on the situation at a moment in time [19].  

Conversation Analysis (CA) [20-24] builds upon the rich 
work in Speech Acts [25] to provide a theoretical framework 
for analysing verbal interactions. CA considers a number of 
properties of verbal exchanges to hold tacit information about a 
scenario [26]. The temporal delays which underlie 
communication handovers among humans, the stutters which 
are believed to underlie an uncertain mental state and the 
frequent verbal repetitions which might denote a sense of 
urgency are some of the verbal properties analysed. The 
methodology claims to provide detailed analytical accounts, 
while preserving the context of the verbal data [24, 27].

Nevile describes verbal mechanisms which are frequently 
recurrent across incident/accident investigation reports as 
providing a useful starting point for analysing the activity 
patterns of air-ground teams. Nevile and Dekker both propose a 
detailed CA of Cockpit Voice Recorder (CVR) data as a means 
of understanding the activities of crews and controllers [27, 
28]. The limitation of this approach is seen to arise from the 
provision of original CVR data such that rich sound cues can 
be transcribed. Indeed, most CVR transcripts exclude subtle 
cues such as the tonal variations and word accents in sentences 
which conversation analysts treat as semantically significant. 

V. METHODOLOGY

A Conversation Analysis of CVR and investigative data 
from six (6) aviation accidents was performed. Two aviation 
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incident and accident databases were chosen as a means of 
providing our data – the similarity of reporting formats justified 
this choice. The databases are the National Transportation 
Safety Board (NTSB), in the United States and the Bureau 
d’Enquêtes et d’Analyses (BEA), in France. Table I shows the 
selected sample of accidents. 

TABLE I. SELECTED SAMPLED OF ACCIDENT REPORTS

Case Name Location Description

5N-MAS Istres, FR Loss of engines during flight 
F-GRJS Guipavas, FR Impact with ground obstacles after 

landing
N215AA Arkansas, US Runway overrun during landing 
N497FE Florida, US Collision with trees on final approach 
N963AS California, 

US
Loss of control and impact with Pacific 
Ocean

N999UA Colorado, US Uncontrolled descent and collision with 
terrain

Although CA explicitly renders the cues which are 
obfuscated in verbal data, its ability to generate thematic 
patterns is limited. In this study, conventional qualitative 
analysis techniques were use to regroup semantically relevant 
information. Table II shows the qualitative codes used in this 
study and the categories under which they were regrouped. The 
references obtained for each code are then counted and a 
correlation table drawn to build the relationships among co-
incidental factors. For instance, references to the ‘Interruption’ 
category and the ‘Information Repair’ category might correlate 
to reveal that further causal investigation of the factor pairs is 
required.

TABLE II. CODING CATEGORIES, CODES AND DESCRIPTIONS

Code

Category

Code Description

Familiarity Colloquialism, 
Exclamation,  
Expletive.

The level of familiarity expressed 
by crews and controller. 

Cue
Perception

Direct Perception 
Indirect Perception 

Environmental Perception. Direct 
perception is visual. Indirect 
perception is relayed verbally 
through ATIS, ATC or cockpit 
member. 

Information 
Repair

Compounded 
Exchange
Repeated Exchange 

Compounded are multiple items of 
information stringed into one 
exchange, before turn is over. 
Repeated are requests which have 
been announced before. 

Interruption Overridden Subject 
Subverted Subject 
Overlapping Turn 

Overridden is when the subject of 
an exchange is completely 
changed. Subverted is when the 
original turn subject is lost at the 
end of the conversation. Overlap is 
when there is less than a second of 
delay between messages. 

Non-Verbal
Feedback

Effort 
Laughter
Mechanical

Efforts are cued by heavy breathing 
noises on the microphone. Laughter 
is cued by 'haha' variants and 
'chuckles' on the microphone. 
Mechanical feedback are alarms, 
alerts, clicks, beeps, and any other 
sound referred as emanating from 
machines. 

Problem Pilot Flying (PF) Person initiating a problem-solving 

Initiator Pilot Non Flying 
(PNF)
ATC/Ground

exchange. Machine initiations are 
situations where alarms initiate a 
reaction of the persons' exchanges. 

Uncertainty Level of Uncertainty Level of uncertainty are cued by 
hesitation marks such as 'err', 'hum' 
and explicit remarks such as 'I don't 
know', 'I'm not sure', 'Maybe', etc. 

VI. RESULTS

The 6 qualitatively analysed sources generated a total of 
1407 coding references. A correlation table was drawn using 
the initial codes from Table 2 to determine the relationship 
between different factors. Factor combinations are presented 
below, with examples of how and when they occurred. 

A. Problem Initiator 

The system entity initiating a turn can take the form of 
either a human or a machine – in certain situations, an alarm 
initiates a problem-solving exchange among the Pilot Flying 
(PF), Pilot Non Flying (PNF) and controller. In the sources 
analysed, the PF was seen to initiate the most problem-solving 
exchanges (38.4%). PNF initiated about 26.1% while ATC and 
ground operations about 35.5%. Machine initiated exchanges 
were the least at about 3%. Table III shows the results in 
summed form.  

TABLE III. PARTY INITIATING A PROBLEM-SOLVING EXCHANGE

Party Initiating an Exchange Sum 

Pilot Flying (PF) 78
Pilot Non-Flying (PNF) 53
Air Traffic Control (ATC) / Ground Services 66
Machine 6

The larger number of exchanges relating to problem-
solving in the cockpit (67.5%) is an important relationship 
although the nature of CVR presents more data concerning 
cockpit conversations than ground exchanges. Further 
interactions are analysed below to understand problem-solving 
exchanges and uncertainty management. 

B. Uncertainty and Problem Initiator 

Verbal exchanges denoting a sense of uncertainty were 
present across all sources for a total of 258 references. The 
percentage of uncertainty references was not homogeneous 
across sources, as shown in Table IV and denotes some 
fundamental differences in the development and perception of 
hazardous situations. 

TABLE IV. UNCERTAINTY REFERENCES IN SOURCES

Source Sum % 

N963AS 71 32.09 
F-GRJS 23 5.46 
N215AA 52 26.86 
N999UA 10 6.56 
N497FE 28 24.52 
5N-MAS 74 10.80 

The lowest modes were for F-GRJS (Impact with ground 
obstacles), at only 5.46% and N999UA (Uncontrolled descent), 
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at 6.56% of problem initiations with uncertainty. Both of these 
accidents are characterised by a relatively quiet and non-
eventful series of verbal exchanges, until the last minute before 
the impact.  

TABLE V. UNCERTAINTY AND PROBLEM INITIATION

Party Initiating an Exchange Sum 

Pilot Flying (PF) 14
Pilot Non-Flying (PNF) 26
Air Traffic Control (ATC) / Ground Services 3

To understand the role played by operators during uncertain 
situations, we cross-tabulated the uncertainty information from 
the sources with the person initiating a problem-exchange. 
Table V shows the sum of references when an operator was 
initiating a problem solving exchange and a situation was 
deemed uncertain. In uncertain situations, the PNF was seen to 
initiate the majority of problem-solving exchange (60.5%); the 
PF initiated 32.6% of exchanges. Finally, the controller 
initiated only about 7% of exchanges during uncertain 
situations – in many references, these problem-solving attempts 
by the controller occurred after the crew had displayed a level 
of uncertainty, verbally. 

C. Familiarity and Problem Initiator 

TABLE VI. FAMILIARITY AND PROBLEM INITIATOR

Party Initiating an Exchange Sum 

Pilot Flying (PF) 11
Pilot Non-Flying (PNF) 11
Air Traffic Control (ATC) or Ground Services 1

The inter-personal relationship among team members plays 
a significant role in determining information flows namely 
during hazardous situations. We observed an equal number of 
problem-solving exchanges (47.8%) for both the PF and PNF, 
while addressing each other using familiar terms. Air to 
Ground displays of familiarity only occurred once throughout 
all the accidents analysed. 

D. Problem Initiator and Cue Perception 

TABLE VII. PROBLEM INITIATOR AND ENVIRONMENT CUE

Party Initiating an Exchange Direct Cue Indirect

Cue

Pilot Flying (PF) 6 6
Pilot Non-Flying (PNF) 11 2
Air Traffic Control (ATC) / Ground Services 0 6

The perception of visual cues is often a verbally described 
event, namely when the crew is engaged in problem-solving 
activities. We observed that the PF and PNF combined, 
perceived about 80.6% of all cues which relate to problem-
solving exchanges. Comparatively, ATC and ground services 
perceived about 19.4% of cues relating to problem-solving – all 
cues found for controllers were indirect, given their location 
within approach centres, and in indirect contact with the 
external environment. 

E. Compounded Exchange and Problem Initiator 

TABLE VIII. COMPOUNDED EXCHANGE AND PROBLEM INITIATOR

Party Initiating an Exchange Sum 

Pilot Flying (PF) 0
Pilot Non-Flying (PNF) 1
Air Traffic Control (ATC) / Ground Services 8

Compounded exchanges occur when a system entity 
provides multiple items of information within the same verbal 
turn. This is thought to lead to longer verbal exchanges. In the 
sources analysed, we observed that PF and PNF engaged in the 
least amount of compounded exchanges (11.1%), as compared 
to ATC and ground services (88.9%), during problem-solving 
exchanges.

Effectively compounded exchanges can minimise the cost 
of VHF-occupancy. However, ineffectively compounded 
information could lead the receiving party to initiate a turn-
repair by requesting for the information to be repeated. 

F. Overlap and Problem Initiator 

TABLE IX. OVERLAP AND PROBLEM INITIATOR

Party Initiating an Exchange Sum 

Pilot Flying (PF) 2
Pilot Non-Flying (PNF) 3
Air Traffic Control (ATC) / Ground Services 11

Overlapping exchanges occur when a verbal turn is taken 
before the previous one is finished. In the sources analysed, 
turns were recorded mainly at a ‘second’ resolution such that 
overlap could only be inferred when they occurred within a 
second. However, some instances of human conversation can 
be less than a second such that two turns are taken at the same 
recorded time, but are actually sequential. We have taken this 
limitation into consideration and observed correlations with the 
entity initiating a problem-solving turn and the number of 
overlaps. PF and PNF have less overlapping turns (31.25%) 
than ATC and ground services (68.75%). This is thought to 
occur mainly because ATC requests are initiated, regardless of 
the ongoing conversation among the crew, due to the absence 
of perceptual cues between air and ground. 

VII. CONCLUSION

This study showed a number of interactions among human 
and environmental factors on approach and in hazardous 
situations. We conclude that a number of those relationships 
are worth being investigated as potential, causally related 
factors. The uncertainty displayed verbally within the cockpit 
varies greatly (5.46%-32.09%) and correlates with a similar 
variation of cues indicating an uncertain event – however, all 
those situations are known to have ended in fatal accidents. The 
relative low frequency of ATC/Ground initiated problem-
solving exchanges (7%) as compared to crews (93%) needs 
clarification since our correlation favours cockpit-occurring 
conversations. Crews were also seen to initiate 80.6% of 
problem-solving exchanges based on direct environmental cues 
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while ATC/Ground initiated 19.4% based only on indirect 
cues. Finally, ATC/Ground initiated exchanges correlated with 
68.8% of overlapping exchanges and 88.9% of compounded 
verbal exchange. 

Finally, the limitations of this study are seen to arise mainly 
from two factors: the availability of original CVR data and the 
cockpit-centred perspective of verbal exchanges between air 
and ground teams. A further study of collaborative practices 
centred at approach centres and analysing controller problem-
solving during uncertain situations is currently under way. 
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Abstract—The increasing span of control of Air Traffic Control 
enterprise automation (e.g. Flight Schedule Monitor, Departure 
Flow Management), along with lean-processes and pay-for-
performance business models, has placed increased emphasis on 
operator training time and error rates. There are two traditional 
approaches to the design of Human-Computer Interaction (HCI) 
to minimize training time and reduce error rates: (1) 
experimental user testing provides the most accurate assessment 
of training time and error rates, but occurs too late in the 
development cycle and is cost prohibitive, (2) manual review 
methods (e.g. cognitive walkthrough) can be used earlier in the 
development cycle, but suffer from poor accuracy and poor inter-
rater reliability. Recent development of “affordable” human 
performance models provide the basis for the automation of task 
analysis and HCI design to obtain low cost, accurate, estimates of 
training time and error rates early in the development cycle. 

This paper describes a usability/HCI analysis tool that this 
intended for use by design engineers in the course of their 
software engineering duties. The tool computes estimates of 
trials-to-mastery (i.e. time to competence for training) and the 
probability of failure-to-complete for each task. The HCI 
required to complete a task on the automation under
development is entered into the web-based tool via a form. 
Assessments of the salience of visual cues to prompt operator 
actions for the proposed design are used to compute training time 
and error rates. The web-based tool enables designers in multiple 
locations to review and contribute to the design. An example 
analysis is provided along with a discussion of the limitations of 
the tool and directions for future research.

Human Computer Interaction, Usability Analysis, Task
Analysis, Probability of Faiure to Complete a Task, Trials to 
Mastrery. 

I. INTRODUCTION

The evolution of the air transportation system to a “mature” 
industrial sector has resulted in cost differentiation as a primary 
means of competitive advantage for airlines. This cost 
imperative has flowed through the supply chain to aircraft 
manufacturers and Air Traffic Control. The result has been new 
business models (e.g. low cost carriers, outsourcing) and 
incentives for the supply chain vendors to reduce installation 

costs and operational costs (e.g. training, operational
efficiency, and safety). Air Navigation Service Providers
ANSPs) have embraced this challenge by privatization of Air
Traffic Control, pay-for-performance, and the development of
large-scale enterprise management and control automation such
as Flight Schedule Monitor (FSM), Departure Flow
Management (DFM), Surface Management Systems (SMS).

Human Computer Interaction has emerged as one of the
ways to reduce costs by streamlining training as well as
increase the efficiency of operators. For example, Boeing
Commercial Aircraft Group funded a large internal R&D
project with the specific design goal of reducing training costs
and improving flight deck operational efficiency (Mumaw,
Boorman, and Prada, 2006, Castor-Peck, personal
communication). Several avionics vendors (Faerber, Vogl, and
Hartley, 2007; Jacobsen, Chen, and Widemann, 1999), airlines
(Fennell, Sherry, and Roberts, 2006), and NASA’s Exploration
Mission Directorate, Human Research Program (NASA, 2008)
also have similar initiatives in place. 

The most accurate evaluation of the usability of a product is
achieved through experimental user testing (Nielsen, 1993).
This type of approach is cost prohibitive and can only be
conducted at the end of the development cycle when the cost of
revisions is highest.   

 This paper describes a tool based on the Human Computer
Interaction Process Analysis model (HCIPA) that this intended
for use by software and design engineers in the course of their
software engineering duties, to conduct usability analyses.
HCIPA attempts to solve two very hard problems in the design
of advanced automated systems.  The first is capturing the
details of operator-system interactions while performing a large
number of mission tasks, task analysis.  The sequence of
operator actions and inferred mental operators for each task is
then used to solve the second problem, making useful
predictions of time to complete a task, repetitions required to
master a task, and the likelihood of failure for failure
infrequently performed tasks.  This paper presents a web based
tool that solves the first problem.  Cog Tool (John, et al., 2004)
is able to make accurate performance predictions for frequently
performed tasks.   We are in the process of developing related
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methods for predicting repetitions and likelihood of failure.   
Preliminary versions of models for making these predictions 
are reported in this paper.

Specifically, the tool enables designers and testers to 
describe the sequence of operator actions, and rapidly assess 
the trials to mastery (i.e. time to competence for training) and 
the probability of failure-to-complete for each task that can be 
performed by the product under design. The computation of 
these human performance measures is based on the 
specification of operator actions and an assessment of the 
salience of visual cues in the proposed automation user-
interface to prompt the next operator action. The web-based 
tool also provides designers in multiple locations to view and 
contribute to the design and the usability evaluation.  

This paper is organized as follows: Section 2 provides an 
overview of Human Computer Interaction (HCI) and 
introduces the Human Computer Interaction Process Analysis 
(HCIPA) method. Section 3 describes the tasks that can be 
performed by the functions of the tool. Section 4 provides case 
studies of usability analysis conducted with the tool. Section 5 
discusses the limitations of the tool and directions for future 
research. 

II. OVERVIEW OF HUMAN COMPUTER INTERACTION

Human-computer interaction involves the cognitive, motor, 
and visual activities of an operator using automation to perform 
a mission task (Card, Moran & Newell, 1983). The interaction 
between operator and automation follows a human action cycle 
of goal formulation, execution, and evaluation (e.g. Norman, 
1988). The degree to which the content of the user-interface 
matches the “semantic space” of the operator determines the 
usability of the automation (Kitajima, Blackmon, and Polson, 
2002). 

Several techniques have been used to determine the 
usability of automation (Nielsen, 1992). The most accurate 
evaluation of the usability of a product is achieved through 
experimental user testing. Human subjects perform a list of 
tasks using the automation under test while observers take 
notes or record the operator’s behavior. The aim is to identify 
problems on the product or features that users like and are easy 
to use. Techniques include “think aloud protocols” and eye 
tracking. Although quantitative data can be collected by 
measuring time to learn, speed of performance, and rate of 
human error; this approach is cost prohibitive and can only be 
conducted at the end of the development cycle when the cost of 
revisions is highest (Nielsen, 1994).  

Alternative approaches that can be used earlier in the life-
cycle, fall into two categories: Manual Inspections and 
Operator Performance Predictions. Manual inspections, such as 
participatory design (Muller and Kuhn, 1993), cognitive 
walkthroughs (Wharton, Rieman, Lewis, and Polson, 1994), 
heuristic evaluations (Nielsen, 1992), and other forms of expert 
reviews, have been shown to be effective in certain settings 
(Dumas, 2003) but are subjective and can be biased by group-
thinking (Turner & Pratkanis, 1998). These methods also 
exhibit poor inter-rater reliability (Hetrzum & Jacobsen, 2003) 
due to differences in granularities of the task definition and the 
differences in the subjective ratings.  

Automated tools, such as CogTool (John, Prevas, Salvucci,
and Koedinger, 2004), seek to eliminate these two sources of
poor inter-rater reliability by capturing actual end-user button
pushes (to eliminate ambiguity in the task definition), and by
estimating performance using human performance models such
as Keystroke-Level Model (KLM), (Luo & John, 2005). These
tools can also be used early in the development cycle. 

CogTool, one of the first tools of this class, provides an
easy way model skilled users’ performance behavior through
storyboards designs. To create the storyboards, CogTool users
include the different screen shots on the tool and specify “hot-
spots” or widgets on the screen shots to simulate the user
interaction.  The screenshots are connected though transitions.
Once the screens are connected, the user interacts on the
screenshots through the widgets, and CogTool generates an
executable script of the actions performed by the user that can
be processed by an Operator Performance Model such as KLM
(Luo & John, 2005), ACT-R (Anderson et al., 1995) or CORE
(Vera, Howes, McCurdy, & Lewis, 2004) to compute a
prediction of expert time-on-task. 

A. The HCIPA Method 

HCIPA is a manual task/usability analysis inspection
method that was designed to address issues with usability in the
aviation and space industries (Sherry et al., 2002, 2006).
Specifically, these industries were interested in evaluating
usability for trials-to-mastery and probability-to-complete the
task.

The HCIPA method has its roots in a model of pilot
cognition (Polson, Irving, & Irving, 1994). This method also
known as the RAFIV model (Sherry et al., 2002) decomposes
tasks into six sequential steps: (1) Identify Task, (2) Select
Function, (3) Access Function, (4) Enter data for Function, (5)
Confirm and Save Data, and (6) Monitor Function.  These steps
are illustrated in Figure 1. 

The first step is to identify a task based on various external
stimuli such as visual cues (menu item, error message), hearing
cues (warning sounds), and a request (e.g. checklist) or by
remembering (e.g. recall from long-term memory). Operator
proficiency is reduced when the user interface does not provide
any guidance by salient visual cues (Sherry, Fennell, Feary,
Polson, 2006).  

Once the user knows what to do, the next step is to decide
the right function to accomplish the task, which is to select a
function.  The function may be the name of a screen, the label
on a button, a prompt or any other characteristic that tells the
user to initiate the task. The more accessible the function is to
the user, the higher the probability is to accomplish the task.   

A set of operator actions are performed by a user in order to
accomplish the task through the selected function.  These
operator actions are grouped under Access, Enter, Confirm and
Save, and Monitor step.   

The Access Step encloses the operator actions needed to
access the function on the device.  The goal for a designer is to
reduce the number of operator actions needed to access the
function.   
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The Enter Step encloses the operator actions needed to 
successfully execute the function. The operator actions may 
include data entry, visual data evaluation, and communication 
with external devices or personnel.   

The Confirm and Save Step are all the operator actions 
needed to trigger the function.   

Finally, the Monitor Step encloses the operator actions 
needed to monitor any change on the system state after the 
function is triggered.   

Figure 1. HCIPA Method 

There are two basic classes of operator actions: (i) physical 
actions such as press a button or click on a link, and (ii) 
decision actions that cannot be viewed externally. A Task is 
executed by performing operator actions for each of the steps. 

HCIPA estimates operator performance based on the 
minimization of memorized action sequences. When a user 
interface lacks clear labels, prompts, and/or organizational 
structure, additional training is required and operators must 
recall memorized action sequences (Sherry, Polson & Feary, 
1998; Fennel, Sherry & Roberts, 2004). 

The HCIPA approach has been successfully applied in
several applications (Sherry, Polson & Feary, 2002; Sherry, 
Fennell, Feary, & Polson, 2006). The unguided manual process 
suffered from several issues: (1) ambiguity of granularity in 
descriptions of steps, (2) ambiguity is identification of salient 
visual cues, (3) problems in assessing salience of visual cues, 
(4) no method to determine trials-to-mastery or probability of 
failure to complete a task. The tool described in this paper is 
designed to overcome theses shortfalls and includes an 
affordable Operator Performance Model to compute trials-to-
mastery and probability-to-complete the task. 

III. THE E-HCIPA TOOL

e-HCIPA is a web based application developed to provide 
an automated way to apply the HCIPA method. The e-HCIPA 
is a free accessible web application; therefore, no username or 
password is required to use the tool.  The current version of e-

HCIPA runs only on Mozilla Firefox web browser and
provides the following functionalities: Create a Task Analysis,
Predict Operator Performance, Edit a Task Analysis, Delete a
Task Analysis, and Generate PDF report (Task Analysis Report
and User Guideline). 

A. e-HCIPA Features 

1) Create Task Analysis:   Allows the user to create a new
task analysis by inserting the device name, task name and
function name.  Once the device, name and function are saved,
the labels for all steps are generated and the user can insert the
operator actions for each step.  Figure 2 shows the main screen
of the tool 

Figure 2. e-HCIPA Create Task Option 

The operator actions may involve physical actions (press
button, link), visual actions (read data from display field),
audio actions (hear warning buzzer) or decision-making
actions.  Operator actions are automatically generated for the
Identify Task and Select Function step based on the
information entered on the task name and function name.  The
operator action for the Identify Task step is always generated
as “Recognize need to:” concatenated with the task name
entered by the analyst.  The operator action generated for the
Select function step is generated as “Decide to use function:”
concatenated with the function name entered by the analyst.
These two operator actions cannot be deleted by the user.  The
labels for the steps are created as follow: 

• Identify Task Step:  <task name>

• Select Function: <function name> 

• Access Step:  Access + <function name> + function 

• Enter Step: Enter data for + <function name> +
Function 

• Confirm & Save Step:  Confirm & Save data using +
<function name> + Function 

• Monitor Step:  Monitor results of + <function name> +
Function 

The analyst can continue inserting operator actions for the
Access, Enter, Confirm and Save and Monitor steps.  Figure 3
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shows the screen where the operator actions are inserted and 
the salience assessment takes place. 

Figure 3. e-HCIPA Enter operator action 

2) Predict Operator Performance: e-HCIPA calculates the 
two metrics based on the salience assessment conducted while 
inserting or editing an operator action:  probability to fail a 
task, and trials to mastery the task.  The probability of failure 
is calculated using (1), while the trials to mastery the task is 
obtained from (2).  In (1), the maximum value used is 1.  The 
values for the operator actions are calculated from the salience 
assesment using the following values:  0 for Exact, ¼ for 
Partial and 0 for None. Existing data support the prediction of 
trials to mastery a task (Bovair, Kieras, Polson, 1990). 

 Probability to Failure = 0.1753 * ∑Operator actions  (1) 

 Trials Mastery Task = 0.5916*∑Operator actions + 1.9632 (2) 

3) Edit a Task Analysis:  e-HCIPA allows to modify any 
task analysis previously created.  The device, task and 
function name can be changed at any time.  If this is done, all 
the labels for the different steps will change also.  The  
operator actions, including image, operator action description, 
label and salience assessment can be edited at any time.  In 
order to edit a task analysis, the user must select the desired 
one from the list of task currently existing in the database. 

4) Delete a Task Analysis:  A task analysis can only be  
deleted by the person who created the task.    

5) Duplicate a Task Analysis:  A task analysis can also be 
duplicated.  In this case, the system creates a new task with 
same content and images but it adds the (Duplicate) at the end 
of the Task Description. The person who duplicates the task 
becomes the creater of the new tasks.   

6) Generate a PDF report: e-HCIPA allows to generate 
two .pdf reports.  The Task Analysis Report contains all the 

operator actions grouped by step, including the trials to
mastery and probability to complete the task, a thumbnail
image, the label, the salience evaluation, and the salience
comments. The User Guideline report contains all the operator
actions inserted for the task and ordered sequencially.  The
User Guideline report can be used for training purposes.

B. e-HCIPA Technical Implementation 

e-HCIPA has been developed using PHP 4.4.4 and MySQL
database. Figure 4 shows the Entity-Relationship Diagram of e-
HCIPA.  

Figure 4. e-HCIPA Entity Relationship Diagram 

The database table HCIPA stores the information for the
device name, task description and function on fields
Description, Identify_Task and Select_Function respectively.
Once the user saves a new Task Analysis, e-HCIPA populates
the rest of the fields on table HCIPA based on the information
stored on the fields Identify_Task and Select_Function.
Furthermore, two default operator actions are created: one for
the Identify_Task step and the other one for Select_Function.   

Table HCIPA_Actions stores all operator actions for the
given task.  The field hcipa_step is an enumerated field that
keeps track of current step for the operator action.  The values
are: 1 for Identify_Task, 2 for Select_Function, 3 for Access, 4
for Enter, 5 for Confirm and Save and 6 for Monitor.     

IV. CASE STUDY

An example HCIP analysis is illustrated below for and Air
Traffic Management (ATM) System.  The specific task is to
run a ground delay program (GDP) at Chicago O’Hare Airport
(ORD).  Table I shows the input data used through HCIPA to
analysis this task.   

TABLE I. INPUT DATA FOR A HCIP ANALYSIS ON FMS737 

Define Device, Task, and Function 
Device Name Traffic Management System 

Task Name Run a [Ground Delay] Program at ORD" 
with General Parameters (Start/End 
Time/Duration, Arrival Fix, Aircraft 
Types, Carriers). 

Function Name GDT Setup: General. 
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TABLE II. HCIP ANALYSIS FOR TASK “MODIFY DEPARTURE RUNWAY”

Step Operator Action Label Salience Evaluation of 
Label to Cue Operator 

Action 

Identify Task

Run a [Ground Delay] 
Program at ORD" with 
General Parameters 
(Start/End 
Time/Duration, Arrival 
Fix, Aircraft Types, 
Carriers) 

Recognize need to: "Run a [Ground 
Delay] Program at ORD" with 
General Parameters (Start/End 
Time/Duration, Arrival Fix, Aircraft 
Types, Carriers)

Bar Graph ORD 
Status

None 

Select Function 

GDT Setup: General.

Decide to use function: GDT Setup: 
General

Tab labeled GDT 
Setup

Partial 

GDT stands for "Ground 
Delay Tool." 

Access

GDT Setup: General 
Function 

Click on Tab labeled "GDT Setup" Tab labeled GDT 
Setup

Exact 

Assume operator has domain 
knowledge to interpret menu 
items

Select "RBS++" on Program Type 
Pull-down Menu

Pull-down Menu: 
Program Type

Exact 

Set Start/End Time (type, move 
sliders, type duration)

General: 
Program Time: 
Start, End (or 
Duration)

Exact 

Select menu item "All" in pull-down 
menu "Arrival Fix:"

Pull-down Menu 
labeled

Exact 

Select menu item labeled "ALL" on 
pull-down menu labeled "Aircraft 
Types:" 

Pull-down menu 
labeled "Aircraft 
Types:" menu 
item labeled 
"ALL" 

None 

Enter  data for

GDT Setup: General 
Function 

Type "ALL" into text field labeled 
"Carrier" 

Text Field 
labeled 

None 

Confirm & Save data 
using

GDT Setup: General 
Function 

None 

Monitor results of GDT 
Setup: General 
Function 

None 

An ATM specialist must be trained to read bar graph. There 
are scenarios when a GDP is not run even when the Hourly 
bars are in excess of the airport capacity (e.g. fog burn-off at 
SFO, pop-corn thunderstorms). ATM specialist requires 
significant training to define the parameters of the GDP. The 
Flight Schedule Monitor used to analyze this task offers no 
apriori decision-making support related to the parameters.   

Table II shows all the operator action needed to complete
this task. 

The first column includes the HCIPA steps. The second
column lists the operator actions. Note, that the operator
actions of the Id Task and Select Functions steps are
automatically generated by the tool. The third column lists the
visual cue (if any) that prompts the next user action. The fourth
column is an assessment of the salience of the cue.
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Based on the salience evaluation and distribution of 
operator actions per HCIPA step, the estimated trials to 
mastery the task are 3.29, and the probability to fail the task is 
0.39. Figure 5 shows the distribution of operator actions by 
HCIPA step and salience evaluation.   

The operator needs to perform eight actions to complete 
this task.  The most critical part is the first operator action.  The 
current label is not obvious to perform the task through the 
selected function (salience evaluation is None).  However, once 
the operator accesses the function, the visual cues are sufficient 
to complete the task.  

Figure 5. Operator Actions per HCIPA step 

The use of HCIPA allows one to identify usability problems on 
the system for new ATM specialists.  It also provides the 
benefit of generate a user guideline to train new operators on 
the analyzed task.  The Appendix A shows the usability task 
report generated through HCIPA for this task.   

V. FUTURE WORK

This paper describes a tool that this intended for use by 
software and design engineers in the course of their software 
engineering duties, to conduct usability analyses. Specifically, 
the tool enables designers and testers to rapidly assess the trials 
to mastery (i.e. time to competence for training) and the 
probability of failure-to-complete for each task that can be 
performed by the product under design. The computation of 
these human performance measures is based on the 
specification of operator actions and an assessment of the 
salience of visual cues in the proposed automation user-
interface to prompt the next operator action. The web-based 
tool also provides designers in multiple locations to view and 
contribute to the design and the usability evaluation. 

Beta testing of the tool is underway. Future work includes 
tool implementation, development of new functionalities, 
improvement of human performance model, and inter-rater 
reliability of the Assessment of the Salience of the Visual Cues.  

• Tool implementation:  The current version of tool has 
been tested on Mozilla Firefox and Internet Explorer. It 
is been developed using PHP 5.2.  A security model 
has been implemented to allow certain functions to be 
accessed on the creator of the task.  In terms of outputs, 

the current version only provides two reports on a .pdf
format.  These two reports will be also available in
other format and, as needed; more reports will be
developed, including the reports with graphs.   

• New functionality:  (i) hierarchical organization of task
that allows to relate other tasks analysis as sub-task,
(ii) provide API to enable import/export of models
(e.g. with CogTool), (iii) development of a training
laboratory by reusing task analysis description and
images  

• Operator Performance Model: The current model is
based on empirical data from 4 experiments. Further
work is planned to increase empirical data set and
leverage existing models such as CORE, ACT-R, etc. 

• Inter-rater Reliability of the Assessment of the Salience
of the Visual Cues: The assessment of the salience of
visual cues for prompting the operator’s next action is
critical for the accuracy of the tool. The current version
of the tool relies on the assessment of the salience of
the cue by the designer (i.e. None, Partial, Exact). This
manual form of assessment suffers several issues. First,
the assessment is reliant on the overlap of the designers
“semantic state-space” with the end-users “semantic
state-space.” Recent studies have shown wide variance
in semantic state-spaces and large differences between
the semantic state-spaces of the designers and end-
users. Second, even within a group of end-users and
domain experts, the semantic state-space can exhibit a
wide distribution. This issue will be investigated in two
ways. First it is proposed to add a feature of the tool,
loosely named, “Usability Lab.” This feature will
enable the collation of domain experts’ assessment of
the salience of the visual cues. Second, several
automated techniques exist to automate the salience
assessment. Latent Semantic Analysis, LSA (Landauer
& Dumais, 1997; Kitajima, Blackmon, and Polson,
2000) and Scent-based Navigation and Information
Foraging in the ACT architecture, SNIF-ACT (Pirolli
& Fu, 2003) are two of these automated technique that
will be researched to evaluate their feasibility to be
included in e-HCIPA. 
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APPENDIX A 

Figure 6. Report generated on e-HCIPA for Task “Run a [Ground Delay] Program at ORD”, Flight Schedule Monitor 
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Abstract—User-Centred Design is extremely useful for improving 
existing tasks and technologies, however it is less useful for 
innovation.  This paper documents User-Centred Innovation and 
how it was implemented in the Air Traffic Control domain. 
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I. INTRODUCTION

Human operators will continue to be a major component of 
air traffic control (ATC) for the foreseeable future.  As such, 
the efficiency and safety of any future ATC system will depend 
on both the technology developed and the ability of humans to 
harness that technology. The 3D-in-2D Displays for ATC 
project is intended to create visualisation tools for air traffic 
controllers as they face new challenges presented by future 
ATM programs such as SESAR (Single European Sky ATM 
Research). The time frame for the realization of these new 
technologies is 20 to 25 years in the future. 

It is difficult to predict work and operational requirements 
so far into the future with a high degree of certainty. At the 
time of writing, even the operational concept for SESAR is less 
than well articulated, although it is clear that the basic ideas 
underlying SESAR will be fundamentally different from 
current practice. For example, concepts such as the Reference 
Business Trajectories and Controlled Time of Arrival within 
the context of the SWIM (System-Wide Information 
Management) system network, together with advance on-board 
avionics, will be integrated to implement the ideas of 4D 
trajectories. The underlying principles and practices for 
controlling future flights using such 4D trajectories will be very 
different from current practice. Also, while some very high 
level ideas of the system architecture is available, e.g. the 
SWIM architecture, it is difficult to make estimates about 
which technologies will be used and the nature of that use.  
Consequently, the nature of the operational concept, the likely 
work practices in these yet-to-be-determined work 
environments and the tools needed to support the work are 
equally hard to predict.  

Our approach to this is to take a Human-Centred Innovation 
process to invent a number of tools that are intended to 

facilitate different aspects of airspace and traffic visualisation.  
By combining these tools in novel ways, we hope to greatly 
improve the acquisition and comprehension of information in 
ATC in these anticipated work environments. 

In contrast, a common approach to designing user oriented 
systems is known as User Centred Design [1].  This approach 
prescribes an examination of the task being performed, 
understanding the nature of the demands that the task places on 
the user, and then to design of the best possible interfaces to 
improve the performance of the task. User Centred Design 
assumes that the task exists, but in our dealings with the future 
ATC system we cannot be certain what the necessary tasks will 
be, and at this stage, neither can we reliably predict what the 
technology will be.  Indeed it is likely that the capacity of users 
to deal with the expected increases in air traffic will be a major 
factor in the design of tasks and technology.  This is a “wicked 
problem” [2], since the process of solving the original problem 
is likely to reveal other problems, some of which may be more 
complex than the problem’s original form. 

To this end, we engaged in a Human-Centred Innovation 
process as there are no SESAR ATC tasks or work 
environments to study work practices and human factors needs.  
Rather than build on existing operating paradigms of ATC, it is 
necessary that we take what is known of the abilities of users 
and attempt to predict which tasks they will best be able to 
perform and with what technology, and extrapolate that within 
the context of SESAR. This process of extrapolation will be 
discussed later in our paper.  During our review of the literature 
we found a limited amount of information on techniques for 
theory-driven user-focused innovation and exploration of the 
design space [3].  This paper is partly an attempt to fill this gap 
in an ATC context. 

Despite the uncertainty of what SESAR will demand from 
the controllers, we are reasonably confident that controllers 
will need to visualise the airspace they control.  In previous 
visualisation systems for ATC the view of the airspace is often 
completely 2D, such as the systems in use today, or completely 
3D.  Three-dimensional rendering of a scene eases integrated 
attention tasks, in which information is integrated across three 
or more dimensions.  Such tasks may include guiding an 
aircraft that is making a simultaneous descent and turn. 3D 
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rendering is also useful for appreciating the positions of aircraft 
in relation to each other in 3D space. However, well known 
drawbacks of 3D representations include fore-shortening of 
distances due to distortions arising from perspective. This 
makes it difficult to correctly estimate distances and hence 
aircraft separations. Two-dimensional information is superior 
for focused attention tasks, such as estimating the horizontal 
separation of converging aircraft. However, it requires a high 
degree of experience to re-construct and maintain a dynamic 
mental picture of the spatial relationships between aircraft in 
3D space. An extensive review of the advantages and 
disadvantages between 3D and 2D has been reported elsewhere 
[4] and is summarised in Table 1. 

In order to maximise performance, it would appear 
desirable to allow controllers to shift between 2D and 3D views 
[5].  However, most current rendering systems require the user 
to switch their attention to a new spatial context, either by 
shifting their view from a 2D planar radar display to a 3D 
rendering of it, or re-configuring the 3D display by moving the 
camera position, to access a top down plan view of traffic.  
Based on our previous cognitive task analysis and field studies 

of air traffic controllers’ work, we do not believe that interfaces 
requiring such shifts in spatial context and visual attention will 
confer a major advantage.  Other techniques such as displaying 
a smaller window with 3D information overlaying parts of a 
2D planar view display may obscure critical information. Such 
a display design is potentially hazardous and therefore, also not 
desirable. 

We hope to invent novel visualisations that combine 3D 
and 2D in a way that compensates for the shortcomings of 
these display techniques, whilst exploiting their 
complementary potential. We also hope that these new 
visualisations will increase the controllers information handling 
capacity, and hence their scope for control. 

We will next discuss the human-centred innovation process 
and describe the designs that emerged from the process, their 
design rationale and how the concepts developed. This will be 
followed by a discussion of the findings from an exploratory 
evaluation of the designs. Then we close with a discussion 
about our experiences with the human-centred innovation 
process.  

Display type Advantages (+) Drawbacks (-) 

2D Display Global traffic picture always available 

Supports correct distance estimation, focused 
attention tasks [6-8]; 

Supports improved performances for visual search 
tasks [9] 

Easy to orient. User maintain easily orientation 
awareness 

Navigation and Selection are easy to achieve 

Does not spatially represent altitude information, and 
requires the controller to read and interpret 
alphanumerical altitude data to produce and maintain 3D 
picture 

Suffers from cluttering. Overlapping labels and blips 
difficult to read 

3D Display Supports Superior performance for integrated - 
shape understanding – tasks [6-8]; 

Supports development of accurate mental model of 
traffic and terrain, effective training tool [10]; 

Supports effective decision making for a/c 
maneuvering on the vertical plane [11]; 

Supports at glace assessment of consistency of 
implemented maneuver with the original one as 
intended by controller [12] 

Hampered distance estimation performances due to 
perspective distortion effects [10]; 

Not possible to oversee global traffic/global sector out 
of camera view [13]; 

Traffics at the far end of the scene difficult to locate, due 
to decrease in resolution [14]; 

Navigation and selection difficult, user can get lost when 
moving the camera 

Table 1. Relative advantages and drawbacks of 2D and 3D display (Rozzi et al., 2007) 

II. THE HUMAN-CENTRED INNOVATION PROCESS

The Human-Centred Innovation Process combines a focus 
on the needs of the user with the search for technological 
advances that can create opportunities for creating innovations 
in the way people work and in the design of tools to support the 
work. Focusing purely on the user and their task can be 
limiting as it is primarily retrospective in nature, investigating 
work practices that current exist. This could potentially lead us 
to ‘designing for the last war’, instead of designing for a 
scenario of what could be. On the other hand, focusing mainly 
on technological advances can lead to problems of ‘a hammer 
looking for nails’. While each approach has benefits and 
shortcomings, we prefer to   leverage both, drawing on the 
notion of the Task-Artefact Cycle [15]. We accept that new 

technologies will afford new capabilities that create or enable 
opportunities for new ways of working and even new forms of 
work. Taking our case as an example, the future technologies 
(e.g. the SWIM network) can create opportunities to change the 
controllers’ work from directing and controlling aircraft, to 
supervising a larger volume of self-managing, self-separating 
aircraft. Once such opportunities are envisaged, it will place 
new demands on the future work of the controller, requiring 
new designs and solutions to support the new tasks.  

The Human-Centred Innovation Process we adopted 
comprised several sub-processes: a review of the literature, and 
an iterative invention process involving creativity workshops, 
scenario development, and design exploration [15].  Then in 
subsequent cycles, the emphasis shifts from creation to the 
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combination of existing concepts to provide hybrids that 
compensated for shortcomings in the original concepts. 

The innovation process was firstly informed by a review of 
about 100 papers describing innovative visualisations in ATC, 
Command and Control, Medical, Geographic, Engineering and 
Flow imaging. This gave rise to the Combination Display 
Framework (Table 2).  This framework allowed us to 
hypothesise which types of innovations were likely to be 
successful and focus our energy accordingly. 

The Combination Display Framework is a two-way 
classification scheme for helping us understand the patterns in 
existing combinations of 3D and 2D representations, and the 
basis for their combination.  Since the various display formats 
are largely orthogonal to their display techniques we can use 
this framework to identify places in the literature where current 
gaps exist and we can use related research to predict how 
successful we are likely to be in filling those gaps.  

The Display Format, on the horizontal axis of the 
Combination Display Framework, classifies various ways of 
combining 2D and 3D visualisations.  The broad categories of 
display format are the Side-by-side, Multiview, Exo-vis and In 
Place views. In the vertical axis we see different display 
techniques which implement the principle of Focus and 
Context, i.e. the need to see information within the context of 
its data sets or of the task situation.  These techniques include 
rapid zooming, distortion, multiple coordinated views. 

In this version of the Combination Display Framework 
(table 2), we have included some examples of visualisations 
found in the ATC literature. The Framework also suggests that 
there are many other possible combinations where exploration 
may bear fruit. Airspace may be rendered in strict 3D, or 
combined using differing methodologies.  

During the invention cycles, it was necessary to force our 
participants who were experienced controllers, to break with 
their traditions and well-established work practices. We used 
creativity workshops to identify existing assumptions, to 
discuss and break them, and to consider the technologies likely 
to be in place in the future,  to encourage the controllers to 
imagine scenarios that were different from the present situation 
and those of the near future, in order to facilitate the generation 
of new ideas.  

As we tried not to be overly constrained by the technology 
(and indeed, our lack of knowledge of the what the actual 
future technologies might be!), we used a low fidelity, paper-
based prototyping approach for the design and design space 
exploration for the visualization tools we were developing. 
Ideas could be quickly sketched and walked-through, allowing 
changes and refinements to be made quickly.  

Since precise task analysis of the future air traffic control 
task is not yet possible, we have adopted a strategy for 
designing these tools that distinguishes between what is 
visualised, the content, and the means and devices that are used 
to present them, the container. These containers allow the 
combination of various content, such as the magnification of 
2D, 3D views of a selected area, integration of 3D in 2D 
information, or 4D (spatial-temporal) information in numerous 
ways with different types of containers. These containers can 

include “lenses” which can distort or magnify the underlying 
2D information; or “scoops” that would allow a controller to 
scoop out a segment of the airspace. These containers with the 
content, could then be manipulated and interacted with in 
various ways. For example, using gestural and touch 
techniques would allow one to “reach in and grab” or “scoop” 
segments of the airspace of interest; or using alternative display 
interaction technologies, we can use point of view tracking 
with off-axis projection to create “fish tank VR”[16] where 
what a person sees changes as that person’s point of view 
changes.  The idea in the innovation process is to explore a 
series of tools that allow us to guide the development of future 
tasks and technologies.   

We will next describe several of the visualisation 
technologies we have developed.  The technologies should be 
regarded as tools that will contribute to a solution, not solutions 
in their own right. 

III. THE VISUALISATION TOOLS

We used the Combination Display Framework together 
with our human-centred innovation approach to create new 
ideas for the visualization tools. 10 readily identifiable novel 
concepts were developed and were then distilled to the six key 
tools reported here. It should be noted again that these tools are 
intended to be extended and used in further combination to 
form possible future solutions. They should not be seen as 
stand-alone controller’s tools or systems. 

Many of the prototypes described here were developed 
using the ARToolkit [17], an open source library for 
developing Augmented Reality (AR) applications.  The toolkit 
uses a camera to detect markers and then augments these 
markers with additional information.  The additional 
information may be displayed on a screen, via a head mounted 
display (HMD) or in the environment itself [18].  This is really 
two separate technologies – registration and display.  
Registration is the task of finding interesting information in the 
environment – this is the camera finding the marker.  Display is 
the addition of information in the appropriate place.  It should 
be remembered that the focus is not the registration technique 
(which could instead be based on magnetic tracking, infra-red 
tracking, or some new technology) or the display technology 
(which is also changeable).  The only area of concern here is 
how the container helps controllers visualise the airspace.  In 
many cases the flexible nature of the registration in the 
ARToolkit has allowed us to create cheap prototypes for 
technologies that do not need to use the AR Toolkit. 

In the following descriptions of the visualization tools, we 
hope to explain their design rationale, and how these ideas 
developed. These ideas were based on four considerations: (i) 
the ability for a controller to reach into a display and select by 
touch or other means an area of interest for closer examination, 
(ii) the integration of needed 3D information into 2D to create 
in-place representations, (iii) the need to support accurate 
measurement of pertinent information such as distances and 
altitude differences, and (iv) the need for global awareness of 
the traffic situation while enabling localized spatial awareness. 
We will now present these concepts.    
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Table 2. Combination Display Framework [19]

A. AR in Your Hand 

This concept is based on the notion of using one’s hand to 
reach into a 2D radar display and to grab a segment of the 
airspace and traffic within that airspace. The AR (Augmented 
Reality) in your hand concept allows a controller to use his or 
her hand to select a portion of the 2D radar screen, and then 
have the 3D (or any other view of the selected area) appear in 
the palm of his or her hand.  In this prototype we use markers 
to facilitate the process, but in the final implementation, we 
envisage it would work using just a user’s hand.   

Figure 1 shows the implemented prototype AR in your 
hand using the ARToolkit. The AR in your hand display allows 
a controller to intuitively examine the airspace of interest by 
rotating their palm to change perspective, and bringing it closer 

Figure 1. AR in your hand.  A section of the airspace is depicted in 3D.  The 
image is anchored to the marker, so moving the marker moves the 3D 
information as well.  This allows views from multiple directions and 

collaboration between controllers. 

for a closer inspection. As well as allowing a controller to view 
a volume in detail, it could be used as a collaborative tool for 
controllers to share information about interesting areas of the 
airspace or to hand over a situation to another controller.   

This localised view could be placed beside a monitor for 
reference and dismissed at the snap of the fingers. With an 
HMD or future display techniques it is hoped that the 3D 
information can be actually viewed in the user’s hand.   

The key benefits of this interaction technique are that 
selection and viewing are simple and intuitive, the spatial 
context of the selection is easily perceived and there is no need 
for occlusion of relevant spaces.   Current display technologies 
require either a Side-by-Side or Multi-Window format, but this 
may be mitigated in future. 

B. The Tangible Lens 

The Tangible Lens is a prototype display technique for 
smoothing interactions between the physical and the 
information space. By moving the "lens" over parts of the 2D 
radar screen, it will augment those parts of the screen with 
additional information.  This information could take the form 
of textual, graphical or 3D information.  Figure 2 shows a 
picture of the Tangible Lens acting as a magnifying glass, 
implemented in the ARToolkit.   

The lens is envisaged to be a physical tool that will be 
permanently attached to the screen. When a user needs 

DISPLAY FORMAT

2D/3D Combination Displays DISPLAY 
TECHNIQUE  Strict 3D Side By side Multiview 2D/3D Exo-Vis In Place 

Uncorrelated view 
(no technique) 

 St. John (‘01)    

3D in 2D symbols     Smallman (‘01) 

Focus + Context Techniques 
Multiwindows EC-Lin AR (’06)    PiP Display, AD4 

(‘06) 

Rapid Zooming  Ellis (‘87) 
Azuma (‘96) 
Brown (‘94) 
Eddy et. Al (’99) 

    

Distortion     Distortion Display, 
AD4 (‘06) 

Overview Plus detail   Alexander & 
Wickens (‘03) 

Filtering EC-Lin VR (’05) Azuma (‘00) Ilog Display  Lens Display, AD4 
(‘06) 

Multiple Coordinated 
Views 

EC-Lin VR (‘05) Azuma (‘00) 
Furtsenau (‘06) 
D3, AD4 (’06)

Ilog Display 
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additional information the tool will be grabbed, dragged to the 
relevant area and used to acquire the necessary information. 
When the information has been obtained, the tool is released 
and springs out of the way. This tool would greatly reduce the 
intrusiveness of acquiring additional information. 

Figure 2. The tangible lens, implemented with the ARToolkit.  The area 
inside the cardboard “lens” is a magnified view of that region of the airspace.  

Additionally, the acquired information would have a high 
spatial relevance.  With the development of multi-touch 
screens, exemplified by the iPhone, it may be possible to 
replace the lens with something like a “pinch” touch interface.   

This is an example of the In Place display format, since the 
additional information is replaces part of the 2D view on the 
main screen.  Principle benefits are the rapid acquisition of 
spatially relevant information, the minimal occlusion period 
and the intuitive simplicity of the interaction.  

C. AR 3D Wall View 

The 3D Wall View is an example of the notion of the scoop 
where a segment of the airspace may be scooped up and placed 
beside a controller or used for discussion with other controllers. 
This view  uses the Exo-Vis display format implemented using 
the Side-by-Side display technique. It grew from two earlier 
concepts, the “local view” and the “precise distance estimation 
view.” While these concepts were not useful alone, in 
combination they provided a promising new tool. 

The 3D view (figures 3 and 4) allows a rapid 
comprehension of the structure of the airspace, while two 2D 
representations on the wall (called the ‘altitude ruler’) give 
users precise data needed to assess the traffic situation or guide 
aircraft accurately. Such a view can allow a controller to check 
whether a given aircraft is able to level off at an assigned flight 
level after a climb (or descent); visualise the 3D path of an 
aircraft close to terrains; guide an aircraft through a complex 
approach, monitor one or more holding stacks at the same time, 
or access a pilot’s point of view during severe weather 
conditions.  

All of these airspace features can be included and 
magnified in a sub volume such as the one described above.   
We have implemented this view as both a stack manager and 
an approach controller.  The multiple uses of this view are an 
example of why these visualisations are regarded as tools as 
opposed to solutions.  The key benefits of this view are the 
general overview combined with spatially relevant 2D 
information.   

Figure 3. The 3D walls display provides a 3D overview to aid situational 
awareness and a 2D view to aid precise judgements 

This 2D information is much more useful to a controller when 
making precise judgments such as separation or heading.  In 
the stack manager, it is quite difficult to determine the vertical 
separation of aircraft from the local view alone.  However the 
wall view allows the controller to rapidly and accurately 
determine which, if any, aircraft are deviating from assigned 
flight levels. 

In the approach control implementation the complex 
trajectory of an inbound aircraft can be quickly comprehended 
with the global view, but the 2D representations on the walls 
and floor make it easier to determine if the target is on the 
correct glide path and slope.   

A current drawback is the separation of the walled area 
from its spatial context, but further combination with other 
displays – such as the Tangible Lens detailed above or the AR 
Tabletop described below should mitigate or eliminate this 
problem. 
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Figure 4. The same 3D walls container this time with approach control 
content. 

D. Skyscraper and Symbicons 

The skyscraper set of display concepts allow a controller to 
monitor a standard 2D plan view and to selected areas of the 
2D space for 3D viewing.  The user can see a 3D 
representation of an area of interest within a 2D overview of 
the entire airspace. The aircraft in our concept prototype are 
represented as red-cyan anaglyphs in the selected airspace. 
When viewed using red-cyan filters (cheap 3D glasses), the 
selected aircraft appear to stand out of the display, much as if 
one were looking down at skyscrapers from above. Aircraft at  

Figure 5. The skyscraper and symbicons display.  The red-blue aircraft 
appear to pop out of the screen when viewed with 3D glasses.  The lines on 

the aircraft indicate whether the target is climbing, descending or flying level. 

higher altitudes appear closer to the viewer while aircraft at  
lower altitudes appear farther away from the viewer (Figure 6).  

Such a 3D-in-2D view is useful for de-cluttering since the 
selected aircraft appear to stand out of the display, gives a 
controller a quick assessment of the traffic situation, and can 
provide clear indications of where the aircraft are in 3D space. 
Note that such a view can be combined in the “AR magnifying 
glass” lens view, and can be implemented in advanced 
autostereo display technology that does not require glasses or 
anaglyphs to simulate visual depth.  

The 3D view need not represent actual altitude.  For 
instance, instead of presenting a locality where the third 
dimension represents altitude, the user could choose to filter 
aircraft according to airspeed, with the perceived depth 
designating the relative velocities of the selected aircraft. 

Symbicons, or icons with embed symbolic 3D-related 
information can be used to add information about the aircraft's 
behaviour, indicating if the aircraft is climbing, descending or 
banking (figure 6). This is an example of the integration of 3D 
information into a 2D space. 

This symbicon concept has been implemented as a short 
black line on the axis of the aircraft. If the line is towards the 
rear of the aircraft (triangle) symbol, it indicates that the 
aircraft is climbing; and if it is located more forward, it 
indicates it is descending. If the line is to the left, it indicates 
that the aircraft is banking left, in a climbing left turn (if to the 
rear and left), or in a descending left turn (if to the left and 
forward).  Symbicons and the 3D skyscrapers are 
complementary technologies (figure 5). They allow users to 
readily perceive information about the intentions and actions of 
aircraft, and rapidly determine flight levels. In this design, we 
can preserve the need for global awareness of the overall traffic 
situation provided by the 2D representation, while decluttering 
the display by separating the aircraft and their labels in depth 
and supporting analogical reasoning. Smallman et al. [6] found 
that symbolic 3D led to better visual identification 
performance. 

Note that symbicon techniques could be added to other 
displays as well, especially the AR Tabletop described below.  
The combination of a 2D Display, 3D Filtering and Symbolic 
information are an excellent example of the utility provided by 
the Combination Display Framework. 

Figure 6. How the symbicons concept works to display attitude information 

E. AR Tabletop Display 

The Table Top Display (figure 7) is a collaborative 
workspace rendered in genuine 3D. Multiple controllers can 
view a single workspace from multiple directions, allowing 
them to share ideas and solve complex problems. The view 
allows examination from any angle, and can provide textual 
information, just like a 2D display. Note that we are able to 
augment the entire table top – we are not limited by the size of 
the marker.  Practically, there are a number of display 
technologies to bring this about, especially spatial AR and “fish 
tank” VR.  The display format is a pure 3D environment, but it 
is easy to see how symbols could augment the display, or how 
walls could be used to provide precise information in a 
spatially relevant way (see Figure 13 for an early paper mock-
up of how the 3D walls could be implemented on the Tabletop 
display).  This display benefits from a strong spatial context 
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and easy collaboration, as well as the potential for combination 
with the other tools described above. 

IV. EVALUATING THE CAPAB ILITIES OF THE 

VISUALISATION TOOLS

We also carried out an exploratory evaluation of the 
designs to identify the capabilities afforded by the new 3D/2D 
representation concepts and their potential uses. In particular, 
to identify the variety of perceptual and interaction issues that 
may arise, such as the new user capabilities provided by the 
tools. Also of interest was the identification of feature 
interaction effects, i.e. how some of these concepts might in 
combination lead to more powerful capabilities, or hinder 
controller performance.  

It was not the intention of the evaluation to quantitatively 
assess the effect of the new designs on a particular set of 
operational tasks, since the tools were not yet intended to solve 
particular problems. 

Figure 7. The tabletop AR display uses a single marker to augment an entire 
workspace.  Users can view the display from multiple points of view, and 

obstacles such as clouds and restricted airspaces are clearly visible. 

While the focus of the innovation process was centred on 
users the design process was, as yet, too immature to make 
quantitative analysis of the tools productive.  Indeed, focusing 
on specific implementations would have instead hampered the 
exploration of the tools’ full capabilities.  The evaluation took 
place at EUROCONTROL with three non-operational Air 
Traffic Controllers, each with between 3 to 18 years of 
operational experience.  They were requested to perform 
exploratory tasks in simplified scenario demos and asked to 
imagine how the new visualisation could help them to carry out 
operational tasks. We also used a set of predefined questions to 
stimulate thinking about alternate uses of the tools. 

A. Applications of the 3D-in-2D Concepts in ATC  

The study showed in general, that 3D visualisation can help 
a controller manage holding stacks, busy airspace sectors and 

military aircraft interception. Several potential benefits were 
indicated: 

• 3D in combination with 2D appears to offer the potential 
to reveal 3D positions and trajectories relative to each 
other.  

• Perception of dynamic and static 3D volumetric shapes of 
restricted airspaces is easier, reducing the cognitive load 
on controllers.  

• Current radar displays can result in nearby aircraft 
overlapping aircraft on the screen, making it difficult to 
read call signs.  3D displays can alleviate this. 

• The use of 3D might provide military controllers 
assistance to track high performance aircraft. This supports 
the finding of a previous work analysis [5]. At this stage 
however it seems that more operational evidence need to 
be collected, since none of the subjects involved in the 
session had military experience. 

• In busy airspace sectors, 3D could be useful for 
disambiguating traffic arriving or departing from a given 
airport from those arriving and departing from another 
nearby airport.  With the arrival of technologies such as 
PRNAV (Precision Navigation), this could increase the 
effective use of the airspace. Aircraft could be guided 
along 3D paths not available today due to uncertainty in 
navigation. For instance, in between the departure of a fast 
and a slow aircraft – the former departing first and 
climbing at higher altitude, the latter departing shortly 
afterwards and climbing at a lower altitude – it is not 
possible to put any aircraft today; but with the support of 
PRNAV it would. Such an improved use of the airspace 
would result in higher density of activities which could be 
better appreciated in combination with a 3D visualisation. 

B. Applications of 3D-in-2D Concepts beyond ATC 

Other application areas beyond ATC include airspace 
planning; procedure design, experimental scenario design, and 
training.  

Three dimensional CAD (Computer Aided Design) 
applications facilitate planning and design with a combination 
of both 2D and 3D views.  3D viewing could enhance the 
planning and design of airspaces.  Planners and procedure 
designers could use a virtual airspace to collect a qualitative 
understanding of different aspects of the airspace, such as 
ground clearances or noise distribution.  

There is also potential for use in experimental scenario 
design and performance analysis.  A researcher could 
accurately visualise traffic in 3D space, a task that most 
researchers will find considerably more difficult than trained 
controllers.   

Trainee controllers could experiment with new airspaces 
using 3D-in-2D displays.  They could interactively explore a 
localised 3D space using different features to understand its 
configuration, the distribution of global traffic, and assess the 
implications of maneuvers, e.g. lack of separation, overshoot or 
unnecessary travel distance. 
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These areas may be more suitable for initial airspace design 
because they are not real-time, operational situations.  This 
means that some limited experimentation is possible.  Since 
airspaces and procedures are carefully designed and examined 
over long periods of time, the addition of 3D visualisations has 
the potential to give users a way to improve comprehension, 
collaboration and efficiency without risking passenger safety. 

V. CONCLUSION

The human-centred innovation process was intended to 
provide new concepts that could aid human performance in the 
future SESAR ATC context.  It was necessary because the 
domain under consideration consists of loosely defined tasks 
with new or even future technology.  Indeed, this process is 
likely to inform the development of those tasks and future 
technologies. 

The Combination Display Framework allowed us to reason 
about which combinations of display format and techniques 
were likely to produce good results, and focus creative energies 
in those directions.  This aided the transfer of knowledge from 
the work of others while reducing the risk of duplication. 

The iterative component of the Human-Centred Innovation 
process led to the discovery of potential tool combinations.  
The skyscraper-symbicons concept and the AR 3D wall view 
both combined existing concepts to create vastly improved 
visualisations.   

In general, the Human-Centred Innovation process allowed 
us to creatively develop technology while remaining focused 
on the needs of users.  
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Abstract—Currently, online assessment of the aircrew 

performance focuses on behavioural data (flight data and pilot’s 

actions) and the detection may intervene too late for coping with 

the situation degradation. An early assessment of the pilot’s 

“internal state”, based on physiological data collected from his 

autonomous nervous system (ANS) and predictive of his 

behaviour, is necessary. These data give clues both on the 

cognitive activity and on the emotional states and stress. The 

integration of ANS devices in a cockpit presents practical 

drawbacks and their use is often limited to simulators. In this 

preliminay study, the pros and cons of the adaptation of a 

standalone eye tracker in a light aircraft are presented. In spite 

of a sensitivity to light conditions and a definition of areas of 

interest limited to a part of the cockpit, the eye tracker has 

provided interesting behavioural (fixations) and physiological 

(pupillometry) measures in nominal (from take-off to landing) 

and degraded (provoke a simulated engine failure and plane 

down toward the airfield) conditions. The pilots spent less time 

glancing at the instruments, and focused on less instruments in 

the degraded condition.  Moreover, the pupil size varied with the 

flight phases in the degraded condition, which reflected the 

variations of stress and attention levels. These encouraging 

results open two tracks: the development of new eye trackers able 

to overcome current technical limitations, and neuroergonomics 

researches providing guidelines for new man-machine interfaces 
integrating both flight and crew state vectors.

Keywords: Neuroergonomics, Eye Tracker, pilot activity, 
pupillometry, human factors 

I. INTRODUCTION

As long as the human operator (i. e. the pilot) is a key agent 
in charge of the flight, the definition of metrics able to predict 
his performance is a great challenge. Currently, online 
assessment of the aircrew performance focuses on behavioural 
data measured from the pilot/aircraft interactions. In particular, 
formal methods are developed to detect human errors thanks to 
aircraft/pilot behaviour monitoring [1, 2]. A predictive 
approach based on particle Petri nets [3] is also proposed to 
anticipate possible pilot-systems conflicts [4] that are accurate 

precursors of the pilot’s loss of situation awareness [5]. 
However, all these methods, which rely on the operator’s 
actions, may intervene too late for coping with the situation 
degradation. An early assessment of the pilot’s “internal state”, 
predictive of his behaviour, should tackle the problem. 
Physiological data collected from the pilot’s autonomous 
nervous system (ANS) are good candidates since they give 
clues both on the cognitive activity and on emotional states and 
stress [6] [7]. Arousal, vigilance, emotional states, attentional 
demand can be derived from heart rate and blood pressure, 
theta and alpha brain waves, temperature variations, 
respiration, skin conductance and oculometry [8] [9]. 

All ANS devices though present practical drawbacks. They 
are sensitive to the operator’s physical state (e.g. sweating 
perturbs skin conductance, fever changes temperature and heart 
responses ...) or to the environment (e.g. magnetic and electric 
fields may create artefacts on electroencephalograph 
responses), and they are too cumbrous to be easily adapted to a 
cockpit. For example, oculometry suffers the following 
limitations: 

As eye fixations “fill up” the total time, not all 
fixations are relevant to assess the pilot’s visual 
demand. Moreover, a fixation does not necessarily 
imply perception [10];

As the pupil diameter varies in function of light 
intensity to maximise visual capacity, pupillometry 
cannot be used to assess the level of stress of the pilot 
under changing light environments ;

Electro-oculograms and most eye trackers are 
cumbersome devices and may disrupt pilots’ activity 
since pilots have to wear an electrode close to the eye 
or special equipment like helmets.

These considerations tend to restrict the utilisation of ANS 
devices to controlled studies in laboratory (i.e. flight simulator) 
[11] [12], although they have already been used in real flight 
conditions [13]. Eye tracking offers a fruitful perspective since 

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9303



visual perception is a key for pilot to control the flight and 
oculometry may provide both behavioural and 
cognitive/emotional physiological measures [7] to assess the 
pilot’s performance:  

The visual-search strategy, or the selective attention to 
relevant visual stimuli is an index of information needs 
[14];

The eye-scanning patterns of pilots in terms of 
frequency of fixations seem to be related to the 
instruments’ importance. The length of fixations, 
however, is related to the difficulty in 
obtaining/interpreting information from instruments 
[15]; 

An increase in workload is accompanied by increased 
fixation times [16] [17];

The decrease of the duration and the number of eye 
blinks are strongly correlated to visual demand [18] 
[9];

Low frequency “pupillary oscillations” are linked to 
fatigue [19];

The pupillary response is related to mental workload 
[20] [21] [22];

In many cognitive processes such as language 
processing, perception, memory, complex reasoning 
and attention, the pupil diameter grows with the 
difficulty of the task [23] [24];

Pupillary responses also provide clues on the 
emotional state [25] [26] and pupil size may vary on a 
continuum according to emotional valence [27] or 
reflect the emotional activation or arousal [28]. 

Our long-term goal is to develop an onboard system able to 
predict the pilot’s performance through the analysis of the 
aircraft state vector, the pilot-aircraft interactions state vector 
and the pilot’s physiological state vector. However, the 
integration of this latter state vector implies to assess the 
feasibility and the acceptability of a non intrusive physiological 
device. Thus, this preliminary study proposes to assess the 
usability of an on-board eye tracker in real flights and aims at 
assessing the benefits of this tool for human factor concerns.  

II. METHODS

A. Participants 

A permit to fly was given by the European Aviation Safety 
Agency (number 856/2007 – EASA PTF.A07.0232) to conduct 
the experimentation with the restriction that ISAE flight 
instructors only were authorised to fly the airplane with the on-
board eye tracker. Six ISAE flight instructors, all males, could 
participate to the experiment. Their mean age was 43 years 
(range, 35-58). Their mean flying experience was 5896 hours 
(range, 1480-13000). The six participants were qualified to fly 

the Aquila AT01 aircraft (two-seated light airplane, 100 
horsepower). 

B. Scenario

The flight scenario starts at nightfall at Lasbordes airfield 
and ends before the beginning of the aeronautical night1. It is 
divided into two consecutive sequences (cf. fig 1): 

The first sequence consists in a classical visual traffic 
pattern : take off (1) – cross wind leg (2) – down wind 
leg (3) - base leg (4) – last turn (5) – final leg (6) - 
touch and go (7) . This sequence is the nominal 
condition; 

The second sequence starts after the previous touch 
and go (7) and consists in flying back toward 
Lasbordes airfield at an altitude of 2500 feet. Once 
over the airfield, the pilot had to chop the throttle so as 
to perform an engine failure exercise (8) and then to 
plane down toward the airfield (9-12). This sequence is 
the degraded condition. 

This scenario is presented to the pilot one hour before the 
beginning of the experimentation. During the briefing, it is 
clearly exposed to each pilot that he decides the moment of the 
engine failure exercise and that he may use the throttle at any 
moment if flight safety is altered.  

Figure 1: The two flight sequences: the nominal and the degraded one. The 
nominal sequence ends after the landing (6), the degraded sequence starts just 

after, with the take off (7) 

C. Oculometry

A non intrusive eye tracker Tobii x50 was used for the 
purpose of the experimentation. This device has 0.5 degree of 
accuracy and a 50 HZ sampling rates. It also provides instant 
re-acquisition after extreme head motion. It had to be adapted 
to be easily set in the Aquila aircraft without any modification 
of the airplane and without provoking any disturbance for the 
pilot (e.g. no visual scanning disturbance). 

                                                       
1

The aeronautical night begins in France thirty minutes after 
sunset. 
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The eye tracker was placed below the left part of the 
instrument panel in front of the pilot’s seat (cf. Fig 2). A scene 
camera was centrally placed under the fix part of the canopy. 
Data synchronization and processing was done via an 
analog/numerical video converter, a Tobii external card and a 
Sony Vaio laptop. These three light devices were situated in 
the luggage compartment. 

Figure 2: The eye tracker (ET) was fixed under the instrument panel and the 
data processing system was placed in the luggage compartment. This latter 

processed and surimposed in real time both the eye tracker data and the video 
data coming from the scene camera.  

The technical characteristics of the x50 eye tracker and its 
particular location allowed to track the pilot’s eye gaze on the 
left part of the instrument panel where are the primary flight 
beacons (i.e. airspeed, altimeter, horizon…) As shown in the 
figure 3 and 4, it is not possible to determine the pilot’s eye 
gaze out of this area (i.e. the eye gaze out of the cockpit, the 
eye gaze on the beacons situated on the right part). 

Figure 3: The blue dot represents the gaze fixation. Note that the pilot is 
focusing on the airspeed instrument to check the rotation speed (Vr), just 

before taking-off 

1) Area of interests
A dedicated analysis software provides in real time data 

such as the timestamps, the (x,y) coordinates of the pilot’s eye 
gaze on the left instrument panel and the pupil diameter. 
Moreover it is possible to determine the number and the 
duration of fixations in specific “areas of interests”. In this 
sense and in order to study the pilot’s ocular behaviour, 
fourteen areas of interest corresponding to the fourteen beacons 
of the left instrument panels have been respectively defined: (1) 

outside temperature, (2)  compass,  (3) manifold pressure, (4) 
alarm,  (5) airspeed, (6) horizon, (7) altimeter, (8) tachymeter, 
(9) bank and turn indicator, (10)  directional gyroscope, (11)  
vertical speed, (12) VOR, (13) switches (14) flaps (cf. fig 4).   

Figure 4: The fourteen rectangles define the different area of interests.  

2) Pupil diameter variations
As the eye gaze, the pupil size is recorded continuously. In 

practice, establishing mean physiological values for a group of 
subjects for an entire task is meaningless because of inter-
individual variability. We use delta values (differences between 
the mean pupil diameter during the concerned flight sequence 
and the one calculated on the whole experiment) for measuring 
the pupil variations. 

Luminosity measurements were performed. Indeed the 
pupil regulates the amount of light that enters the eye, and thus, 
its size variations are highly sensitive to the luminosity 
changes. Thanks to a lux-meter the ambient luminosity was 
continuously recorded in order to identify the flight sequences 
where the light remains reasonably constant. In accordance 
with Gupta’s work [30] on pupil size variations in function of 
the ambient luminosity, we have limited the pupil variations 
analysis to sequences where the visible light was inferior to 25 
lux. 

III. RESULTS 

As the sample size was small and the data did not follow 
normal distributions, nonparametric statistical methods for 
dependent sample were used. Overall analyses were performed 
with the Friedman Anova. Wilcoxon signed rank test was used 
for paired-samples tests. The analyses were performed with 
Statistica 7.1 (© StatSoft). 

A. Behavioural results 

The different fixation times, expressed in percentage of the 
total time spent on the 14 defined instruments during the 
nominal landing sequence vs. the landing sequence with the 
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simulated failure (the degraded landing sequence), are 
presented in figures 5 and 6.   

Figure 5: Mean fixation durations in percentages on the areas of interest of the 
six pilots during the nominal landing, from base leg until the flare (mean total 

duration = 13.59 sec) 

Figure 6: Mean fixation durations in percentages on the areas of interest of the 
six pilots during the degraded landing, from base leg until the flare (mean total 

duration = 5.53 sec) 

The results showed a reduction of the number of 
instruments gazed during the degraded sequence in comparison 
to the nominal one. During the nominal sequence, all the 
instruments were looked (except for the alarm panel) whereas 
only 10 instruments were looked during the degraded 
sequence. More precisely, compass, switches and tachymeter 
weren’t gazed. Moreover, there was an increase of the relative 
fixation time on the airspeed during the degraded sequence 
regarding to the nominal (77.49% vs. 58.12%). 

Finally, the time spent on instruments appeared to be lower 
during the degraded sequence (cf. Fig 7), showing that pilots 
focused more on external information.

Figure 7: Mean fixation time on the airspeed instrument and all other 
instruments during the nominal landing and the degraded landing (time in sec) 

Below is presented the official “cruise checklist” of the 
Aquila AT01 (table 1) and the fixation times in percentages 
(fig. 8) obtained during the cruise check list (generally 
performed at an altitude of 2000 feet).

TABLE 1: AQUILA ATO1 OFFICIAL “CRUISE CHECKLIST” [31] 

Trim set 
Chronometer Top and estimated
Altimeter set 
Directional Checked
GPS Use & Stby state 
Engine instruments Checked
Manifold pressure 25 inches 
Tachymeter 2000 RPM 

Figure 8: Mean fixation times in percentages on the 14 zones of interest 
during the “cruise checklist”. Note that “airspeed” stands for “airspeed 

indicator”, “directional” stands for directional gyroscope, “horizon” stands for 
gyro horizon and “bank and turn” stands for “bank and turn indicator” (mean 

total duration = 7.27 sec) 
The analysis shows that the tachymeter is the most looked 

instrument (46.71%), and then comes the manifold pressure 
(29.78%) and the airspeed (14.12%). 
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B. Pupillary response 

In spite of the fact that all the experiments were conducted 
at nightfall, the luminosity variation did not allow to analyse 
pupil diameter variations during all the sequences (cf. table 2). 

Considering this pitfall, only the degraded sequences of 
four pilots (pilot ID: 1 to 4) were included in the pupil diameter 
variation analysis. Indeed, mean luminosity variations during 
the considered sequences were only of 5.75 lux for the four 
pilots. 

TABLE 2: LUMINOSITY MEASUREMENTS FOR EACH PILOT AT THE BEGINNING 

AND THE END OF THE TWO FLIGHT SEQUENCES (E.G. PILOT ID 1 STARTED THE 

FIRST FLIGHT SEQUENCE WITH 127 LUX AND ENDED IT WITH 40 LUX ; HE THEN 

STARTED THE SECOND SEQUENCE WITH 20 LUX AND ENDED IT WITH 7 LUX)

The Friedman’s ANOVA showed a strong significant 
difference (p=0.001) concerning the delta pupillary diameter 
among the four flight phases (fig. 9). However, Wilcoxon post 
hoc paired-samples analysis didn’t show any difference. 

Figure 9: Pupillary diameter changes (in mm) regarding the four flight phases 
during the second flight sequences, respectively one minute before the failure 
(1), the failure and the crosswind (2), the base leg (3), from the last turn to the 

final touch (4) 

IV. DISCUSSION

 The introduction of a new onboard device for human 
factors purposes must fulfil three requirements: 1) the device 
does not disturb the pilot’s activity, 2) the device is able to 
work correctly in real flight conditions, 3) the device improves 
significantly the human-machine interface, and therefore the 
flight safety. The preliminary neuroergonomics work that is 
presented here gives some clues about the capabilities of an eye 
tracker as a device onboard a small aircraft. 

Observation of the six pilots showed that no perturbation 
was generated by the eye tracker that remained totally 
unnoticed after the preliminary set up phase. However, this 
must be confirmed on non expert pilots and on other types of 
aircrafts. 

 Concerning the usability of the eye tracker in real flight 
conditions, the results are more equivocal. Because of light 
issues, we weren’t able to compare pupil dilation during the 
nominal sequence vs. the degraded one in all pilots. Moreover, 
AOIs can be only defined at places that are constrained by the 
eye tracker’s location in the plane. This can be overcome by 
helmet eye trackers, however with an intrusiveness of the 
device in the pilots’ activity. Technological progress must thus 
be accomplished to allow the generalisation of onboard eye 
tracking experiments. 

In spite of these drawbacks, the preliminary results 
highlight the possibility of deriving interesting measures of the 
pilot’s activity from eye tracker data.  

Analysis of the areas of interest captured by the eye tracker 
is a way to assess its accuracy in real conditions. In particular, 
analysis of critical events such as the in-flight checklist 
sequences is a key to evaluate the reliability of this tool: 

The visual scanning is codified by an official procedure in 
the flight manual than can be used as a model of 
reference;

These sequences are very short (less than ten seconds) 
and flight parameters to be checked by the pilot are vital.

Such constraints lead the pilots to relevant eye fixations 
during these periods and allow assuming that the areas of 
interest observed are also a priori the result of a real voluntary 
attentional activity. 

In this perspective, the analysis of the areas of interest 
during the “cruise checklist” (cf. Fig 5) shows that the visual 
scanning of the six pilots is limited to eight flight instruments. 
More precisely the pilots have focused on the tachymeter, the 
manifold pressure, the airspeed indicator, the altimeter, the 
directional gyroscope, the compass, the bank and turn indicator 
and the gyro horizon. These areas of interest are consistent with 
the ones defined in the official Aquila “cruise checklist”: the 
tachymeter and the manifold pressure have to be set to 
particular values  and the results of these adjustments have to 
be implicitly checked on the airspeed indicator, the altimeter 
has to be checked as the “cruise checklist” starts at an altitude 

Luminosity variations (in lux) 

Pilot ID first sequence second sequence 

Subject 1  127-40 20-7 

Subject 2 82-36 8-4 

Subject 3 90-35 10-6 

Subject 4 93-33 10-12 

Subject 5 473-230 220-91 

Subject 6 610-600 520-380 
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of 2000 feet, and the value of the directional gyroscope has to 
be checked, which is done thanks to a quick comparison with 
the value of the compass.  

Though it is not explicitly expressed in this checklist, it is 
totally consistent that flight indicators such as gyro horizon and 
turn and bank indicator are supervised by the pilots in order to 
be stabilised perfectly on the three axes (roll, pitch and yaw) to 
perform an optimal checklist. One may notice that some 
actions of the checklist are not detected by the eye tracker but: 

The chronometer and GPS settings were not performed as 
the pilots were not engaged in a complex navigation task 
but stayed close to the airfield; 

The trim or the engine instruments (e.g. oil pressure 
indicator) are located on the right part of the instruments 
panel where no eye tracking could be established due to 
the limitation in angle of the Tobii x50.

The analysis of the fixation times on the areas of interest 
during this checklist showed that the pilots focused particularly 
on the tachymeter (46.71 % fixation time on this instrument 
during that checklist), the manifold pressure (29.78 %) and the 
airspeed indicator (14.12 %). Interviews with the six pilots 
have confirmed that the engine management during this 
checklist requires a certain amount of attentional demand: very 
accurate and careful adjustments were needed on the 
tachymeter, manifold pressure and the speed. The pilots spent 
less time on checking instruments as the altimeter (4.48%), the 
directional gyroscope (1.82 %) or the compass (1.32 %). 
Indeed, discussion with the pilots revealed that the altimeter 
was rapidly looked to check that a 2000 feet altitude was 
reached (i.e. to start the cruise checklist). They also just 
glanced at the directional gyro and the compass: as the pilots 
were not about to perform a navigation task, the cross-checking 
of these two indicators were of less importance. In this sense, 
these findings are consistent with research conducted on the 
correlation between attentional demand and time fixations [15] 
[16] [17]: important information implies longer time fixations. 

The analysis and the comparison of the pilots’ areas of 
interest during the landing in nominal and degraded conditions 
(cf. fig 6 and 7) have revealed different ocular patterns. First of 
all, the total duration of fixations in nominal conditions was 
more than two time higher to the total duration of fixations in 
degraded conditions (13.59 seconds vs. 5.53 sec). This suggests 
that in degraded conditions, the pilots spent more time looking 
outside the cockpit to assess and adapt their trajectory in 
reference with the airfield. Another major difference between 
the two landings relied on the fact that the pilot’s areas of 
interests were less distributed in the degraded conditions than 
in the nominal one with a particular focus on the airspeed 
indicator (77.49% of total fixation times in degraded landing 
vs. 58.12% in nominal landing). A first consideration is to take 
into account the fact that in the degraded condition, the pilots 
had no more interest to supervise the tachymeter and the 

manifold pressure due to the engine failure. Another 
consideration is given by the pilots who all agreed that in the 
degraded condition they had faced troubles to manage their 
speed as they were surprised by the high lift-to-drag ratio of 
the Aquila. In this sense, this led them to focus especially on 
the airspeed indicator and particularly to take a key decision: 
maintaining the landing or going around. 

The analysis of pupil diameter variations shows some 
evolutions according to the different flight sequences. More 
precisely, mean delta pupil diameter was of -0.25 mm before 
the simulated failure, +0.47 mm during the failure and the cross 
wind leg, -0.10 during the base leg and +0.12 from the last turn 
to the final touch. These results are consistent with the pilots’ 
interviews that report a high anxiety and cognitive demand due 
to the management of the aircraft during the few early minutes 
of the simulated failure, a lower anxiety during the base leg 
because of the successful stabilization of the aircraft, and 
finally another increase of anxiety and cognitive demand 
during the landing sequence because of the required precision 
and the potential go-around in case of unsafe approach. 
Furthermore, the literature classically reports a high cognitive 
demand and a high ANS arousal during the landing [32], which 
is consistent with the increase of pupil diameter observed 
during the last turn and the final touch. 

During the flying activity, pilots are confronted with 
numerous stressors that can deplete their performance, such as 
time pressure, increased anxiety, and unexpected failure. 
Whereas a growing literature [33] [34] sheds light on the effect 
of complex flight scenarios or anxiety on pilots’ performance 
and physiological parameters, real flight experiments remain 
extremely rare. Therefore, on-board eye tracking offers 
promising perspectives in term of real condition monitoring of 
both pilot’s actions and physiological states, although this 
ecological approach shows some technical limitations. Firstly, 
the analysis of the areas of interest shows the reliability of the 
tool and its capability to predict behaviours. Indeed, during a 
takeoff, it has been possible to link the absence of visual 
scanning on the flaps with an omission of a required action on 
them later. Moreover, the AOI analysis allows bringing to 
light differential visual behaviours according to the landing 
condition (nominal or degraded). Secondly, the measurement 
of the pupil dilation gives clues on the pilot’s emotional state 
and/or cognitive workload. The pupil response seems to 
evolve differently during the four flight phases. The pupil 
diameter appears to be higher just after the simulated engine 
failure. This observation is coherent with the increase of 
mental demand and/or anxiety during this particularly critical 
flight phases. In addition, the occurrence of differential 
patterns during the failure phases vs. the nominal ones seems 
to emphasize pupil diameter results. Further work should be 
conducted by night to totally get rid of the luminosity 
variations and to attempt to produce more results, in particular 
concerning the comparison of degraded and nominal 
conditions. 
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Abstract — The job of aviation security screeners is a highly 

demanding task. Based on the x-ray image of a passenger bag, a 

screener has to decide within few seconds only whether the bag is 

ok or has to be hand-searched. This x-ray screening task includes 

specific knowledge and visual cognition abilities. The knowledge 

about which items are prohibited and what they look like in x-ray 

images of passenger bags have to be learned on the job. In 

contrast the ability to cope with high bag complexity, 

superposition and viewpoint of threat items is relatively stable 

and can only be improved little with on the job training. Whether 

these abilities can be measured within a pre-employment 

assessment procedure using different subtests of well established 

intelligence test batteries was investigated in this study. Results 

revealed a relationship between the latent variable ability and 

detection performance in x-ray screening for both samples. 

However, 4 of the 12 intelligence tests are sufficient to explain 

detection performance in x-ray screening. The relationship 

between the latent variable ability, the X-Ray Object Recognition 

Test and detection performance later on the job was tested 

additionally.  

Abilities, aviation security, visual cognition, x-ray screening 

I. INTRODUCTION

In recent years the importance of aviation security has 
increased enormously. To avoid that passengers bring potential 
threat items into the security restricted area and on board an 
airplane, body search and x-ray screening of passenger bags is 
essential. The x-ray screening task of aviation security 
screeners is very demanding and includes both specific 
knowledge and visual cognition abilities. Screeners have to 
acquire the knowledge about which items are prohibited and 
what they look like in x-ray images of passenger bags. This job 
and task specific knowledge and expertise respectively has to 
be learned after people got employed. Further, considering x-
ray images different factors such as bag complexity, 
superposition and viewpoint of the threat items can influence 
the detection as well. Studies in this area could show that 
detection performance decreases significantly if threat items 
are shown in close-packed bags, if threats are more 
superimposed by other items and if they are shown in an 
unusual view. These effects were found for experts and 
novices. Furthermore, large individual differences could be 
seen for both, experienced aviation security screeners and 
novices [1]. Reference [1] defined these factors as image-based 

factors in x-ray screening. As they could be found for both 
groups, they are rather referred to relatively stable abilities than 
training. Therefore, it can be assumed that job applicants who 
are able to cope with these image-based factors perform better 
later on the job. Thus, measuring the ability to cope with 
image-based factors within a pre-employment assessment 
should increase detection performance later on the job 
remarkably. 

Therefore, the X-Ray Object Recognition Test (X-Ray 
ORT), a reliable and valid x-ray screening test that measures 
image-based factors relatively independent of knowledge was 
developed [2]. Results could show that test results in the X-Ray 
ORT correlate significantly with threat image projection (TIP) 
data which measure detection performance on the job. Further, 
aviation security screeners who were selected with the X-Ray 
ORT performed in another x-ray screening test that measures 
all kind of prohibited items and was applied within the 
recurrent competency assessment significantly better than 
screeners who were not selected with this test [3].  

However, the image-based factors should also be 
measurable with general visual cognition tests as these factors 
can be compared to the visual cognition processes visual 
search, figure-ground segregation and mental rotation that were 
investigated in many research studies. Furthermore, it can be 
expected that other abilities such logical thinking or 
concentration and vigilance play also an important role. For 
example the detection of improvised explosive devices (IEDs) 
which vary widely in shape and form, but share a common set 
of components differs from the detection of other prohibited 
items. As not one shape as a hole has to be detected, but the 
three components power source, detonator and explosive 
material, this task probably requires rather logical thinking. 
Moreover, screeners have to be constantly vigilant when 
performing the x-ray screening task. Therefore, a visual 
cognition test battery (CTB) including 12 tests that best match 
the x-ray screening task was applied within the pre-
employment assessment additionally. Most tests are part of 
well established German intelligence test batteries. Four 
subtests of the Leistungsprüfsystem [4], three subtests of the 
Intelligenz Struktur Test 2000 (IST 2000) [5], the Raven's 
Advanced Progressive Matrices [6], the Frankfurter 
Aufmerksamkeits Inventar (FAIR) [7] and three tests which 
were developed by the University of Zurich [8] were used. 
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Tests from the visual CTB were expected to measure the 
following unobserved latent factors figure-ground segregation, 
visual search, mental rotation, spatial imagination, logical 
thinking and vigilance.  

In a first step the influence of ability on detection 
performance in x-ray screening was investigated using the 
visual CTB. A common factor model was estimated to measure 
which tests in the visual CTB predict on the job performance 
best and can therefore be used as pre-employment assessment 
tool. Further, the common factor model which was estimated to 
measure the relationship between ability and detection 
performance in x-ray screening was validated by another 
sample. In terms of efficiency a possible shortening of the 
visual CTB was examined. Further, a full structural equation 
modeling (SEM) was estimated by defining the test results in 
the X-Ray ORT as additional indicator.  

II. METHOD

A. Participants 

The two samples used in this study consisted of 169 (M = 
35.10, SD = 9.85; range 20 to 55 years)  and 97 (M = 36.19, SD
= 11.44; range 20 to 55 years) respectively job applicants who 
were employed as aviation security screeners based on their 
test results in the pre-employment assessment for aviation 
security screeners. The first sample (2006 Sample) consisted of 
66 females and 103 males, the second sample (2007 Sample) of 
51 females and 46 males. Part of the pre-employment 
assessment was the X-Ray ORT, the visual CTB, a German 
and English language test, a color blindness test, a physical 
examination test and a job interview. All results except for the 
visual CTB were used as selection criteria. 

B. Measures 

1) Visual Cognition Test Battery (CTB):  The visual CTB 
consists of 12 tests which are mostly part of well established 
intelligence tests. All tests were conducted computer-based and 
not in the original paper-and-pencil form. To measure the 
second order factor ability, nine tests were assigned to the four 
first order factors figure-ground segregation, visual search, 
mental rotation and spatial imagination conducting 
Confirmatory Factor Analyses (CFAs). The remaining three 
tests Raven, Fair and a subtest of the IST 2000 (IST_MF) 
served as indicators.

a) Figure-ground segregation: The latent variable 
figure-ground segregation was measured with the LPS10 and 
the Noiser. The LPS10 is a subtest of the Leistungsprüfsystem 
[4], a major German intelligence test battery. It measures the 
ability to recognize a shape by ignoring irrelevant other 
features. Participants have to choose the only simple shape out 
of five which fits into the complex line drawing. The test 
includes 40 shapes of increasing complexity. Scored is the 
number of correct solutions that can be answered within 3 
minutes. The Noiser was developed by the University of 
Zurich [8]. It measures how well people can recognize objects 
that are not fully visible. The test consists of 80 line drawings 
of simple objects which are increasingly destroyed (level of 

destruction: 75%, 80%, 85% and 90%). Trials are shown for 4 
seconds only and then participants have to mark the correct 
term out of 20 choices. Scored is the number of correct 
choices. 

b) Visual search: Visual search was measured with the 
Letter Search Test (LST) and the Image Comparison Test 
(ICT) [8]. The LST consists of a total of 60 trials. Participants 
have to find a lowercase letter within three-dimensional 
uppercase letters. There are three difficulty levels increasing in 
the number of uppercase letters. Each trial is presented for 5 
seconds only, then participants have to decide whether there 
was a lowercase letter or not. Only fifty percent of all trials 
contain a target object. For analysis d’ is calculated. The ICT 
comprises of two almost identical pictures that are presented 
next to each other. Participants have to mark all 15 differences 
within 3 minutes. Scored is the number of correct marked 
differences. 

c) Mental rotation: The latent variable mental rotation 
was measured with the LPS7 and the Figurenauswahl 
(IST_FA) that are subtests of two major German intelligence 
test batteries, the Leistungsprüfsystem [4] and the Intelligenz-
Struktur-Test (IST 2000) [5]. In the LPS7 participants have to 
mark the flipped number or letter in a row of equal but 
randomly rotated numbers or letters. Participants are given 2 
minutes to complete as many trials as possible out of 40. 
Again, scored is the number of correct solutions. The IST_FA 
is about rearranging several pieces to one of five possible 
figures. The test consists of 20 trials that have to be solved 
within 7 minutes. Scored is the number of correctly answered 
trials. 

d) Spatial imagination: Spatial imagination was 
measured with the LPS8, LPS9 of the Leistungsprüfsystem 
and the Würfelaufgabe (IST_WÜ) which is again a subtest of 
the IST 2000. The LPS8 consists of eight trials that have to be 
completed within 4 minutes. Participants have to mentally fold 
a leaf of paper into a defined form and determine for several 
sides which one of the leaf corresponds to the folded form. 
Again scored is the number of correct answers out of 40. The 
LPS9 measures spatial ability and asks participants to count 
the number of sides of three-dimensional geometric objects. 
Then they have to mark the correct number out of ten choices. 
Scored is the number of correctly marked numbers. The test 
duration is 3 minutes and maximum score is 40. Last, the 
subtest IST_WÜ consists of 20 trials that have to be 
completed within 9 minutes. Participants have to mentally 
rotate a cube and decide which of five alternatives match the 
target cube. 

e) Raven: Logical thinking was measured using Raven's 
Advanced Progressive Matrices [6]. This test measures non-
verbal deductive reasoning and visual discrimination. 
Participants have to complete a 3 * 3 matrix of abstract figures 
whereof the last figure in the lower right corner is missing. 
They can choose the right figure out of eight alternatives. The 
total of 47 used matrices increases in difficulty over time and 
the test duration is set to a maximum of 10 minutes. Again, 
scored is the number of correct solutions. 
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f) Fair: The Frankfurter Aufmerksamkeits Inventar 
(FAIR) measures vigilance [7]. The task in this test is to 
discriminate between very similar looking signs as fast and 
accurate as possible. The participants are given 6 minutes to 
attend the test consisting of a total of 640 trials. The number of 
correctly detected targets as well as correctly rejected non-
targets is used for analysis. 

g) Merkfähigkeitstest (IST_MF): The IST_MF is as well 
a subtest of the IST 2000 and measures visual memory 
capacity [5]. This test that measures performance of short-term 
memory for figures consists of 13 pairs of symbols that have 
to be memorized within 1 minute. Then participants have to 
select the correct counterpart for all 13 symbols out of 5 
alternatives within 3 minutes. Scored is the number of correct 
solutions.   

2) Detection performance in x-ray screening: The 
detection performance in x-ray screening was measured with 
two x-ray screening tests and TIP data. The Prohibited Items 
Test (PIT) and the Bomb Detection Test (BDT) were part of 
the recurrent competency assessment which was conducted 
between 4 and 6 months after employment. Both tests are about 
recognizing threat items in x-ray images of passenger bags. 
Images were displayed for 10 and 15 seconds respectively on 
the screen. Then, participants have to answer whether the bag 
was OK (included no threat item) or NOT OK (included a 
threat item) by clicking on the button. Both, the prohibited 
items and bomb detection test differed in the 2006 and 2007 
sample only insofar as other images were used. Results were 
calculated using d’ which is a psychophysical measure and 
takes into account the hit and false alarm rate [9], [10]. For 
details about these x-ray screening tests, reliability and validity 
measures see [3], [11]. TIP is a technology which allows 
displaying fictional threat items into real passenger bags. That 
way, detection performance on the job can be measured. Again, 
d’ was calculated and used as detection performance measure. 
For more information about TIP data see [12]. 

3) X-Ray Object Recognition Test (X-Ray ORT): The X-
Ray ORT is an x-ray screening test which was developed to 
measure the ability to cope with image-based factors in x-ray 
screening relatively independent of knowledge. It consists of 
256 x-ray images of passenger bags. Half of them contain 
either a gun or a knife. The other 128 images are harmless 
bags. Each bag is displayed for 4 seconds on the screen and 
then participants have to decide whether the bag was OK (no 
threat item) or NOT OK (a gun or knife) by clicking on the 
respective button. Detection performance was calculated using 
the detection performance measure d’. Test construction, its 
reliability and validity measures can be seen in [2], [3]. 

C. Procedure 

The performance in the visual CTB and the X-Ray ORT 
was measured within the pre-employment assessment 
procedure. After employment all screeners had an initial 
training course which took three weeks. They also received 
training with the individual adaptive training system X-Ray 
Tutor (XRT). Screeners worked 4 to 6 months before they 
passed the first competency assessment which includes three 
x-ray screening tests and a theoretical exam on computer. 

D. Modeling Description 

The goal of this study was to test whether results in the 
single tests of the visual CTB show a relationship to detection 
performance in x-ray screening later on the job. The model was 
tested using a step-by-step procedure. First, CFAs were 
conducted to investigate how well the indicator variables 
accurately reflect the latent variables. Then, a common factor 
model was conducted for each group (2006 Sample, 2007 
Sample). Second, a possible shortening of the visual CTB was 
tested. Third, a full structural equation modeling was 
conducted. As goodness-of-fit indices we report the sample-
size-independent comparative fit index (CFI). Its values 
indicate a good fit the closer they are to one. According to [13] 
values greater or equal to .90 indicate acceptable model fit. We 
also report the root-mean-square error of approximation 
(RMSEA). RMSEA values less than or equal to .05 indicate 
good model fit. Furthermore, the information theoretical fit 
measures AIC, BCC, BIC and CAIC are reported because they 
are less sensitive to small sample size and are not based on 
statistical inference using probability theory (see [14]). All 
information theoretical fit measures should be substantially 
smaller than they are for the saturated model [15]. 

III. RESULTS

Table 1 shows descriptive statistics for all indicator 
variables. Table 2 and Table 3 depict the sample correlation 
matrix for the 2006 sample and for the 2007 sample, 
respectively (see Appendix).  

We first specified a CFA model with the four first order 
factors figure-ground segregation, visual search, mental 
rotation, spatial imagination and the three indicators Raven, 
Fair, IST_MF to measure the second order factor ability. 
However, results indicate that the second order factor loadings 
between the second order factor ability and the four first order 
factors as well as the three indicators were all not significantly 
different from one. Thus, all 12 indicators load on one factor 
and there is no need to model separate factors. Furthermore, 
another first order factor named detection performance in x-ray 
screening was defined. This factor measured the detection 
performance in x-ray screening with the three indicators PIT, 
BDT and TIP. As can be seen in Figure 1, the common factor 
model includes the two first order factors ability and detection 
performance. 
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TABLE I. RELIABILITIES, MEANS, STANDARD DEVIATIONS OF 
INDICATOR VARIABLES

2006 Sample 

(N = 169) 

2007 Sample 

(N = 97) Indicator  

variables Reliability M SD M SD 

LPS10 .83c / .69c 0.63 0.20 0.61 0.20 

Noiser .95a / .91b 0.18 0.02 0.18 0.02 

LST .73a /.81b 0.36 0.17 0.36 0.14 

ICT .83d 0.65 0.18 0.64 0.16 

LPS7 .83c / .61c 0.32 0.18 0.28 0.16 

IST_FA .76a / .79b 0.51 0.20 0.51 0.19 

LPS8 .83c / .70c 0.63 0.31 0.62 0.29 

LPS9 .83c / .75c 0.58 0.15 0.53 0.15 

IST_WÜ .80a / .86b 0.50 0.19 0.47 0.20 

Raven .93a /.94b 0.34 0.14 0.32 0.14 

Fair > .78b / > .85c 0.34 0.07 0.27 0.09 

IST_MF .92a / .80b 0.54 0.20 0.56 0.24 

X-Ray ORT* > .91a / > .78b 1.74 0.33 1.85 0.22 

PIT 

CAT 

> .87a / > .87b

> .88a / > .84b

6.02 

--

1.68 

--

--

6.58 

--

1.72 

BDT1.0 

BDT2.0 

> .80a / > .77b

> .88a / > .80b

3.71 

--

2.49 

--

--

5.50 

--

1.93 

TIP .58 - .90b 9.00 1.19 8.12 1.02 

The measurement model with the 2006 sample revealed 
that all factor loadings on the two constructs ability and 
detection performance were substantial and significant (see 
Figure 1). The covariance between ability and detection 
performance was 0.018 (SE = 0.006), p < .01, corresponding to 
a correlation of r = .38. According to [16], [17] the model fit 
was good and should not be rejected 2(89, N = 169) = 125.72, 
p < .01, CFI = .952, RMSEA = .050, AIC = 187.72 (saturated 
model 240.00), BCC = 194.24 (saturated model 265.26), BIC = 
284.74 (saturated model 615.59), CAIC = 315.74 (saturated 
model 735.59). As indicated by the goodness-of-fit indices, the 
model for the 2007 sample reproduced the covariance matrix as 
well very well 2(89, N = 97) = 98.99, p = .22, CFI = .981, 
RMSEA = .036, AIC = 160.99 (saturated model 240.00), BCC 
= 174.58 (saturated model 292.60), BIC = 238.48 (saturated 
model 539.98), CAIC = 269.48 (saturated model 659.98). 
Covariance between the two constructs ability and detection 
performance was 0.027 (SE = 0.007), p < .01 and the 
correlation significant (r = .57) respectively (Figure 1). In both 

models (2006 and 2007) no substantial modifications were 
required. 

To test whether the number of tests can be reduced without 
losing information, we tested the model with the four indicators 
Raven, LPS8, LPS9 and LPS10. As can be seen in Figure 1 
these tests showed the highest loading on the first order factor 
ability in both groups. Results evidenced a satisfactory model 
fit for the 2006 data 2(13, N = 169) = 24.38, p < .05, CFI = 
.971, RMSEA = .072, AIC = 54.38 (saturated model 56.00), 
BCC = 55.88 (saturated model 58.80), BIC = 101.33 (saturated 
model 143.64), CAIC = 116.33 (saturated model 171.64) and a 
very good fit for the 2007 data 2(13, N = 97) = 7.38, p = .88, 
CFI = 1.00, RMSEA = .000, AIC = 37.38  (saturated model 
56.00), BCC = 40.34 (saturated model 61.53), BIC = 74.87 
(saturated model 126.00), CAIC = 89.87 (saturated model 
154.00). By reducing the number of indicators of ability from 
12 to 4 indicators, no difference in the substantive results were 
found, especially in the prediction of the detection performance 
in x-ray screening. 

In order to test what part of the detection performance can 
be accounted for by the theoretical variables, we performed a 

Note. a internal consistency (Cronbach alpha), b split-half reliability, c  retest 
reliability, d parallel test reliability. Split-half reliability for the LPS tests 
was calculated for the four subtests together. Split-half reliabilities of TIP 
data vary depending on the image-library used. Values for the CTB are 
standardized and detection performance measures of all x-ray screening 
tests except for the X-Ray ORT have been multiplied with an arbitrary 
constant due to security reasons. * Reliability measures for the X-Ray ORT 
were based on test results from novices. 

Detection Performance

X-Ray Screening

BDT PIT TIP

Noiser

LPS10

LST

ICT

IST_FA

LPS7

LPS9

LPS8

IST_WÜ

Ability

IST_MF

Fair

Raven

.46 / .57

.57 / .64

.75 / .80

.80 / .81

.52 / .53

.75 / .81

.53 / .60

.51 / .40

.48 / .61

.48 / .50

.56 / .60

.82 / .85

.61 / .78 .81 / .80 .40 / .61

r = .38 / r = .57 

FIGURE1. Factor model with the two factors ability and detection performance 
in x-ray screening (circles) and the 15 indicators. For clarity measurement 
errors are omitted. Standardized loadings are indicated for the 2006 (left) and 
the 2007 data (right). 
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full structural equation model analysis, but with the four 
indicators Raven, LPS8, LPS9 and LPS10 only. Besides the 
latent variable ability of screeners the test result in the X-Ray 
ORT is expected to account for a part of the detection 
performance variability. Again, the SEM was first conducted 
for the 2006 sample and then for the 2007 data. The model fit 
indicated with 2(17, N = 169) = 27.38, p = .05, CFI = .976, 
RMSEA = .060, AIC = 65.38 (saturated model 72.00), BCC = 
67.53 (saturated model76.08), BIC =124.85 (saturated model 
184.68), CAIC = 143.85 (saturated model 220.68) a good fit1.
Further, results showed a very good model fit for the 2007 
sample 2(18, N = 97) = 10.82, p = .90, CFI = 1.00, RMSEA = 
.000, AIC = 46.82 (saturated model 72.00), BCC = 50.87 
(saturated model 80.10), BIC = 912.82 (saturated model 
161.99), CAIC = 109.82 (saturated model 197.99). Thus, in 
both groups, ability and the X-Ray ORT display a significant 
effect on detection performance in x-ray screening. 

IV. DISCUSSION

The main goal of this study was to examine which of the 12 
general visual cognition tests predict on the job performance 
best in order to define a reliable and valid pre-employment 
assessment. Therefore, 12 tests which best match the x-ray 
screening task were used. To measure on the job performance, 
test results in the PIT and the BDT as well as TIP data were 
used. The PIT and BDT are two x-ray screening tests that were 
part of the recurrent competency assessment. TIP data were 
measured on the checkpoint and thus on the job performance 
could be evaluated.  

Results revealed that all cognition tests from the visual 
CTB which are mostly tests from elaborated German 
intelligence test batteries load on one latent factor ability 
despite their semantic distinctions. Furthermore, this factor 
correlates highly with detection performance in x-ray screening 
for both samples. Reliability of the 2006 sample which was just 
sufficient may account for the generally worse model fit of the 
2006 data compared to the 2007 sample. Our results also 
suggest that the whole visual CTB which consists of 12 tests 
can be reduced to four tests without reducing explained 
variance. Further a full SEM with the X-Ray ORT as additional 
factor showed that both factors ability and the X-Ray ORT 
display a significant effect on detection performance. 
Interestingly, as well the X-Ray ORT which measures the 
ability to cope with image-based factors in x-ray screening 
seems to be an important determinant. It has to be considered 
that the sample used for this study shows relatively small 
variance as all screeners were already selected based on their 
ability to cope with image-based factors. Whether ability is 
even more important is a question that should be answered with 
a representative sample. 

To sum up this study showed that both the ability to cope 
with image-based factors measured with the X-Ray ORT and 
the ability measured with the visual CTB play an important 
role for the x-ray screening task later on the job. The positive 
relationship between the X-Ray ORT and detection 

                                                           
1 The TIP data for the 2006 sample showed the lowest factor loadings. 
Nevertheless we tried to integrate this indicator because of his importance to 
the latent variable detection performance in x-ray screening.

performance later on the job could also be shown in a previous 
study by [3]. Thus, the X-Ray ORT as well as the visual CTB 
can be used within a pre-employment assessment. However, to 
increase efficiency a reduction of the visual CTB from 12 to 4 
tests only should be taken into consideration. 

Further analysis should investigate whether other factors 
relevant for the x-ray screening job could be subjected to SEM, 
such as training hours, age, personality traits etc. According 
[20] as well as [18] it could be expected that training hours 
influence detection performance on the job remarkably. Further 
studies investigating the effect of age on x-ray screening 
showed as well a significantly worse detection performance of 
older screeners compared to younger ones despite their 
working experience [19].  
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APPENDIX

TABLE II. CORRELATION MATRIX OF INDICATORS FOR 2006 SAMPLE

TABLE III. CORRELATION MATRIX OF INDICATORS FOR 2007 SAMPLE

Indicators 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. ORT ---               

2.  LST .20 ----              

3. Noiser .11 .36 ---             

4. LPS10 .15 .35 .45 ---            

5. IST_MF .16 .18 .47 .41 ---           

6. Raven .09 .36 .37 .64 .38 ---          

7. Fair .14 .16 .30 .31 .38 .36 ---         

8. LPS9 .05 .33 .33 .62 .34 .60 .36 ---        

9. IST_WÜ .10 .24 .27 .33 .27 .52 .32 .40 ---       

10. IST_FA .05 .36 .26 .41 .25 .43 .18 .47 .41 ---      

11. LPS8 .10 .39 .42 .59 .44 .66 .40 .64 .49 .44 ---     

12. ICT .11 .30 .30 .38 .26 .44 .20 .37    .27 .17 .45 ---    

13. LPS7 .08 .21 .23 .38 .22 .43 .18 .34 .29 .33 .36 .22 ---   

14. TIP -.17 .09 .14 .19 .16 .28 .21  .26 .12 .15 .21 .13 .20 ---  

15. PIT .30 .34 .20 .19 .17 .13 .09 .19 .08 .18 .21 .12 .18 .34 --- 

16. BDT1.0 .35 .26 .19 .15 .15 .23 .16 .13 .18 .25 .18 .14 .21 .15 .50 

Indicators 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. ORT ---               

2. LST .23 ---              

3. Noiser .17 .39 ---             

4. LPS10 .18 .51 .50 ---            

5. IST_MF .12 .39 .35 .40 ---           

6. Raven .15 .45 .52 .65 .44 ---          

7. Fair .12 .32 .27 .51 .44 .53 ---         

8. LPS9 .24 .54 .48 .64 .44 .69 .43 ---        

9. IST_WÜ .17 .25 .29 .49 .26 .54 .31 .52 ---       

10. IST_FA .10 .39 .34 .45 .37 .44 .39 .47 .42 ---      

11. LPS8 .27 .54 .50 .70 .39 .67 .45 .65 .64 .54 ---     

12. ICT -.00 .27 .36 .30 .32 .23 .21 .30 .24 .29 .39 ---    

13. LPS7 .33 .26 .35 .42 .28 .40 .27 .39 .31 .27 .43 .11 ---   

14. TIP .07 -.05 .13 .30 .07 .33 .25 .26 .24 .12 .26 -.03 .35 ---  

15. CAT .19 .26 .37 .40 .16 .36 .14 .39 .24 .20 .38 .32 .38 .50 --- 

16. BDT2.0 .13 .29 .26 .34 .23 .40 .21 .33 .35 .22 .42 .10 .33 .48 .62 
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Abstract—In this study, two experiments are reported which
investigated the relative importance of five different image based
factors and one human factor (training) in mediating threat
detection performance of human operators in airport security
x-ray screening. Experiment 1 was based on a random sample
of roughly 16’000 records of threat image projection (TIP) data.
TIP is a software function available on state-of-the-art x-ray
screening equipment that allows the projection of fictional threat
images (FTIs) into x-ray images of passenger bags during the
routine baggage screening operation. Analysis of main effects
showed that image based factors can substantially affect screener
detection performance in terms of the hit rate (identification of
FTIs). There were strong effects of FTI view difficulty (rotation
of FTIs) and superposition of FTIs by other objects in the x-ray
image of a passenger bag. The amount of opacity in the x-ray
image of a passenger bag had a small although significant effect
on detection performance. The two image based factors clutter
and bag size did not have a significant effect.
Experiment 2 was conducted using an offline-test in order to
provide controlled and more detailed data for analyzing the
image based factors from Experiment 1, as well as the human
factor of training. In particular the individual factors’ main
effects on detection performance, main effects of all factors taken
together and factor interactions were analyzed. In the test design
the following image-based factors were varied systematically:
Threat (FTI) category (guns, knives, improvised explosive devices,
other threats), view difficulty, superposition, bag complexity (a
combination of opacity and clutter) and bag size. Data were
collected from 200 screening officers at five sites across Europe.
For screener training all five sites use the same computer-
based training system. Consistent with the results obtained in
Experiment 1, there were large main effects of threat (FTI)
category, view difficulty, and superposition. Again consistent with
Experiment 1, effects of bag complexity (opacity and clutter) and
bag size were much smaller. In addition to Experiment 1, the
number of computer based training (CBT) hours was available
for each security officer participating in the study. Training
turned out to be a key driver to improving threat detection
performance in x-ray screening and seemed to mediate the effects
of some image based factors.
Possible implications regarding the enhancement of human-
machine interaction in x-ray screening are discussed.

I. INTRODUCTION

Screening passenger bags for threat items using state-of-

the art x-ray machines is an essential component of airport

security. Previous work (Schwaninger, 2003b, Schwaninger,

Hardmeier, & Hofer, 2005, and Schwaninger, Michel, &

Bolfing, 2007) has identified image based factors that affect

human performance in x-ray screening tasks: object view

difficulty, superposition by other objects and bag complexity

(opacity and clutter). Recently the question has been raised

whether bag size could be another image based factor that

affects detection of threat items when visually inspecting x-ray

images of passenger bags. In this study we determined effects

and interactions of image based factors and human factors

(amount of recurrent computer-based training). In addition,

with empirically based conclusions regarding the importance

of the bag size variable, by itself as well as in relation

with other performance relevant factors, this study provided

the scientific basis for a political decision making process

regarding the improvement of aviation security.

Two experiments are reported. Experiment 1 is based on threat

image projection (TIP) data. Experiment 2 is based on an

off-line computer based test, which allows investigating the

combined effects of image-based factors, effects of training

as well as factor interactions. The use of these two methods

to answer the same research question will ensure that the

overall approach is complementary. Both methods have their

own strengths and weaknesses: TIP data give high ecological

validity but low experimental control; off-line computer based

tests using controlled stimuli allow more experimental control,

but less ecological validity. If both methods provide the same

answer to the research question, this can be taken as stronger

evidence that the findings are genuine, and not simply an

artefact of the particular method used.

The two experiments both follow the paradigm using computer

algorithms to estimate image based factors that influence threat

detection performance in x-ray screening. This paradigm was

developed at University of Zurich and presented at ICRAT

2006 in Belgrade (Bolfing, Michel, & Schwaninger, 2006a)

and published before (Schwaninger, Michel, & Bolfing, 2007;

Bolfing, Michel, & Schwaninger, 2006b; Schwaninger, Michel,

& Bolfing, 2005). None of these papers used TIP data for

analysis, which ensures high ecological validity. Experiment

2 is based on a much larger data set than the previous studies

augmenting reliability. The inclusion of bag size and training

as additional factors is completely novel within this paradigm.

Since threat detection performance in aviation security x-ray

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9317



screening depends on the x-ray images but also on the human

screeners-the final decision makers-human factors should not

be neglected in a comprehensive model whose goal is to

explain the x-ray threat detection process.

A. Image Based Factors

Schwaninger (2003b) and Schwaninger, Hardmeier, and

Hofer (2005) have identified three image based factors which

affect threat detection by x-ray screeners: view difficulty,

superposition, and bag complexity (see figure 1).

Fig. 1. Illustration of the three basic image based factors suggested by
Schwaninger (2003b) and Schwaninger, Hardmeier, and Hofer (2005)

The concepts of these image based factors have been math-

ematically modeled (Schwaninger, Michel, & Bolfing, 2007,

see Bolfing, & Schwaninger, 2007 for the latest version). View

difficulty is modeled as a statistically calculable value between

0 and 1 named FTI view difficulty. Superposition and bag

complexity are modeled as image processing measurements

with bag complexity being split up into clutter and opacity.

The introduction of the image based factor bag size in this

study necessitated normalization of earlier implementations

of clutter and opacity regarding bag size. Formulae and

short descriptions of the underlying concepts are specified in

Bolfing, & Schwaninger (2007).

II. THREAT IMAGE PROJECTION (TIP) χ2 ANALYSIS:

EXPERIMENT 1

A. Method

1) Threat Image Projection (TIP) Data: In order to ensure

high ecological validity, we decided to analyze data from

threat image projection (TIP). TIP is a software function of

state-of-the-art x-ray screening equipment used at security

checkpoints in airports, nuclear power plants, navigation

docks etc. In aviation security TIP distinguishes between

cabin baggage screening (CBS) and hold baggage screening

(HBS). In CBS, guns, knives, improvised explosive devices

(IEDs) and other threats are subject to identification and

confiscation. In HBS, the focus rests mainly on IEDs and

dangerous goods such as gasoline containers or diver lamps.

The current investigation is confined to CBS. In CBS TIP,

fictional threat items (FTIs) are occasionally projected into

x-ray images of passenger bags during the routine baggage

screening operation. A sufficiently large sample of TIP

events allows statistically reliable measurements of detection

performance of human operators (x-ray screeners) on-the-job

(Hofer & Schwaninger, 2005) and thus with high ecological

validity.

The data basis of this study consists of a random sample

of 16’329 TIP events that have been routinely recorded on-

the-job with approximately 700 professional x-ray screeners

throughout the first half of 2007 at a large European airport.

We decided to apply χ2 analyses to each image based factor

separately to measure its impact on detection performance in

terms of hit rate (i.e. correctly judging a bag as being NOT

OK).

2) χ2 Analysis: To compare the effects on detection per-

formance of the independent variables1 FTI view difficulty,

superposition, opacity, clutter and bag size, the following

procedures were applied to the TIP data described above. A

histogram was created for each independent variable (image

based factor). For each variable the upper and lower 2.5% of

the cases in the data were excluded to remove outlier data from

the analysis. Furthermore this made possible the definition of

five equidistant bins with at least 100 data points each (TIP

events).

Hit rates were calculated for each of the five equidistant bins

to run χ2 tests with the null hypothesis H0 that the hit rates

are equal across bins. Effect size analysis based on Cohen

(1988) was used to compare the effect sizes of the different

independent variables. For detailed information on χ2 statistics

see for example Coolican (2004).

B. Results

The results below are listed separately for each image based

factor introduced above (see Bolfing, & Schwaninger, 2007

for further information and formulae). Each of the following

subsections begins with a graphical illustration of the image

based factors’ effects on the threat detection performance

measure hit rate. The x-axes show the five equidistant bins

into which the whole data range was subdivided. Low values

are on the left, high values on the right. The y-axes show

the hit rates of the image based factors’ bins. For reasons

of confidentiality hit rates cannot be given explicitly, but

the hit rate scales are reasonably chosen and kept constant

throughout the whole document.

Following the graphical illustrations (figures 2-6), statistical

test values are given in tables I-V. χ2 statistics can be

interpreted as follows: the larger the χ2(df, N) value the

larger the effect. Additionally χ2 effect sizes w are given.

1The variables correspond to the continuously represented variables used
in the multiple regression analysis in Experiment 2 (see figure 8)
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Again, the larger the effect size, the larger the effect.

However, please be aware that χ2 and w values do not state

the direction of the effect.

To summarize the χ2 analysis results a bar plot graphic is

provided at the end of this section illustrating the χ2 effect

sizes of the five image based factors on the hit rate (see

figure 7). The image based factors are arranged such that

their effects decrease in size.

1) FTI View Difficulty: Figure 2 illustrates the large impact

of FTI view difficulty on human detection performance in

terms of hit rate. This is partly due to the fact that objects

are more difficult when depicted from an unusual viewpoint

(see figure 1). Other factors contributing to this large impact

are the threat category of the object and the training of human

operators (see Experiment 2).

Fig. 2. Illustration of the impact of FTI view difficulty on hit rate.

TABLE I
χ2 ANALYSIS RESULTS: FTI VIEW DIFFICULTY

χ2 value χ2
(4, N = 13

′
541) = 198.04

Significance Highly significant: p < .001

χ2 effect size w = .12

2) Superposition: Figure 3 illustrates the large effect of

superposition on detection performance.

Fig. 3. Illustration of the impact of superposition on hit rate.

3) Opacity: Figure 4 shows the significant but relatively

small influence of opacity on detection performance in terms

of hit rate.

TABLE II
χ2 ANALYSIS RESULTS: SUPERPOSITION

χ2 value χ2
(4, N = 13

′
713) = 72.98

Significance Highly significant: p < .001

χ2 effect size w = .07

Fig. 4. Illustration of the impact of opacity on hit rate.

TABLE III
χ2 ANALYSIS RESULTS: OPACITY

χ2 value χ2
(4, N = 13

′
718) = 9.90

Significance Significant: p < .05

χ2 effect size w = .03

Here the question arises whether it is opacity as a perceptual

concept that does not have much influence on threat detection

performance, or whether the image measurement formula of

opacity is not properly modeled.

4) Clutter: Figure 5 illustrates the hit rates of the five clut-

ter bins. There is no significant effect of clutter on detection

performance. As with opacity, the question arises whether it

is the concept of clutter that does not influence hit rates in

TIP, or whether the computational model of clutter needs to

be improved.

Fig. 5. Illustration of the impact of clutter on hit rate.

5) Bag Size: Figure 6 shows the effect of bag size on hit

rate in TIP.

As with clutter, the effect of bag size on detection

performance does not reach statistical significance.
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TABLE IV
χ2 ANALYSIS RESULTS: CLUTTER

χ2 value χ2
(4, N = 13

′
726) = 0.98

Significance Not significant: p = .913

χ2 effect size w = .01

Fig. 6. Illustration of the impact of bag size on hit rate.

6) Comparison of the χ2 Effect Sizes: In figure 7, the effect

sizes w are compared. The factor FTI view difficulty has the

highest effect size with w = .12, while clutter shows the

lowest effect size with w = .01. The factors opacity, bag size

and clutter show small effect sizes. The effects of clutter and

bag size did not reach statistical significance.

Fig. 7. Comparison of the effect sizes among the image based factor.

C. Discussion

The results obtained in Experiment 1 are consistent with

earlier findings. Schwaninger, Hardmeier, and Hofer (2005)

found that viewpoint, superposition and bag complexity af-

fect screener performance. Schwaninger, Michel, and Bolfing

(2007) replicated these results. Using similar image mea-

surements as in Experiment 1, they measured similar effects

for FTI view difficulty, superposition, opacity (negatively

correlated with transparency in Schwaninger et al., 2007)

and clutter. However, several caveats are necessary to qualify

the appropriateness of the results obtained in Experiment 1.

Firstly, an analysis of auto-archive bags indicated that, as

would be anticipated, it is likely that TIP aborts are selectively

TABLE V
χ2 ANALYSIS RESULTS: BAG SIZE

χ2 value χ2
(4, N = 13

′
758) = 4.45

Significance Not significant: p = .348

χ2 effect size w = .02

eliminating certain bags (e.g. small bags rather than large bags)

from the TIP image set, and thus reducing their presence.

Secondly, it is not always clear how closely aligned TIP scores

are with the specific operational situations encountered when

threats are deliberately hidden in difficult bags. But most

importantly, in Experiment 1 only main effects were analyzed.

In order to gain a more complete picture it is important to

conduct a more controlled experiment in which main effects

in combination and their interactions can be measured reliably.

This was conducted in Experiment 2.

III. OFF-LINE COMPUTER BASED TEST:

EXPERIMENT 2

A. Method

1) Participants: 200 X-ray screeners from five European

sites with varying amounts of training in x-ray image

interpretation.

2) Stimuli: The stimuli were 1024 complete threat images

(CTIs) and 1024 complete non-threat images (CNTIs). CTIs

were created by projecting fictional threat items (FTIs) into

1024 X-ray images of bags. FTIs for the study were eight

visually similar pairs of each of four types of threat items:

guns, knives, improvised explosive devices (IEDs), and

’other’ threats. Images of cabin baggage were captured from

x-ray machines at a European airport using the auto-archive

function. The images were revised by three airport security

supervisors to remove inappropriate images (e.g. images

containing more than one bag, images containing incomplete

bags, bags containing prohibited items or liquids, etcetera).

This procedure resulted in 7606 bag images. Additional

review by the QinetiQ team resulted in a total of 6659 bag

images from which the 1024 bags needed for the study were

drawn. The final 1024 bags used for the study were chosen

through a process of projecting the relevant FTIs into the

bags such that the variables of interest would be orthogonal

in the stimulus set. Several full sets of 2048 images (the

1024 images containing the FTIs, and the same images

without FTIs) were created. The one with the most desirable

properties in terms of variable orthogonality was chosen for

use in the study.

3) Design: The study employed a 4 (FTI category: guns,

knives, IEDs, other) x2 (view difficulty: easy, difficult) x2

(superposition: low, high) x2 (bag complexity: low, high) x2

(bag size: small, large) x2 (image type: FTI, no FTI) within-

participants design. Since there were 16 FTIs in each category,

this design results in a total of 16x4x2x2x2x2x2 = 2048 images

which were to be presented to the screeners. The images

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9320



were presented to the screeners in a random order in multiple

testing sessions of 20 minutes each. As dependent variable

the detection performance measure d′ (Green & Swets, 1966)

was used. This measure provides a more valid estimate of

detection performance than the hit rate alone because it takes

the hit rate and the false alarm rate into account (see Hofer &

Schwaninger, 2004 for different measures of x-ray detection

performance). Since the off-line test showed each bag once

with a threat and once without one, accurate measurements of

hit and false alarm rates could be obtained.

B. Results

Data were analyzed in two ways. Firstly, by treating the

variables FTI view difficulty, superposition, opacity, clutter,

and bag size as continuous, a linear regression was employed

to assess the main effects of each image based factor on threat

detection performance separately. A multiple linear regression

was used to examine the main effects together. Additionally,

we calculated a linear regression with hours of recurrent

computer based training prior to testing as predictor. In order

to examine main effects as well as interactions between the

variables, the discrete variables FTI category, view difficulty,

superposition, bag complexity and bag size were used in an

analysis of covariance (ANCOVA). Training hours served as

covariate in the ANCOVA. Figure 8 shows the way in which

the continuous and discrete variables are related to each other.

Due to a high inter-correlation and a test design that demands

independence of its variables, opacity and clutter were encoded

into the single discrete variable bag complexity. FTI category

and view difficulty were encoded into a single continuous

variable because it is not sensible to encode either variable

directly into a continuous variable. Instead we defined the

variable FTI view difficulty as the difficulty-as measured in

threat detection performance (d′)-screening officers had in

solving a specific threat item in a specific view (easy or

difficult) across all other conditions (i.e. superposition, bag

complexity and bag size).

Fig. 8. Illustration of relationship between discrete and continuous repre-
sentations of variables

1) Linear Regression and Multiple Linear Regression:

The regression analyses will help us understand the direct

relationship between image based factors and d′, as well as

training hours and d′. Figure 9 shows the relative effect sizes,

the absolute values of the correlations with the dependent

variable d′, for the individual variables. For superposition

and training hours a logarithmic transformation was applied.

This transformation was necessary in order to achieve a linear

relationship between superposition and detection performance

d′. With .70, .63 and .58, FTI view difficulty, training hours

and superposition all have very high effect sizes. Opacity has

a moderate to small effect size with .22, clutter and bag size

have very small effect sizes with .05 and .07, respectively.

Except for clutter, all correlations are statistically significant.

Fig. 9. Illustration of effect sizes R

Figures 10 and 11 show the results of the multiple linear

regression with all image based factors: FTI view difficulty,

superposition (logarithmically transformed), opacity, clutter

and bag size. It shows the overall effect size, again the absolute

value of the correlation R, of all the image based factors

taken together. With R = 0.77 the effect size is very high.

The effect size of the only human factor analyzed (hours of

recurrent computer based training), with R = 0.63, is also

large. We can see that in the multiple linear regression model

the factor bag size is the only one not reaching statistical

significance. Put another way: In the presence of the other

image based factors bag size did not lead to a statistically

significant change in detection performance in our experiment.

As shown in figure 12 adding bag size to the linear model only

leads to a minimal increase of its effect size from R = 0.772
to R = 0.773.

Fig. 10. Multiple linear regression overview

2) ANCOVA: A repeated measures analysis of covariance

(ANCOVA) was conducted to analyze the main effects of

image based factors, their interactions and their interactions

with training. As can be seen in the main effects summary

of figure 13 the repeated measures ANCOVA leads to only a

slightly different pattern with regards to effect sizes than the

linear regression analyses. These differences are due to the

fact that, in contrast to the linear regression models, in the
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Fig. 11. Multiple linear regression details

Fig. 12. Combined effect size of image based factors and effect size of
training

ANCOVA analysis effects of the covariate training hours are

isolated from the effects of image based factors. Furthermore,

in the ANCOVA inter-individual differences between screen-

ing officers (’screener variance’) are taken into account. Su-

perposition shows the largest effect size (η2), followed by FTI

category, bag complexity and view difficulty. The main effect

of bag size is clearly smaller than the main effect of any other

image based factor. Training hours has noteworthy interactions

with FTI category and view difficulty. These interactions make

sense, since we know from other studies that training can

lead to comparatively larger performance increases for items

that are comparatively difficult for novices (Koller, Hardmeier,

Michel, & Schwaninger, in press)-for example improvised ex-

plosive devices (threat item category) or difficult views (view

difficulty). There is also a small interaction of training with

bag size, indicating that well trained screening officers are less

affected by effects of bag size. Figure 14 gives an overview

of the 10 largest interactions in the ANCOVA. All in all over

30 interactions reached statistical significance. Since the effect

sizes of most interactions are very small we decided only to

report interactions η2
≥ .07. The interaction of view difficulty

with threat category can at least partly be explained by the fact

that detection performance of improvised explosive devices-

unlike guns or knives-is largely independent of viewpoint. The

interaction of superposition with view difficulty indicates that

with difficult viewpoints superposition plays a larger role in

determining detection performance than with easy views. The

interaction of superposition with threat category indicates that

some threat item categories are more sensitive to superposition

than others. For example, from the regression analysis above

we know that superposition effects are higher with knives than

with guns.

Fig. 13. Illustration of ANCOVA main effects and interactions with the
covariate training hours

Fig. 14. Illustration of the the ten largest ANCOVA interactions

C. Discussion

With an overall correlation of .77 the linear modeling of

detection performance with image based factors has a very

high explanatory power. Superposition, although not always

with the largest effect size, has shown the most robust effects

on detection performance. Interestingly and in contrast to what

one might have expected based on the results of the regression

analyses, the variable bag complexity (a combination of opac-

ity and clutter) showed a large effect size in the ANCOVA.

Apart from this, the ANCOVA results reflect the regression

analysis results closely, both in main effects and interactions.

Threat category and view difficulty had considerable interac-

tions with the covariate training hours. This shows that training

is particularly effective in the case of difficult item categories

such as IEDs and for difficult viewpoints. Bag size, although

intuitively plausible as relevant factor, turned out to play only

a minor role in determining threat detection performance. The

same is true for clutter.

IV. GENERAL DISCUSSION

There were large main effects of view difficulty and of FTI

difficulty in all of the analyses, as expected. The same was

true for superposition and complexity (to a bigger extent for

opacity than for clutter). Clearly, these factors need to be taken

account of in any future work on performance-relevant image

based factors. When looking at the influence on detection

performance of all image based factors together, there is no

statistically significant effect of bag size. When using a more

sophisticated model of data analysis including main effects of
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FTI view difficulty, superposition, bag complexity, bag size

and the interactions of these variables, there is a small effect

of bag size. In Experiment 2 we were also able to examine the

effect of the number of CBT training hours on threat detection

performance. The key finding from the study is that the

effect size for this variable was large, and seemed to mediate

the effect of some image based factors on threat detection.

Clearly, training is a key driver to improving threat detection

performance in x-ray screening, and more work needs to be

done to establish exactly which image based factors screeners

need to be trained in to give the best improvements in threat

detection accuracy.

V. RECOMMENDATIONS FOR IMPROVING

HUMAN-MACHINE INTERACTION IN X-RAY SCREENING

A. FTI View Difficulty and Superposition

The factor FTI view difficulty refers to the fact that the

identification of threat objects, as objects in general, is highly

dependent on their viewpoint as well as on properties of

the very object itself. Current x-ray screening equipment

provides only one x-ray image per passenger bag. More

recent technology can provide multiple views of a bag.

Figure 15 illustrates how such new systems might be able

to reduce the detection problems due to view difficulty and

superposition. Objects that are superimposed by other objects

from one perspective may be clearly visible from another

one. Furthermore, training is an important tool in lessening

detrimental effects on detection performance of difficult

views. Our ANCOVA analysis has supported earlier findings

that training leads to particularly large improvements in

detection performance for difficult views (Koller, Hardmeier,

Michel, & Schwaninger, in press).

Fig. 15. Illustrative example of how multi-view systems can help improving
detection performance in spite of undesirable view difficulty and superposition
effects.

B. Opacity

The image based factor Opacity refers to the amount of

opaque areas in an x-ray image. X-ray systems with higher

penetration have the potential to reduce detection problems

due to opacity. In addition, it is possible to implement image

measurement algorithms in x-ray equipment that warn the

human operator (x-ray screener) with a ”dark alarm”, which

would be triggered by opaque areas that are deemed too large

or dense for unassisted human interpretation. Manual search

would follow when a dark alarm was indicated.

C. Screener Selection and Training

A very important approach to face the problem of improving

threat detection performance in x-ray screening consists in

screener selection and screener training. The psychological

literature provides evidence that figure ground segregation

(related to superposition) as well as mental rotation (related to

view difficulty) are visual abilities that are fairly stable within

a person. For example Hofer, Hardmeier, & Schwaninger

(2006) and Hardmeier, Hofer, and Schwaninger (2006a) have

shown that using computer based object recognition tests in

a pre-employment assessment procedure can help to increase

detection performance of screeners substantially.

In addition to stable abilities, there are several aspects of visual

knowledge relevant to x-ray image interpretation. Knowledge

based factors such as knowing which objects are dangerous or

prohibited and what they look like in x-ray images are train-

able. Training also has beneficial effects on screeners’ abilities

to deal with certain image based factors. For example, training

particularly improves the ability to deal with difficult views.

Computer-based training can be a powerful tool to improve x-

ray image interpretation competency of screeners (e.g. Koller,

Michel, Hardmeier, & Schwaninger, in press; Schwaninger,

Hofer & Wetter, 2007; Ghylin, Drury, & Schwaninger, 2006).
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APPENDIX

For more detailed information on the concepts and math-

ematical models of the image based factors as well as for

examples for a better understanding of the formulae refer to the

on-line technical documentation by Bolfing, & Schwaninger

(2007) made available at:

http://www.psychologie.uzh.ch/vicoreg/publications/index byarea.htm

FTI View Difficulty

The general FTI view difficulty equation 1 describes a

slight modification of the mean of the inverted detection

performance value (DetPerf) over all items (indices NOV )

containing the same FTI object (indices O) in the same view

(subindices V ) as does the item in question. Inverted means

here, that the measured detection performance is subtracted

from the theoretical maximum detection performance. The

slight modification refers to the exclusion of the item in

question from averaging.

FtiVDOV j =

NOV∑
i=1,j �=i

(max(DetPerf) − DetPerfOV i)

NOV − 1
(1)

For analyzing TIP data the inverted detection performance

is the miss rate because usually only bag images containing

threat items are recorded. If a large TIP data set is used, the

exclusion of the item in question from the averaging can be

abandoned due to its very small weight.

FtiVDOV =

NOV∑
i=1

MissRateOV i

NOV
(2)

Superposition

Superposition equals the inverted Euclidean distance be-

tween the SN images (signal plus noise or threat) and N images

(noise or non-threat images) regarding pixel intensity values.

SP = C −

√∑
x,y

(
ISN (x, y) − IN (x, y)

)2
(3)

Clutter

This image based factor is designed to express bag item

properties like textural unsteadiness, disarrangement, chaos or

just clutter.

The method used in this study is based on the assumption, that

such textural unsteadiness can be described mathematically in

terms of the amount of high frequency regions.

Equation 4 represents a convolution of the empty bag image

(N for noise) with the convolution kernel derived from a high-

pass filter in the Fourier space. IN denotes the pixel intensities

of the harmless bag image. F−1 denotes the inverse Fourier

transformation. hp(fx, fy) represents a high-pass filter in the

Fourier space. BS represents bag size (see equation 6). Cut-

off frequency f and transition d (the filter’s order) were set to

f = 0.03 and d = 11. The pixel summation on the high-pass

filtered image was restricted to the bag’s area.

CL =

∑
x,y Ihp(x, y)

BS
(4)

where Ihp(x, y) = IN ∗ F
−1(hp(fx, fy))

= F
−1(F(IN · hp(fx, fy))

and hp(fx, fy) = 1 −
1

1 +
(√

f2
x+f2

y

f

)d

Opacity

Opacity reflects the extent to which x-rays are able to

penetrate objects in a bag. These attributes are represented

in x-ray images as different degrees of luminosity. Equation 5

simply implements the number of pixels being darker than a

certain threshold (e.g. 64) in the numerator relative to the bag’s

overall size (denominator). BS represents the formula of the

image based factor bag size (see equation 6).

OP =

∑
x,y

(
IN (x, y) < 64

)
BS

(5)

Bag Size

The bag size formula below is applicable to grayscale

images represented by pixel luminosity values between 0

(black) and 255 (white). All pixels with luminosity lower than

254 (near white) are counted and summed up.

BS =
∑
x,y

(IN (x, y) < 254) (6)
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Abstract—Airport efficiency has been shown to contribute to 

the overall performance efficiency of the air transportation 

network. Airport performance efficiency is benchmarked 

annually and widely published.  These benchmarks use several 

techniques, including several Data Envelopment Analysis 

(DEA) methods. 

This paper examines the differences in results using three DEA 

methods (Cooper-Charnes-Rhodes (CCR), Banker-Charnes-

Cooper (BCC), and Slacks-Based Measure of efficiency (SBM)) 

on data from 45 airports from 1996 to 2000. The results from 

the three DEA methods yielded wide variation in results. For 

example, the CCR analysis showed that efficiencies degraded 

from small to medium to large airports. The BCC analysis 

showed no significant difference in efficiency among the three 

classes of airports. The SBM analysis yielded degraded 

efficiency from large to medium to small airports.  The 

implications of these results on the use of DEA in 

benchmarking and the need for guidelines for selection of DEA 

models and the interpretation of DEA results is discussed. 

Keywords-Data Envelopment Analysis; CCR; BCC; SBM; 

airport efficiency  

I.  INTRODUCTION 

Airport congestion is growing and traveler satisfaction is 

dropping  [1], yet demand is expected to grow at major hub 

airports  [2]. 

In this environment, the operational efficiency of airports 

is one of the important determinants of the system’s future 

success.  An important component to achieving operational 

efficiency is to use performance measurement to understand 

which airports are performing well and which are 

underperforming and also to understand what the drivers are 

behind good and bad performance, all with the ultimate goal 

of improving performance in the areas that are deficient. 

As we will show in this paper, much has been written in 

the academic literature about measuring airport efficiency 

but several opportunities for improvement exist in this work.   

One such opportunity relates to the theoretical 

foundations for evaluating performance: A number of studies 

have been conducted where airports are ranked against each 

other.  However, in these studies there has been limited focus 

on the selection of the evaluation models used to identify 

good and bad performers.  Several choices exist in this area 

and a study of each model is necessary to understand which 

is the most appropriate in a given situation. 

This paper will highlight this issue through the use of an 

example.  We will re-run an earlier analysis of airport 

performance and highlight the impact of the choices in the 

areas listed above. 

II. BACKGROUND 

A. General Background 

Performance benchmarking as a management tool is 

frequently cited as having been pioneered by Robert C. 

Camp at the Xerox Corporation in the late 1970’s  [7], [8] 

where he used this tool to identify shortcomings of that 

company’s photocopier production and distribution.  He used 

benchmarking to identify several key practices from the 

photocopier industry as well as from other industries, all 

serving to ultimately improve the company’s photocopier 

business.  The performance measurement and benchmarking 

techniques have all evolved significantly since that time, but 

the ultimate goals for any benchmark remain the same: To 

identify performance gaps and to find practices that will help 

close that gap. 

Benchmarking has since been applied both in industry 

and academia in numerous studies.  Dattakumar and 

Jagadeesh  [6] conducted an extensive literature review and 

found more than 350 publications on the topic as of June 

2002. 

Airport benchmarking studies began appearing in the 

literature in the early 1990’s with one of the first such studies 

being that of Tolofari, Ashford, and Caves  [9] in which 

airports operated by the British Airport Authority were 

compared against each other.  A series of benchmarking 

studies have since appeared with a variety of geographic foci 

and covering a diverse set of performance parameters.  A 

few examples of these studies are listed in Table I.  TABLE I.  
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TABLE I.  REPRESENTATIVE AIRPORT BENCHMARKING STUDIES 

Study Title Inputs (resources) Outputs 

Analytical 

Technique 

Measuring airport quality 

from the airlines' viewpoint 

 [10] 

Airport charges; minimum connecting times; number 

of passenger terminals; number of runways; distance to 

nearest city center 

Level of satisfaction from the 

airline users of each airport DEA 

Size versus efficiency: a case 

study of US commercial 

airports  [11] 

Operational costs; non-operational expenses; number 

of runways; number of gates 

Passenger throughput; aircraft 

movements; aeronautical 

revenue; non-aeronautical 

revenue; percentage of on-time 

operations DEA 

Air transport movement study: 

Airport surface area; total length of runways; number 

of aircraft parking positions at terminals; number of 

remote aircraft parking positions Aircraft movements 

DEA / Parametric 

TFP 

Relative efficiency of 

european airports  [12] 

Passenger movement study: 

Terminal size; number of aircraft parking positions at 

terminals; number of check-in desks; number of 

baggage claim belts Passenger throughput 

DEA / Parametric 

TFP 

Terminal efficiency study: 

Number of runways; number of gates; terminal area; 

number of employees; number of baggage collection 

belts; number of public parking spots 

Passenger throughput; cargo 

throughput DEA 

Developing measures of 

airport productivity and 

performance  [13] 

Aircraft movement study: 

Airport surface area; number of runways; runway area; 

number of employees Aircraft movements DEA 

Performance Based Clustering 

for Benchmarking of US 

Airports  [14] 

Operational costs; number of employees; number of 

gates; number of runways 

Operational revenue; passenger 

throughput; aircraft movements; 

cargo throughput  DEA 

Measuring airports' operating 

efficiency: a summary of the 

2003 ATRS global airport 

benchmarking report  [15] 

Number of employees; number of runways; number of 

gates; terminal area; purchased goods, materials, and 

services (outsourcing) 

Passenger throughput; cargo 

throughput; aircraft movements; 

non-aeronautical revenue Parametric TFP 

Measuring total factor 

productivity of airports - an 

index number approach  [16] Capital expenditure 

Aeronautical revenue; non-

aeronatical revenue Index number TFP 

 

As is clear from Table I, besides being used in the 

analysis that will be examined here, Data Envelopment 

Analysis (DEA) is an analytical technique that is frequently 

used in benchmarking studies.  DEA is a non-parametric 

methodology used to assess the efficiency of a Decision-

Making Unit (DMU – e.g. an airport) in converting a set of 

inputs into outputs. 

A number of different versions of the basic DEA model 

have been developed to address a series of potential 

shortcomings of the original DEA model. We will examine 

three variations of the DEA methodology and study the 

differences in assumptions of the three as well as compare 

the different outcomes of each.  The purpose of this analysis 

is to understand whether the choice of methodology may 

have an impact on the outcome of an analysis. 

B. CCR model 

In all variations of the DEA models, the DMU(s) with the 

best inherent efficiency in converting inputs X1, X2,…,Xn 

into outputs Y1, Y2,…,Ym is identified, and then all other 

DMUs are ranked relative to that most efficient DMU. 

For DMU 0, the basic DEA model (so-called CCR after 

Charnes, Cooper, and Rhodes  [5]) is calculated as follows: 

max h0
∑

∑
=

i

iji

r

rjr

xv

yu

0

0

 

 subject to 

0,

1

≥

≤
∑

∑

ir

i

iji

r

rjr

vu

xv

yu

 for each unit j (1) 
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The interpretation of ur and vi is that they are weights 

applied to outputs yrj and inputs xij and the are chosen to 

maximize the efficiency score h0 for DMU 0.  The constraint 

forces the efficiency score to be no greater than 1 for any 

DMU.  An efficiency frontier is calculated, enveloping all 

datapoints in a convex hull.  The DMU(s) located on the 

frontier represent an efficiency level of 1.0, and those located 

inside the frontier are operating at a less than full efficiency 

level, i.e. less than 1.0.   

The above fractional program is executed once for each 

participating DMU, resulting in the optimal weights being 

determined for each DMU.   

Before solving the problem, the denominator in the 

objective function is removed and instead an additional 

constraint is added.  Also, the original constraint is 

manipulated in order to convert the fractional program to a 

linear program.  These two steps result in the following 

linear program: 

max h0 ∑=
r

rjr yu
0

 

 subject to 

0,

1

0

0

≥

=

≤−

∑

∑∑

ir

i

iji

i

iji

r

rjr

vu

xv

xvyu

  (2) 

In simpler notation, this is written as: 

max(v,u) 
0

uy=  

                subject to   

0,0

1

0

0

≥≥

=

≤+−

uv

vx

uYvX

  (3) 

 

 

Finally, before solving, the linear program is converted to 

its dual for computational efficiency reasons: 

min(θ,λ) θ=  

                subject to   

0

0

0

0

≥

≥

≥−

λ

λ

λθ

yY

Xx

  (4) 

With the addition of slack variables, the dual problem 

becomes: 

min(θ,λ) θ=  

                subject to   

0,0,0

0

0

≥≥≥

+=

=−

−+

+

−

ss

syY

sXx

λ

λ

λθ

  (5) 

The slack variables can be interpreted as the output 

shortfall and the input overconsumption compared to the 

efficient frontier. 

C. BCC model 

The CCR model is designed with the assumption of 

constant returns to scale.  This means that there is no 

assumption that any positive or negative economies of scale 

exist.  It is assumed is that a small airport should be able to 

operate as efficiently as a large one – that is, constant returns 

to scale.  In order to address this, Banker, Charnes, and 

Cooper  developed the BCC model [3]. 

The BCC model is closely related to the standard CCR 

model as is evident in the dual of the BCC model: 

min(θ,λ) θ=  

                subject to   

0,0,0

1

0

0

≥≥≥

=

+=

=−

−+

+

−

ss

e

syY

sXx

λ

λ

λ

λθ

  (6) 

The difference compared to the CCR model is the 

introduction of the convexity condition eλ = 1.  This 

additional constraint gives the frontiers piecewise linear and 

concave characteristics. 

D. SBM model 

Finally, the second adjustment to the basic CCR model is 

the Slacks-Based Measure of efficiency (SBM), proposed by 

Tone [18].  The motivation for the development of this 

model is the observation that while both the CCR and the 

BCC models calculate efficiency scores, neither is able to 

take into account the resulting amount of slack for inputs and 

outputs.  Consequently, the purpose of this model is to 

minimize the input and output slacks, resulting in this 

fractional program, which is converted to a linear program 

before solving: 

min(λ,s
+
,s

-
) ρ = 

∑

∑

=

+

=

−

+

−

s

r rr

m

i ii

ys
s

xs
m

1 0

1 0

/
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subject to   

0,0,0

0

0

≥≥≥

+=

=−

−+

+

−

ss

syY

sXx

λ

λ

λ

  (7) 

 

III. METHOD OF ANALYSIS 

A. Introduction 

The analysis presented here is based on a re-run and 

extension of the analysis performed by Bazargan and Vasigh 

 [11].   

B. Inputs and Outputs 

Input and output data was collected from a series of 

sources in order to assemble the same inputs and outputs as 

in the Bazargan and Vasigh study for the same airports and 

years (1996 – 2000).  Table II lists the airports covered in the 

analysis and Table III lists the input and output variables and 

the source from which they were collected.   

TABLE II.  AIRPORTS INCLUDED IN STUDY 

Large Medium Small 

ATL 

DEN 

DFW 

DTW 

EWR 

IAH 

JFK 

LAS 

LAX 

MIA 

MSP 

ORD 

PHX 

SFO 

STL 

BNA 

CLE 

DAL 

IND 

MCI 

MDW 

MEM 

MSY 

OAK 

PDX 

RDU 

SJC 

SJU 

SMF 

SNA 

ALB 

BHM 

BOI 

COS 

DAY 

ELP 

GEG 

GSO 

GUM 

LIT 

OKC 

ORF 

RIC 

ROC 

TUL 

 

TABLE III.  AIRPORT DATA SOURCES 

Inputs Source 

Operating expenses FAA Form 127 

Non-operating expenses FAA Form 127  

Number of runways NFDC 5010 database  

Number of gates Airport websites 

Outputs Source 

Aeronautical revenue FAA Form 127  

Non-aeronautical revenue FAA Form 127 

Portion of on-time operations BTS Form 41  

Total enplanements TAF  

Number of air carrier operations TAF 

Number of other operations TAF 

  

 

C. Model Selections 

In the Bazargan and Vasigh study, the model selected 

was the CCR model.  No discussion was provided regarding 

why this model was selected ahead of others; presumably it 

was selected on the premise of being the “default” DEA 

model.   

One of the purposes of the present study was to examine 

the impact of different model selections.  Hence, efficiency 

scores were calculated using three different, basic DEA 

models: CCR, BCC, and SBM.  These are considered to be 

among the standard DEA models by Cooper, Seiford, and 

Tone [19].  These models were all executed in output-

oriented mode, meaning that efficiency scores were 

calculated by analyzing which levels of outputs should be 

“possible” to generate if an airport were operating at full 

efficiency given the current levels of inputs. These scores 

were calculated using the “Learning Version” of the DEA-

Solver software  [4]. 

D. Model Configuration 

One of the particular choices made in the Bazargan and 

Vasigh study, driven by practical considerations, was to 

create an artificial, “super-efficient” airport by assigning it 

the minimum input values present in the dataset and the 

maximum output values.  The reason for this was that when 

the CCR model was initially executed with only the basic list 

of airports included, a very large portion of the airports were 

ranked as fully efficient (1.0).  The cause of that outcome 

was the relatively small number of airports (45) as compared 

to the number of parameters considered (10).  In general, this 

will frequently be a phenomenon in analysis having a low 

ratio of DMUs to parameters. 

Bazarghan and Vasigh also describe the theory of adding 

a condition requiring all weights u and v to be >= ε (an 

infinitesimal value) in order to avoid setting all but one input 

and one output’s weights to a non-zero value.  However, it is 

not indicated if this was used in the study and if it was, there 

is no specification of the value used for this infinitesimal 

value is provided.  Consequently, the model will in this case 

be run without this additional constraint. 

IV. RESULTS AND DISCUSSION 

A. Comparison of CCR Model Runs 

The results of the CCR model runs are shown in Table 

IV, Table V, and Table VI.  These values are in general 

lower than the values calculated in the Bazargan and Vasigh 

study and the reason for this can not be ascertained since the 

raw data of the previous study were not available.  It can be 

postulated that the difference is due to differences in the 

inputs; in particular if the values assigned to the artificial, 

“super-efficient” airports were different in the two studies, 

since that would cause a general offset between the two.     

What is noteworthy, however, is that the general trend 

from the Bazargan and Vasigh study is confirmed: Large 

airports are in general exhibiting lower efficiency scores than 

medium-sized airports, and medium-sized airports are 
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exhibiting lower scores than small airports.  These results are 

displayed in  Figure 1. and  Figure 2.   The Kruskal-Wallis test 

was performed to determine whether the differences in 

efficiency ranks among the groups were significant, and that 

was found to be the case.  The results from the Kruskal-

Wallis test are presented in Table VII. 

TABLE IV.  RESULTS OF CCR RUNS FOR LARGE AIRPORTS  

Airport 1996 1997 1998 1999 2000 

ATL 0.1910 0.1990 0.2000 0.2000 0.2000 

DEN 0.1515 0.1667 0.1667 0.1435 0.1281 

DFW 0.1216 0.1231 0.1380 0.1199 0.1251 

DTW 0.1405 0.1310 0.1256 0.1400 0.1432 

EWR 0.2335 0.2595 0.2614 0.2511 0.2884 

IAH 0.2202 0.2141 0.2149 0.2145 0.2238 

JFK 0.2500 0.2491 0.2485 0.2500 0.2500 

LAS 0.2034 0.2088 0.1977 0.2005 0.1946 

LAX 0.2953 0.2995 0.2950 0.2698 0.2719 

MIA 0.2500 0.2500 0.2500 0.2500 0.2500 

MSP 0.2064 0.2015 0.1932 0.2155 0.2192 

ORD 0.1667 0.1667 0.1667 0.1667 0.1667 

PHX 0.2723 0.2765 0.2587 0.2674 0.2607 

SFO 0.1784 0.1962 0.1783 0.1946 0.1804 

STL 0.1937 0.2083 0.2032 0.2117 0.2134 

Average 0.2050 0.2100 0.2065 0.2064 0.2077 

 

TABLE V.  RESULTS OF CCR RUNS FOR MEDIUM SIZED AIRPORTS 

Airport 1996 1997 1998 1999 2000 

BNA 0.2140 0.2140 0.2179 0.2143 0.2186 

CLE 0.2054 0.2132 0.2142 0.2085 0.2183 

DAL 0.5603 0.5087 0.5257 0.5319 0.5262 

IND 0.2811 0.3043 0.3044 0.3026 0.3067 

MCI 0.2674 0.2816 0.2812 0.2836 0.2843 

MDW 0.2361 0.2298 0.2296 0.2260 0.2296 

MEM 0.2206 0.2070 0.2065 0.2256 0.2289 

MSY 0.2765 0.2799 0.2869 0.2845 0.2916 

OAK 0.4802 0.4704 0.5455 0.5147 0.5455 

PDX 0.2518 0.2764 0.2778 0.2855 0.2767 

RDU 0.4480 0.4152 0.4027 0.3749 0.3807 

SJC 0.3022 0.3156 0.3051 0.3057 0.2951 

SJU 0.3374 0.3967 0.4215 0.4155 0.4378 

SMF 0.4121 0.4252 0.4171 0.4205 0.4019 

SNA 1.0000 1.0000 0.9914 1.0000 0.9882 

Average 0.3662 0.3692 0.3752 0.3729 0.3753 

 

 

 

TABLE VI.  RESULTS OF CCR RUNS FOR SMALL AIRPORTS 

Airport 1996 1997 1998 1999 2000 

ALB 0.4772 0.5101 0.5047 0.4895 0.5099 

BHM 0.5345 0.5400 0.5482 0.5461 0.5698 

BOI 0.8089 0.5714 0.7842 0.5392 0.8086 

COS 0.5191 0.5561 0.5672 0.5725 0.5625 

DAY 0.3472 0.3708 0.3674 0.3620 0.3652 

ELP 0.6856 0.6810 0.6863 0.6876 0.6757 

GEG 0.4460 0.4662 0.4726 0.5016 0.4695 

GSO 0.8082 0.8553 0.8350 0.8115 0.8459 

GUM 0.5714 0.5714 0.5714 0.5714 0.5714 

LIT 0.8031 0.8385 0.8493 0.8590 0.8710 

OKC 0.5854 0.6006 0.6053 0.6155 0.5961 

ORF 0.3994 0.4555 0.4217 0.4122 0.4306 

RIC 0.4214 0.4470 0.4403 0.4326 0.4439 

ROC 0.4341 0.4572 0.4570 0.4321 0.4374 

TUL 0.5098 0.5332 0.5373 0.5349 0.5472 

Average 0.5568 0.5636 0.5765 0.5578 0.5803 

 

 

Figure 1.  Results of Bazargan and Vasigh study 
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Figure 2.  Results of CCR re-run of Bazargan and Vasigh study 
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TABLE VII.  RESULTS OF KRUSKAL-WALLIS TEST ON CCR RANKS 

Mean efficiency rank 

Year 
Large 

airports 

Medium 

airports 

Small 

airports 

Chi 

square 

Asymptotic 

significance 

1996 36.13 22.40 10.47 28.691 0.000 

1997 36.07 23.07 9.87 29.848 0.000 

1998 36.33 22.60 10.07 30.200 0.000 

1999 36.33 22.53 10.13 29.876 0.000 

2000 36.27 22.60 10.13 29.716 0.000 

 

B. Comparison of CCR, BCC, and SBM Results 

In applying the three DEA models (CCR, BCC, and 

SBM) to the same dataset, some striking results emerged: 

While the CCR analysis showed that small airports were 

more efficient than both medium sized and large airports, 

and that medium sized airports were more efficient that 

large airports, in the BCC model no significant difference 

among the three groups was observed, and in the SBM 

dataset the difference was in fact reversed.  These 

findings are displayed in the following figures and tables, 

where the average efficiency scores are displayed and the 

results of the Kruskal-Wallis tests on the efficiency 

ranks. 

 

 

 

 

 

 

 

Figure 3.  Results of BCC analysis 
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Figure 4.  Results of SBM analysis 

0

0.04

0.08

0.12

0.16

0.2

1996 1997 1998 1999 2000

Year

S
B

M
 S

c
o

re Large

Medium

Small

 

TABLE VIII.  RESULTS OF KRUSKAL-WALLIS TEST ON BCC RANKS 

Mean efficiency rank 

Year 
Large 

airports 

Medium 

airports 

Small 

airports 

Chi 

square 

Asymptotic 

significance 

1996 18.53 23.47 27.00 3.149 0.207 

1997 22.33 25.67 21.00 1.006 0.605 

1998 23.33 24.97 20.70 0.808 0.668 

1999 23.40 23.37 22.23 0.077 0.962 

2000 21.40 22.63 24.97 0.572 0.751 
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TABLE IX.  RESULTS OF KRUSKAL-WALLIS TEST ON SBM RANKS 

Mean efficiency rank 

Year 
Large 

airports 

Medium 

airports 

Small 

airports 

Chi 

square 

Asymptotic 

significance 

1996 9.67 23.60 35.73 29.589 0.000 

1997 9.67 23.67 35.67 29.449 0.000 

1998 9.47 23.40 36.13 30.939 0.000 

1999 9.33 23.33 36.33 31.710 0.000 

2000 9.47 22.93 36.60 32.010 0.000 

 

These results point very clearly to the fact that the choice 

of DEA model has a strong impact on the outcome of this 

study and that selecting the appropriate model is paramount.  

While the selection of the appropriate model is key, and 

previous studies have pointed this out, the literature does not 

provide many examples of or guidance for selecting the most 

appropriate model. 

In comparing which inputs and outputs are assigned 

significance in the three different models, the following two 

observations can be made: 

• The same weights were assigned to outputs in the 

BCC as in the CCR model, and these weights were 

all focused on a single output for each airport.  

However, input weights differed between the two 

models 

• In comparing the CCR and the SBM models, the 

same input variables are assigned non-zero weights, 

although these weights are different.  On the output 

side, the SBM model assigns non-zero weights to a 

much broader set of variables than does the CCR 

model, which usually assigns non-zero values to 

only a single variable.  It can be argued that this 

leads to the SBM model covering a more 

comprehensive and thereby accurate scope, rather 

than only considering a single output variable as in 

the CCR case. 

Notably, running the BCC model, which considers 

variable returns to scale, resulted in either constant or 

decreasing returns to scale.  While impossible to depict 

graphically in a multi-dimensional model, the concept of 

decreasing returns to scale is reflected in the shape of the 

convex hull spanning the DMU(s).  In practical terms, this 

means that rather than observing any economies of scale in 

terms of efficiency, the model resulted in either no difference 

or actually a negative effect on airport efficiency as scale 

grew. 

C. Observations on the Weakness of Using Artificial, 
“Super-Efficient” DMUs 

In running the CCR analysis using the artificial, “super-

efficient” DMU, one serious problem that arises is the fact 

that for nearly every non-efficient DMU, the model selects 

just one single input and a single output to have a non-zero 

weight while all others are assigned a zero weight.  That 

means that the resulting efficiency score is highly skewed 

and does not give an accurate representation of a DMU’s 

efficiency.   

In the analysis, Bazargan and Vasigh make reference to 

the use of an infinitesimal value in a constraint to avoid 

setting any of the weights to 0, but make no reference as to 

whether this was used and if so, what values were used.  As 

was observed in this analysis, using such a technique is 

important in order to achieve an accurate assessment of all 

DMUs across all input and output parameters rather than 

focusing the analysis on just a subset of parameters. 

An alternative approach to handle the issue of setting 

weights to 0 is the so-called cross-efficiency score, as 

originally proposed by Doyle and Green  [17].  This method 

calculates the optimal weights for each DMU in the typically 

manner for CCR, BCC, or SBM, but then applies each 

DMU’s weights to all other DMUs, and then computes an 

average score for each DMU.  While this does aid in 

mitigating the effects of one DMU’s score being calculated 

on the basis of only a small set of inputs and outputs, it also 

can be argued to run counter to one of the fundamental 

principles of DEA; the assumption that a management 

tradeoff is made between performing well across the given 

inputs and outputs for an individual DMU, and therefore the 

model should permit each DMU to appear in the “best 

possible light” by selecting its optimal weightings. 

V. CONCLUSIONS AND FUTURE WORK 

The analysis in this paper has shown that depending on 

the DEA model chosen, radically different results may be 

obtained.  Consequently, any study of airport efficiency 

needs to begin with a thorough examination of the models 

available and a motivation for why a particular model was 

selected.  Without an upfront analysis of this kind, a study’s 

final results may be called into question. 

In order to simplify such analysis, a thorough study of the 

implications of each of the most commonly used models is 

necessary.  Such a study needs to examine the implications 

and interpretations of each model in an airport context since 

the characteristics of each model may take on different 

meanings depending on the application area. 

Finally, a further, broader area worthy of additional 

analysis relates to the selection of inputs and outputs to 

airport efficiency benchmarks: Before proceeding to 

calculating the airports’ efficiency scores, any study needs to 

present a discussion of what the true goals of an airport are – 

for example maximizing passenger throughput, maximizing 

aircraft movements, minimizing delay, maximizing profits, 

minimizing costs, etc.  Only after determination of the 

airports’ goals can the appropriate inputs and outputs be 

selected.  Many of the analyses to-date have largely omitted 

this discussion and appear to have selected inputs and 

outputs merely on the availability of data. 
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The Airport, and specifically the turn around time (TAT) of 

aircraft at the gate or a remote position from the terminal have

been recognized as crucial element to ATM system performance.

Currently, the TAT ranges around 30 min for short/medium 

range aircraft. For the 2020 Single European Sky, SESAR claims

as performance target for a cut down to 15 min while also

increasing process reliability. There are several reasons, why the

turn around is still remarkably uncertain, mainly caused by

shared responsibility for the individual ground handling

processes, a frequent distortion of gate occupancy schemes at the 

airport and still deficient interfaces with the aircraft body. All 

this leads to only a limited predictability of the “Earliest Off 

Block Time”, this being an important time constant to trigger the 

departure and consequently the arrival sequence. This paper

reveals the current data quality as found during a large field

study at German Airports, derives the reasons for largely varying 

process times both on the technical and procedural level and

shows the potential for improved TAT reliability through aircraft

interface optimization.

Aircraft Turn Around, Aircraft Body, Ground Handling,
Boarding, Critical Path, Monte Carlo Simulation

I. INTRODUCTION

The Turn Around Time (TAT) of aircraft has been defined
by IATA’s Aircraft Handling Manual (AHM) 810 [1] as the
time period an aircraft occupies a stand or a gate at the airport.
More specifically this period is framed by two activities: The
positioning and removal of the aircraft wheel chocks, 
respectively named as On and Off Block Time. As this time is
directly impacting the airport / terminal capacity, there is a vital
interest in predicting exactly the Gate Occupancy Time (GOT) 
by means of stable ground handling processes from the Airport
Operator’s point of view and a similar one in minimizing that
time from an Airline’s perspective since block time is
commercially lost time. The GOT has therefore become a
central planning parameter for Airport / Apron Terminal
Design Processes [4]. The largest component during on block
is the boarding and de-boarding of passengers, as field
measurements clearly show [2]. Hence, it could also be
learned, that ground handling events are characterized by a
remarkable diversity in processes, occurrence of such processes
and their service depth, making every aircraft turnaround

somehow a unique procedure in terms of required times,
interfacing and services. Our referred field study was 
performed in summer 2006, to learn about these constraints and 
to gather relevant data with the aim to exploring ways how to
improve the reliability of and also shorten the time needed for a 
Turn Around. This with SESAR’s performance target in view,
to cut down the TAT for domestic flights to 15 min, and 30
min for international flights [5]. 

Chapter II presents the results of that field study; chapter III 
discusses the management of the gathered data in a relational
database to allow systematic analysis and dissemination of the
results to the various stake holders. Chapter IV reveals the 
statistical data modeling to determine the level of reliability in
today’s Turn Around operations by means of Monte Carlo
(MC) Simulations, Chapter V creates an improved aircraft 
interface scenario and derives the expected increase in Turn
Around reliability, again by applying MC modeling.

II. CURRENT TURN AROUND PRACTICE

A. Overview

The Turn Around has been described in several studies
such as [6], many of them putting emphasis on the boarding
and de-boarding processes, [7], [8], [9] and is also part of many
standard documents such as the Aircraft Characteristics For
Airport Planning Manual of any modern aircraft [3]. It is 
generally represented as a bunch of processes, from which a
subgroup may run in parallel, and others are required to run
sequentially, e.g. due to legal or logistical requirements such as
limited space around the aircraft, tool availability, or legal 
constraints such as to prohibit Fueling with Passengers
onboard.

The collection of sequential processes consuming the
maximum time during turn around is called its critical path. As 
stated, typical process members of the critical path are 
boarding, de-boarding, fueling, loading, unloading and service
processes such as cleaning or catering [2], [3].

The following picture depicts the typical process and 
dependencies:

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9335



Open
PAX
door

Dis-
embark

PAX

Dis-
embark
Crew

Cabin
&

Cockpit

catering

Final
clean

Board
Crew

Crew
Check

Board
PAX

Close
PAX
door

Position
wheel
chocks

Position
PAX
stairs

Remove
PAX
stairs

Start
&

Remove
wheel
chocks

Exterior Aircraft Cleaning

Waste Water Handling (Sanitary)

Portable Fresh Water

Wheel and tire check

Fueling

Cooling and Heating

Routine Maintenance / Flight Check

Nonroutine Maintenance / On-demand Check

Air Starter

De-icing

Demin. Water

Position
Cargo

1

Open
Cargo

Unload
Bags

Unload
cargo

Load

cargo

Load
bags

Close
cargo
door

Remove
cargo

Loader 1

Duty-Free stocks

In-flight entertainment

Open
PAX
door

Dis-
embark

PAX

Dis-
embark
Crew

Cabin
&

Cockpit

catering

Final
clean

Board
Crew

Crew
Check

Board
PAX

Close
PAX
door

Position
wheel
chocks

Position
PAX
stairs

Remove
PAX
stairs

Start
&

Remove
wheel
chocks

Exterior Aircraft Cleaning

Waste Water Handling (Sanitary)

Portable Fresh Water

Wheel and tire check

Fueling

Cooling and Heating

Routine Maintenance / Flight Check

Nonroutine Maintenance / On-demand Check

Air Starter

De-icing

Demin. Water

Position
Cargo

1

Open
Cargo

Unload
Bags

Unload
cargo

Load

cargo

Load
bags

Close
cargo
door

Remove
cargo

Loader 1

Duty-Free stocks

In-flight entertainment

Figure 1. Parallel and sequentiel Turn Around Processes

B. Set up of the Field Study

To identify possibilities to reduce individual process times
and their expected remarkable variance in time especially on
the critical path, the field investigation aimed at exploring
potential changes to the aircraft-design and arguments for 
innovative technologies to be installed in the aircraft or applied
on ground in order to smoothen and accelerate the ground 
services resulting in shorter turnaround times with increased
reliability.

This activity shall be seen in concert with e.g. the physical
implementation of supervision technologies such as process
scanning and tracing devices or e.g. data networking at the
apron, as e.g. [6] is calling for, and modification of current
legal regulations (see Chapter III).

The datasets collected had to cover nearly all models and
types of Airbus-manufactured aircraft and at least some
representative Boeing aircraft. It was further anticipated to
consider different airport types, such as the Hub-Airport
Munich (MUC) and mid size airports such as Leipzig/Halle
(LEJ) and Dresden (DRS) in Saxony. The data gathered also
covered interviews with ground handling staff as well as 
detailed time sequence measurements to allow determination of 
specific process indicators (fuel quantity, passenger rates, etc.,
see TABLE I. ). Further, process interruptions due to limited or 
distorted logistics were noted.

These data did form the platform for various process
analyses looking at optimization potential. Based on the
Aircraft Handling Manual [1] providing a detailed framework
on how to cluster and categorize ground handling services, then

extended for the boarding related activities, the following
collections of services were gathered (see also Figure 1. ): 

Aircraft Servicing (covering exterior services, such as
water and lavatory service, e.g. attachment of stairs and 
passenger bridges);

Loading and Unloading (on- and offloading of belly
payload, container and bulk);

De-boarding (differentiating in remote and gate
positions as well as number of doors used);

Catering (Handling at Ramp);

Interior Cleaning (including cabin and crew rest
compartment cleaning);

Crew Change and Cabin Preparation (including duties
to be performed by cabin crew);

Boarding (hence without distinguishing into different
boarding procedures, this later recognized as important
data and being subject to further studies at TUD); and

Fueling (number and location of fuel valves used).

Based on that structuring, the measurements performed in
the field did include timestamps assigned at the lowest
observable level, so linked to a process, task or element as 
respective sub-processes. A distinct process start and end was
required to be observed. As such, those timestamps were tested
on their traceability and practicability before they were 
implemented into the process templates (see Figure 2. ). 

The field studies needed for this research were kindly supported by
Airbus Deutschland, Dresden, Leipzig/Halle and Munich Airport, and the 
Ground Handling Agents Mucground and Port Ground.
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At some processes, intermediate timestamps were defined
in order to allow gathering information about process
interruption times, waiting times or other intermediate points
(milestones). Besides collecting time sequences, the sampling
of the following additional information affecting the
turnaround was performed:

Manpower (amount of personnel performing a 
specific process, task or element)
The equipment types used;
The equipment quantities;
Load figures (e.g. Passenger figures, Seating,
Baggage-, Cargo-, Mail-figures etc.);
Aircraft layout information (if possible: amount of
lavatories, galleys, etc.); 
Transfer volumes (e. g. fuel quantity figures).

The various data collection templates designed for the field
activity are depicted in the following figure e.g. for the loading
case1:

Figure 2. Data collection template, the loading case 

C. The Collected Data: A Web Application

To allow efficient handling of the remarkable amount of data
collected, a relational MYSQL Database was implemented.
Further a PHP application was designed so forming a powerful

1
 ULD = Unit Load Device, Standard cargo container. Typical dimension:

317cm length, 243 cm width, 299 cm height. Various subclasses do exist
according to IATA coding definitions.

web application to create easy access to the data, and 
providing a clear structure and documentation platform:

Figure 3. Web Front end to access data of Turn Around Database 

D. Data preparation for Turn Around comparison means

For each of the analyzed processes, and sub-processes,
dedicated values were derived from the field measurements in
order to allow comparing the individual turnarounds. The
following parameters were defined for the individual
processes [2]:

TABLE I. SPECIFIC PROCESS PARAMETER

Specific Process Data generated (extract)

Process
Value

Subhead

(De-)Boarding A/C (De-)Boarding Rate [PAX/min]

A/C (De-)Boarding Time [min]

Avg. Boarding Flow Interruption Time [min]

Catering Catering Time Split up AFT Galley [%] 

Catering Time Split up FWD Galley [%]

Total Catering Vehicle retention time [min]

Cleaning Cleaning rate [per seat]

Cleaning Time Cabin, Lavatory, Galley [min]

Fueling Average Fuel Flow rate [l/min]

Starboard/Portside Fueling Split up [%]

Tanker-Dispenser Split Up [%]

(Un-)Loading (Un-)Loading AFT/FWD [ULD/min]

(Un-)Loading Bulk [kg/min]

Servicing A/C Service Vehicle Retention Time [min]

Pushback Waiting and Standby Time [min]

A/C Servicing Equipment Split up [%]

These specific data could be sampled for over 120 complete
turn around events, measured at the three sites MUC, DRS and
LEJ.
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III. STATISTICAL PROCESS DATA ANALYSIS

A. Legal and Procedural constraints

In accordance with ICAO Doc 9626, the Manual on the
Regulation of International Air Transport [10], ground
handling consists of those processes as listed previously and
implemented in our database. Further, the ICAO Doc 9562
Airports Economics Manual [11] separates ground-handling
services into terminal handling (passenger check-in, baggage
and freight handling, flight plan processing) and ramp
handling (aircraft handling, cleaning and servicing). For all of 
these processes, operational interdependencies do exist,
limiting the parallelizing of these processes, as the area around
the aircraft is very limited in light of the various service
equipment used during ground handling. Further, legal
requirement call for granted maneuvering capability for the
fire brigade on one side (typically located right hand to the
aircraft) and passenger related activities (stairs typically
installed left hand).
Obviously, Airlines and Ground handling companies are
permanently investigating into possibilities to reduce process
constraints, since further parallelizing of processes besides
mainly fueling, catering, cleaning and servicing nowadays as 
found during the field study and shown in Figure 4. is seen as
mandatory to substantially reduce the TAT. This aspect will 
be focused in subsequent papers.

Figure 4. Sample Paralel Processing during turnaround – field study 

Candidates for (increased) parallelized processing so remain
loading/unloading and
fueling.

Further,
shortening and
increasing the reliability of the boarding and de-
boarding time

do represent a second field for improvement, being subject of
this paper. Investigation was consequently directed into the
technical aspects of these processes in the field for getting a 
clear picture of all operational requirements and systematic
deficiencies linked to them, presented in the next section.

B. Technical constraints

Based on the interviews done with ground handling personnel
in the field and observations gathered during the monitoring
phase, the following representative process distortion cases
were found [2]:

TABLE II. TECHNICAL DEFICIENCIES AT TURNAROUND

Technical Deficiencies at Turnaround (extract)

Process Deficiency

(De-)Boarding

Installation of second passenger bridge on
gate position does not result in the time saving
of the two passenger stairs on remote position
due to the marginal distance between the two

doors.

Boarding
Boarding is influenced by the mutual

obstructions of the passengers.

Catering

The catering door is opened by the purser
after all passengers left the aircraft and the

catering vehicle arrived on position. Usually,
the employee signalized his arrival by

knocking at the door which is occasionally not 
realized by the crew and result to a delay of

the beginning of the process.
Leaving of the vehicle affected by

obstructions because of loading equipment
especially on smaller aircraft with bulk load.

Cleaning

High quantity of waste produced because of
in-flight services. The lack of disposal units
leads to defilement of the aircraft and time
consuming removal by the cleaning staff.

Fueling

Obstructions between the service vehicles
result to delayed start of the fueling process

and a non-compliance of the safety
requirements

Simultaneous fueling on both wings enhances
the flow rate not to the double of a single side

fueling
The fuel computer has problems calculating
the exact filling quantity due to temperature
variations. So, the centre tank is opened too

late and fuelled with a flow rate lower than for
the other tanks.

(Un-)Loading
Cargo Door: Panel for opening hatches of the
A300, A330 and A340 attached to high to be

reached manually by all personnel 
Conveyer belts used for (un)loading bulk.
Height of aircraft influenced by the current

weight of Payload and Fuel. Permanent
Altitude adaptation needed inducing

repositioning of the equipment

Servicing

Cockpit misses the information about the
removal of the GPU by the loading crew.

However, clear commitment necessary before
disconnection.

Reasoned by weight of the adapter, negative
effects can occur for the employee by

attaching the unit as well as for the holding of
the plug connection itself.
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Figure 5. Physical Deficiencies : Displaced Control Panel for cargo door 
(left) / Manual positioning of load compartment (right)

To conclude, quite a bunch of technical deficiencies were
found during the field study that effectively hamper the
manual and also partly automated activities during Turnaround
in terms of delays and consequently reduced reliability for 
process times.

The following section looks into the turnaround database and
determines the statistical behavior of the processes.

C. Determination of Process Stability

To determine the nature of the generated process descriptors
as listed in TABLE I. typical density distributions were
compared to the data. Since the data has a non normal
distribution character, a WEIBULL density function f(x) with

 and  as shape parameter was finally selected for probing
the data fitting, since it is most commonly used in life data
analysis and due to its flexibility. It can mimic the behavior of 
other statistical distributions such as the normal and the 
exponential. A Weibull distribution may generally written in 
the form

)/(1),,( xexxf

Where x >= 0 and f(x) = 0 for x < 0 
x to substituted by (x += x_offset)

 = scale parameter
 = shape parameter

For all processes found to be timely critical during today’s 
turn around (see Figure 4), data distributions were analyzed,
statistically tested on its significance against chi-square. The
probing procedure is shown exemplarily for the de-boarding
process, referring to the process parameter passenger rate per
door [PAX/min] to allow normalizing of the varying seat load
factors. It may be noticed that for some processes, an offset is 
required to adopt the data range to the Weibull distribution by
x_offset. For the sample case presented below, this offset is at
10 PAX/min:

De-boarding:
x-Offset: 10 [PAX/min]
Number of counts: 97
Minimum flow rate: 4,1 PAX / min
Maximum flow rate: 38,9 PAX / min
Number of classes: 10 (see TABLE III) 

Class with: 4 [PAX/min]
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Figure 6. Class Building for the De-Boarding Case
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Figure 7. Approximated versus Real Data Distribution – De-boarding case 

TABLE III. STATISTICAL FIT AND PROOF DATA – DE-BOARDING CASE

Statistical Fit and Proof Data

(De-)Boarding
[PAX / min]

Value

Class number logic 5 log(number of counts)

2.23619

19.2339

x offset 10

Mean 17,0354

Standard Variation 7.92729

Variance 0.465343

Density (Weibull) 0.0030067 e(-0.00134457 x2.23619) x1.23619

Distribution 1 – e(-0.00134457 x2.23619)

Chi² 10,3228

a 0,05

Proof 12,5916

Pass Status TRUE

For some other timely critical processes, the following
distributions are depicted below, showing the remarkable
magnitude in the distribution variations:
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TABLE IV. REAL DISTRIBUTIONS – CRITICAL TA PROCESSES

Real Distributions – Critical TA Processes 

(De-)Boarding

[PAX / min]
Value

2.23619

19.2339

x offset 10

Boarding
[PAX / min]

2.29263

19.5224

x offset 0

loading AFT&FWD
[bags / min]

3.13022

165.289

x offset 0

Unloading AFT&FWD
[bags/ min] 

4.05691

215.208

x offset 0

These parameter sets do allow sorting the processes against
their stability, as with (scale parameter) tending to smaller
values and shape parameter) tending to larger values do
express increasing variance of the distribution. It comes to the
following ranking:

1. Unloading
2. Loading
3. Boarding
4. De-boarding

As observations did further show, the reason for this inter-
process uncertainty trend refers to the varying standardization
and automation level of the individual processes as well as the
quality of technical support means, as described above.

IV. UNCERTAINTY EFFECT ON THE TURN AROUND

When accumulating the critical processes along the line, the 
agglomeration of all partial process uncertainties will obviously
induce a total uncertainty for the turn around. To determine the
magnitude of that total variation, analytically modeling was 
replaced in favor of statistical random probing. This was
achieved by applying the Monte Carlo method, relying on
repeated random sampling of all critical processes, using the
calibrated distributions as found above. The results are 
presented in the next section.

A. MC Simulation for overall turnaround uncertainty

determination

The processes 

- boarding, including the emphasis on the door
closing procedure after the last Passenger did
board, de-boarding, obviously running in
sequence;

- loading and unloading, obviously running in
sequence, too, and

- either fueling, catering or cleaning, all running in
parallel

have been identified as critical processes according to 
Figure 4. Concerning the fueling process, process
interruptions were recorded on a regular basis, resulting
from the fact, that fueling is generally initiated by the
responsible personnel without knowing the exact quantity
beforehand, to be ordered by the cockpit crew. So a typical
volume is being fueled in a first step, than for most of the
tracked cases, a break occurs within which communication
takes place and the exact quantity will be told. This effect 
was also included in the process modeling.

The following density and distribution shapes do result
from functional fitting as presented in Chapter III,
reflecting also the x offset applied to the de-boarding case: 
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Deboarding
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Figure 8. Modeled distributions for all time critical processes 

The MC method is then applied to the collection of these
processes, linked according the prescribed constraints, and 
executed for 104 simulation runs. It comes to the following
TAT distribution:
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Figure 9. Turn Around Time Distribution

The shape of the TAT Distribution so follows again a 
WEIBULL behavior with the following over all process
characteristics:

- Minimum Time: 1135 s (19 min)

- Maximum Time: 12486 s

- Mean: 1872 s (31,2 min)
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- Standard Deviation: 23 s 

Obviously, the central limit theorem according to which under
certain conditions such as referring to independent and
identically-distributed data with finite variance, the sum of a
large number of random variables is approximately normally
distributed, may not applied without inacceptable errors for
this data case. 

Instead, it is shown, that all type of optimization of single (and
critical) processes does lead to a turn around time distribution
with Weibull character. This to be proven by the different spot
case analyzed in chapter V.

The 3 critical processes running in parallel in between de-
boarding/boarding and unloading/loading were limiting with
the following distribution, based on 104 simulation runs, too:
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Parallel Processes: Limiting Cases

5657

3544

782

0

1000

2000

3000

4000

5000

6000

Fueling: Catering: Cleaning:

N
u

m
b

e
r 

o
f

o
c
c
u

re
n

c
e
s

Figure 10. Distribution of limiting process linking de- boarding and boarding

So fueling was the limiting process out of the parallel
processes for most of the cases (56%), followed by catering
(36%).

V. POTENTIALS TO INCREASE TA RELIABILITY

The field study has shown a set of technical deficiencies
which lead to uncertain, non standard processing in many
cases. Based on representative interviews with ground handling
personnel, individual impact effects were affiliated to the
specific aspects. These have to be transferred into adopted
process shape distributions, those in turn being subject of 
further MC simulations to derive the overall potential gain on
the turnaround.

A. Addressing time burden to technical deficiencies

With reference to TABLE II, the following potential for
reducing the impact effect to uncertainty of the individual
deficiencies was found to be applicable according to expert
judgment in the field (bold values mean consideration for the 
following MC simulations as time critical processes):

TABLE V. ADDRESSED TIME EFFECTS TO TECHNICAL DEFICIENCIES

Fighting Technical Deficiencies at Turnaround

Process
Deficiency counter

measure

Judged Variance

reduction potential

(De-)Boarding
Second passenger

bridge on gate
position

10%

Boarding
Innovative Boarding
Concept / New seat

arrangement.
20%

Catering
Catering door

signaling technically
supported

10%

Enhanced vehicle
logistics lowering
obstruction effects

15%

Cleaning
Reduced waste

produced
25%

Fueling
Enhanced vehicle
logistics lowering
obstruction effects

15%

Optimized
Simultaneous fueling

on both wings
20%

fuel computer
upgrade to calculate

FOB precisely
5%

(Un-)Loading
Optimized Cargo

Door: Panel
10%

Auto adjustment for
Conveyer belts &

equipment
30%

Servicing
Cockpit Info granted
about GPU removal

10%

Light-weight adapter
for GPU

10%

It shall be noticed that the expected gains shown in the 
above table may be seen as (realistic) indicators only, and
subject of alteration when performing interviews at other
airports. Nonetheless, the following section will clearly show
how optimization potential and TA reliability do correlate.

B. Conversion into Adopted Distributions

This potential is to be transformed into process distribution
behavior, respectively the modeling of reduced process
uncertainty to be modeled through

 (scale parameter) tending to larger values, and

shape parameter) tending to smaller values.

The approximation for the new shape and scale parameter
follows the following relationship between the function
parameters  and the variance, using the Gamma Function

:

0

1 dtet tx

2/2 )1
1

()1
2

()(xVar

This leads us to the following adopted shape parameters for
the time critical processes: 

TABLE VI. ADOPTED DISTRIBUTIONS – CRITICAL TA PROCESSES

Adopted Distributions – Critical TA Processes

(De-)Boarding

[PAX / min]
Value

2,534656

19,193186

x offset 10

Boarding
[PAX / min]

3,4680421

19,23082

x offset 0

loading AFT&FWD
[bags / min]

3,252597

154,5100

x offset 0

Unloading AFT&FWD
[bags/ min] 

4,047813

206,81878

x offset 0
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These adopted distributions are now being re-applied to the
MC simulation set up to explore the effect of every single
counter-measure on the turn around time. With another 105

simulation runs, it comes to the following distribution:
 Improved "stabalized" Turnaround
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Figure 11. Improved “stabalized” Turn Around Time Distribution

The shape of the improved TAT distribution now follows the
over all process characteristics:

- Minimum Time: 1.222 s (20 min)
- Maximum Time: 7.790 s
- Mean: 1.784 s (29,7 min)
- Standard Deviation: 19s

When comparing both scenarios, the following table depicts
the potential for stability increase of the turn around:

TABLE VII. POTENTIAL FOR INCREASED PROCESS RELIABILITY

Expected Benefits of technical counter measures for 

increased process reliability 

Figure Baseline Optimized Gain / Loss

min 1135 s 1222 s 7,67%

max 12486 s 7790 s -37,61%

mean 1872 s 1784 s -4,70%

Variance 535 s² 395 s² -26,17%

SD 23 s 19 s -17,4 %

The 3 critical processes running in parallel for this improved
case follow the distribution as depicted below:

Parallel Processes: Limiting Cases - Improved Scenario
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Figure 12. Distribution of limiting process linking – improved scenario

So equal to the baseline scenario, fueling did constrain the 
parallel processes for 56%, followed again by catering (36%).

C. Reduced process uncertainty affecting TA reliability

Two effects can be noticed when comparing the reference
scenario with the improved: Although the mean of the TA
time is only decreasing by roughly 4% its stability, indicated
by the variance is increasing by roughly 25%. So obviously,
installing efficient technical upgrades at the aircraft for the
sample case only would significantly improve the turn around
reliability achieved through stable (deterministic) processes.

TABLE VII indicates a potential for increasing the turn 
reliability by roughly 25% when retrofitting the aircraft body 
accordingly, and optimizing the manual procedures for the
processing. This is seen as an important contribution which
obviously is worse to be investigated further.

Hence, it also came clear that this type of counter measures
will in no way allow complying with the SESAR performance
targets for the turn around. This one can so only be achieved by
parallelizing Fueling and hereafter catering with the critical 
processes (de-)boarding and (un-)loading.

For the boarding processes, an in-depth study has recently
been completed at TUD, exploring the effects of different
strategies (random, inside-out..) onto the process time.
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Abstract—At the airport level, the new systems involved in the
A-SMGCS (Advanced Surface Movement Guidance and Control
System) give the possibility to take advantage of some innovative
decision support tools bound to the optimisation of the ground
traffic management.

In this article, two different tasks assumed by airport con-
trollers are analysed and modeled: the runway sequencing
process and the application of runways sequences at the ground
level. An existing ground traffic simulator is adapted to measure
the potential improvements that could be expected by the use
of some optimisation methods applied on these two modeled
problems.

I. INTRODUCTION

Airport congestion is still a key point to be studied for
the next years: the evolutions that are expected concerning
the future management of the ground traffic situations (A-
SMGCS: Advanced Surface Movement Guidance and Control
System) at the airport control level have obviously several
environmental and economical issues.

On major airports, these evolutions can be technically
provided by taking advantage of some new developed systems
such as the surface radars, the D-GPS (Differential Global
Positioning System) associated with the ADS-B (Automatic
Dependant Surveillance mode B) and numerous other coor-
dination tools like AMAN (Arrival MANager) and DMAN
(Departure MANager).

In this context, this article focuses on the possible optimi-
sation of two major aspects of the airport controllers tasks:
the aircraft sequencing at the runway level and the conflict
resolution between taxiing aircraft. An airport simulation tool
(ATOS: Airport Traffic Optimisation Simulator) is adapted and
used to measure the delay reduction that could be expected.

II. RELATED WORK

A. Projects

Two main approaches called AMAN (Arrival MANager)
and DMAN (Departure MANager) deal with the aircraft
sequencing problem:

• AMAN are decision support tools that provide the con-
trollers with information on arrival flows, including calcu-
lated arrival runways sequences. These informations are
regularly updated with the actual positions of aircraft in
the approach sectors.

• DMAN are planning tools developed to improve the
departure flows at airports by optimizing the departure
runways throughput.

Some projects as PHARE (Program for Harmonised ATM
Research in Eurocontrol) [1] have defined some DMAN and/or
AMAN systems but do not coordinate both of them at the
airport ground traffic level. PHARE was a project instaured
by Eurocontrol. It was a collaborative research program that
investigates an air traffic management concept.

Gate to Gate [2] is a European project which takes into
account aircraft from their departure gates to their arrival gates.
It mostly improves an AMAN project by managing the air
traffic problem. A DMAN is used for the mixed runways and
shares out the main informations about the departures. The
AMAN has to set the arrivals with the information provided
by the DMAN.

The NLR develops a concept which schedules the aircraft
on the airport by using constraint relaxation [3]. A lot of
parameters are considered, as the runway separations, SID
routes, exit points, . . . DMAN and AMAN are not explicitly
described but implicitly defined.

OPS [4] defines a new DMAN to schedule departures. This
project is based on more human interactions (from pilots and
controllers for example) but is also more flexible (the users can
setup a lot of values). They look forward to define a real-time
decision support tool.

Total Airport Management (TAM) [5] tries to merge to-
gether as many concepts as possible defined by Eurocontrol,
concerning AMAN, DMAN in the ATC in order to optimise
the airport capacity and improve the predictability of airports
traffic.

CADM (Coordinated Arrival Departure Management) [6]
is a concept that mixes a DMAN and an AMAN but does
not consider precisely the taxiing times. It uses fuzzy infer-
ence mechanism to determine rules to use to set the aircraft
sequence.

All these projects focus on the definition and/or the pre-
diction of airports runways sequences for arrivals and/or
departures, trying to share as efficiently as possible all the
available informations given by the approach sectors and the
airport systems. However, the taxiing phases of the flights are
still the ones that are the most difficult to predict with a good
accuracy: the tested DMAN systems are still not so satisfying
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for ground controllers, as the predicted informations remain
uncertain.

B. Background

Previous publications [7], [8], [9], [10] studied the ground
traffic optimisation on Roissy Charles De Gaulle and Orly
airports. The ATOS (Airport Traffic Optimisation Simulator)
simulator was developed and used to compare the efficiencies
of several optimisation methods applied to different traffic
situations.

The simulator uses a detailed description of the airport taxi-
ways, gates, push-backs, runways and the existing constraints
(one-way taxiways for example) to calculate a set of possible
paths for each aircraft (see figure 1). The whole traffic is
simulated using the real airport flight plans demand of a day
of traffic. The flight plans contain information such as the
aircraft type, the gate position, the landing or take-off time,
the runway used . . .

Using these informations, and for each traffic situation, the
possible paths for each aircraft are calculated on a defined
time window Tw, taking into account uncertainties on taxiing
speeds and a trajectory prediction done: in such a prediction,
the future aircraft position is not a point but a set of possible
points (a line segment) on the taxiways used (see figure 2).

The problem to solve consists in assigning a path to each
aircraft, with holding points if necessary, in order to solve
every conflict with other aircraft within the time window Tw.
Two aircraft are in conflict each time the separation standards
defined by the operating rules of the airport are violated.

These rules are modelled as follows:

Tw

∆

Simulation steps

Studied situations

∆

Simulation time

Time

Fig. 3. Shifted windows

• parked aircraft are supposed to be conflict free;
• a minimum separation distance is required between each

taxiing aircraft pair;
• time separations are required between aircraft on run-

ways, depending on the aircraft types and their wake
turbulence categories.

Among all the possible solutions, the best conflict free
trajectory is search according to a global criterion taking into
account the delay due to holding points and longer paths
chosen.

The problem is very combinatorial because of the number
of possible paths and holding points for each aircraft. When
the number of aircraft involved increases, the problem can
become very difficult to solve using exact methods. Different
optimisation methods have been studied by the DSNA/DTI
R&D POM team to solve it:

• A sequential deterministic approach consists in first or-
dering aircraft, give the shortest path to the aircraft with
the highest priority, and optimise the n + 1th trajectory
solving conflicts with the n previous already optimised
trajectories. Optimising the trajectory of one aircraft,
solving conflicts with n other known trajectories is quite
simple and can be done with an A∗ or branch & bound
method [HT95], [11].

• A global approach using stochastic optimisation based
on genetic algorithms [12], [13] can be used to find
the best paths combination. To increase the efficiency
of the algorithm, the partial separability of the problem
can be used to define crossover and mutation operators
able to optimally recombine current solutions during the
convergence process [14].

When a traffic situation is solved at time t, the paths
obtained are applied to the moving aircraft during a time ∆
(∆ < Tw) called time shift window, to create the updated
situation at time t + ∆ (figure 3). A whole day of traffic can
thus be simulated using this shifting window modeling, taking
into account the uncertainties on aircraft taxiing speeds.

C. Obtained Results

The first simulations results obtained with this modeling
have shown some characteristics on the traffic and can help
quantifying some parameters of the problem:
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• When ”realistic” uncertainties on taxiing speeds (from
20% to 50%) are used, the time window must be reduced
to 10 minutes to be able to solve the problem. This em-
phasis the difficulties encountered on the DMAN concept
because with a 10 minutes advance notice, the final take-
off time for an aircraft on the runway is to lately known.

• The method using a genetic algorithm consider globally
each traffic situation (without classifying aircraft with
priority orders) reduces the delays from 1 to 2 minutes per
aircraft during peak hours at Roissy Charles De Gaulle
Airport, which shows that the possible time saved by
optimising the taxiing phase of a flight is quite significant
on such airports.

• During peak periods, knowing precisely the paths fol-
lowed by each aircraft is necessary to manage correctly
the CFMU1 slots: an optimised simulation can help know-
ing the delay due to congestion and allows to anticipate
departures from gates if necessary.

D. Conclusions

These last results show that on large airports such as
Roissy Charles De Gaulle, the performance of systems such as
AMAN and DMAN depends on an optimised taxiing manage-
ment. On the one hand, the calculation of runway sequences
must take into account the taxiway paths and holding points
given to aircraft. On the other hand, it might be better to take
into account the full runway sequence to optimise the gate
time departures and the aircraft holding points and paths.

As it was shown that the acceptable time window adapted
to realistic uncertainties is less than 10 minutes, it is proposed
in this article to split the resolution process of each traffic
situation in two steps:

• First, the best runways sequences compatible with the
current aircraft positions and the known arrival flows
should be computed, with a large anticipation time (about
30 minutes if possible). This point is described in part III.

• Then (part IV), the aircraft paths and holding points
should be optimised in order to fit as close as possible
to these targeted runways sequences, with an adapted
anticipation time (less than 10 minutes)

III. RUNWAYS SEQUENCES OPTIMISATION

A. Goals

This part, focuses on finding some optimal runway se-
quences, respecting a given traffic situation and considering
the arrival flows.

A system merging the AMAN and the DMAN informations
at the airport level is defined: on runways shared by arrivals
and departures, this is the only way to optimise correctly the
sequence, and as far as arrivals and departures have to share the
same airport infrastructure, they have to be managed together
at the ground level.

1Central Flow Management Unit

B. Problem modeling

To meet these goals, the problem is defined as follows:

• The variables of the problem are the slots that must be
assigned to each aircraft;

• The main constraints are the landing times, the minimal
remaining taxiing time of each departure, the runway
separation rules and the CFMU2 slots allocated to some
departing aircraft;

• The criterion to minimise measures the departures delays
and the deviations from the CFMU slots;

• The prediction time should be close to 30 minutes.

1) Constraints: At the airport level, the arrival sequence
cannot be substantially modified: the ordering of arrivals is
fixed by approach sectors and it is reasonable to consider that
each arriving aircraft cannot be delayed more than a reduced
time λ (λ < 1 minute) if these kind of decisions can be taken
in advance enough.

Concerning the departures sequences, the minimum possible
taxiing time to the runway becomes a constraint for aircraft
leaving parking positions: to obtain a feasible sequence, each
aircraft’s shortest time to runway is considered as a constraint
in the sequence search.

The most important constraints used in the sequence op-
timisation is the separation due to the wake turbulence. The
minimum time between two aircraft depends on their weight
category. For example: a ”low weighted” aircraft cannot take
off less than 180 seconds after a ”heavy weighted” aircraft has
taken off. Three categories of aircraft (and associated wake
turbulence) are defined: ”low”, ”medium” and ”heavy”. The
following table shows each separation time (in seconds):

1st acft → A. L A. M A. H D. L D. M D. H

A. L 60 120 180 60 120 180
A. M 60 60 90 60 60 120
A. H 60 60 90 60 60 90

D. L 60 120 180 60 120 180
D. M 60 60 60 60 60 120
D. H 60 60 90 60 60 90

L = Low, M = Medium, H = Heavy
A = Arrival, D = Departure

Other constraints concern aircraft which are assigned some
CFMU slots: these aircraft have to be inserted in the sequence
between arrivals and classical departures, respecting their fixed
CFMU slots. According to the CFMU official acceptance, a
CFMU slot is respected if the aircraft takes off from 5 minutes
before to 10 minutes after the schedule. However, the actual
off-gate times does not always allow to respect all the CFMU
slots (as for example when a departure leaves the gate later
than its assigned slot). In consequence, the only constraint that
is defined as such is the interdiction to take off more than 5
minutes before the slot and the other CFMU requirements will
be integrated in the criterion.

2CFMU: Central Flow Management Unit
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Fig. 4. Criterion for CFMU slots

2) Criterion: In the estimated sequence, the penalties rel-
ative to the deviation from each CFMU slot (see fig. 4) and
the delay regarding the minimal runway access time for each
other departures are computed. The aim of the optimisation
is to minimise the sum of those values: the more the CFMU
slots are respected and the shorter is the time spent by aircraft
on taxiways, the better the sequence is evaluated.

On the other hand, arrivals sequencing delays are not taken
into account in the criterion as these little delays (less then
λ seconds for each arrival) are not penalising. Of course,
sequences which would cause one landing to be delayed
more than λ seconds are considered not valid regarding the
constraints that are defined and cannot be accepted.

3) Prediction time: The sequence optimisation takes into
account all the aircraft that may appear in the sequence during
the next Ts minutes. The choice of this prediction time is
influenced by several factors: as the sequence optimisation
problem is very combinatorial (for n aircraft, the complexity
of this scheduling problem is proportional to n!), the prediction
time should be short enough to keep the problem size small
enough. On the other hand, it seems logical that the larger the
prediction is, the better the sequence will be optimised on the
whole day.

C. Resolution

The sequence optimisation problem is a classical scheduling
problem that can be solved with deterministic Constraint
Satisfaction Problem algorithms.

1) Problem modeling: The problem is to find the best
sequencing for a given list of aircraft considering the almost
fixed arrivals and the separation time between two aircraft. To
find the best solution, each permutation of the aircraft list has
to be explored.

2) Branch & bound algorithm: To solve this problem, a
classical branch & bound algorithm is used: each branch of the
sequences tree (see fig. 5) is potentially explored and at each
node of the tree, the delay generated by the already assigned
slots is calculated. Once a solution has been found (i.e.: when
one of the leafs of the tree is joined), the cumulated delay
obtained updates the ”best current solution found” for the next
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Fig. 5. Sequences tree

steps: when a node generates a higher delay than this ”best
current solution found”, the branch is cut.

This algorithm can be summarised as follows:

Mainloop: For each non yet inserted aircraft ’a’:

• Insert ’a’ in the current (partial) sequence
• Calculate the new resulting penalty
• If this penalty is acceptable then:

– If some aircraft still remain to insert, explore the next
node of this branch (call back the Mainloop)

– Otherwise, mark the current sequence as the best
solution found

• remove ’a’ from the sequence

To obtain the best cuts in the tree exploration, the initial or-
der plays a major role. It was observed that defining the initial
order in accordance to the “ideal” time on the runway (i.e: the
minimal runway access time for non-CFMU departures and
the CFMU slots for the others) was a good strategy.

Moreover, some other cuts must be implemented to min-
imise the number of explorated nodes. These cuts are relative
to some specific characteristics of the problem:

• There is obviously no need to explore a branch in which
some arrivals are not in the right order.

• There is no need to explore a branch which swaps
two equivalent aircraft in the sequence. The equivalence
between aircraft is defined according to their wake turbu-
lence category, their type (arrival or departure) and their
CFMU profile(with or without a CFMU slot).

D. Results

In order to measure the efficiency of the proposed runway
sequence optimisation method, ground traffic simulations were
carried out with a traffic sample relative to a heavy day at
Roissy Charles De Gaulle, when the fourth runway was not
yet in operation (this period presents the advantage to provide
a mixed runway 09-27 shared by both departures and arrivals).

At each simulation step (every ∆ = 2 minutes), an optimal
sequence is computed for each runway, with different anticipa-
tion times (from 20 minutes to 50 minutes), and the resulting
theoretical delay for departures in these optimal sequences are
recorded (this theoretical delay is measured by the difference
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Fig. 7. Runway 26R at Roissy

between the proposed slots in the sequence and the “ideal”
slots for aircraft.)

The figures 6 and 7 give the mean delay per aircraft as
a function of the number of aircraft involved in the runway
sequence, for the two runways used for departures: runway
27 (shared with arrivals) and runway 26R (only used for
departures.)

On these figures, the influence of the prediction time win-
dow on the quality of the runway sequence can be observed
and confirms the expected conclusion: the highest the pre-
diction time is, the best the runways sequences are. Moreover,
this relation can be quantified: when the prediction time grows
from 20 minutes to 50 minutes, the mean departures delay
decreases from 140 seconds to less than 100 seconds in heavy
traffic situations.

Of course these delays measures are theoretical and could
only be realised if the calculated runway sequences were
exactly applied. This is the subject of the next part, in which
the retained prediction time window that is considered for the
runway sequences is 30 minutes, as it seems to be the best

compromise between what can be expected from AMAN and
DMAN systems and what can be treated by the optimisation
process.

IV. APPLICATION TO THE GROUND TRAFFIC SITUATIONS

A. Goals

In this part, the runway sequences previously optimised
are considered as a target for the ground traffic solver: the
objective is to fit as close as possible to the predefined
sequences while solving aircraft conflicts on taxiways and
gates.

Many options can be studied in this framework: it can
be interesting, for example, to favor the earliest departures
of each runway sequence and to delay in priority aircraft
which might arrive on the runway in advance according to
their allocated slot. It can also be interesting to strategically
sequence departures before they leave their gate position, by
assigning them an initial delay.

These different concepts will be studied and compared to
the results obtained without the runway sequence optimisation
in the last part of this article.

Therefore, the different optimisation methods must be
adapted to take into account the new objective (i.e. fit to
the optimised runways sequences) and not only minimise the
aircraft delay: this part details the modification that were done
for each resolution method.

B. Sequential resolution method

The sequential resolution method deals with a simplified
problem, in which aircraft are initially sorted and then consid-
ered one after an other (first considered aircraft have priority
on last considered ones). As a consequence, this resolution
method can be easily adapted to fit some given runways
sequences, as these sequences will directly provide the air-
craft classification to be considered: each aircraft a can be
associated with its slot ta in the concerned runway sequence,
and the sequential method will be applied in the order given
by (ta).

In most of the cases, this process ensures that on each
runway, departures always take off in the order defined by
the runway sequence (except in some very particular cases
relative to the limited aspect of the prediction time window.)
However, on runways shared both by departures and arrivals,
the order between arrivals and departures is not ensured: if a
departure planned just before an arrival reaches the runway
area too late, it will be forced to take off after the arrival
(in this case, the resolution method has to modify the aircraft
classification to find a conflict free solution).

Another point has to be considered, concerning the de-
partures constrained by CFMU slots: generally, the CFMU
slots correspond to some delayed take-off times. When such
aircraft are involved in a runway sequence, the classification
of departures is not the only factor to assume: the exact take-
off time of concerned aircraft must also precisely correspond
to their given CFMU slots, in agreement with the official
CFMU acceptance (no more than five minutes before the

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9349



slot, nor ten minutes after). During low traffic periods, these
departures could take off much earlier while respecting the
runway sequence order. For these reasons, a minimal departure
time (from the gate) has to be assigned to aircraft [9] and the
resulting delay must be propagated over the following depar-
tures, in order to keep a consistent sequencing of departures.

Therefore, an initial wait wd is calculated for each departure
d, as a function of:

• its minimal runway access time tmind,
• its optional CFMU slot tcd,
• the official acceptance for CFMU slots (δc = 5 minutes),
• and the initial required wait wp of the prior aircraft p in

the sequence (all aircraft are sorted in the order given by
the sequence).

For the first aircraft d0:

• If d0 has a CFMU slot tcd0
:

wd0
= max{0, tcd0

− δc − tmind0
}

• Otherwise,
wd0

= 0

For the following departures di (i > 0):

• If di has a CFMU slot tcdi
:

wdi
= max{0, tcdi

−δc−tmindi
, wdi−1

+tmindi−1
−tmindi

}

• Otherwise,

wdi
= max{0, wdi−1

+ tmindi−1
− tmindi

}

The best trajectory for a departure di (looked forward by the
sequential branch & bound algorithm) is the one corresponding
to the shortest path allowing a delay as near as possible to the
requested wait di.

C. Genetic algorithm solver

The conflict resolution method based on a genetic algorithm
consider globally each traffic situation, without assuming any
classification between aircraft: thus, the logical way to adapt
this method to the new problem (which is the application
of some predefined runways sequences) consist in modifying
the global criterion to minimise: in this way, the predefined
sequences will be considered as a goal but not as a constraint,
which is necessary to ensure that some acceptable solutions
still exist, even when the traffic situation does not allow to
carry out the targeted sequences.

Concerning acceptable (conflict free) solutions, the global
criterion is defined as the sum of each specific criterion relative
to each aircraft: for a departure, this specific criterion must be
refined, in order to estimate the difference between the take-
off time that would result from the proposed solution and the
take-off time targeted in the optimal runway sequence.

Different definitions of such a criterion can be considered.
The main difficulty is obviously relative to the difference
between the anticipation time used for the ground conflicts
resolution and the one used to compute the runways sequences:
on large airports such as Roissy Charles De Gaulle, departures

taxiing times can easily exceed the prediction time window,
so that the take-off times that will result from the proposed
paths and holding positions are uncertain on the long range.

Moreover, looking forward to hold the departures when their
positions seem to be in advance compared to their targeted
take-off slots is not appropriate, as such a ground traffic
management would clearly risk to propagate every form of
ground delay to the whole airport.

As a consequence, the proposed criterion is still proportional
to aircraft delay, but a balance is applied, in order to penalise
more the delay of an aircraft when its minimal runway access
time becomes closer to its targeted slot.

With this kind of criterion (based on delay), the same
treatment as before has to be considered concerning the
management of the CFMU slots (see IV-B): an initial wait wd

has to be computed for each departure d, in order to ensure the
correct insertion of these particular departures in the rest of the
traffic. Obviously, this initial wait also affects the definition of
the criterion.

Finally, the penalty P (a) to be minimised for each aircraft
a is estimated as a function of the delay dla of the aircraft
(including assigned wait and/or path lengthening), the minimal
runway access time tmina and the targeted slot ta of the
aircraft, as follows:

• For an arrival a:

P (a) = dla (unchanged)

• For a departure d with a CFMU slot tcd which is late
(tmind > tcd + δc):

P (d) = 20 ∗ (dld + tmind
− tcd)

• For a departure d with a CFMU slot tcd which is in
advance (tmind < tcd − δc) and which required wait is
wd:

P (d) = 10 ∗ (|dld − wd| + tcd − tmind)

• For each other departure d which required wait is wd:

P (d) = 5 ∗ (|dld − wd| + max(0, tmind − td))

In these definitions, the balance that is applied to departures
delay is defined in order to favor as often as possible departures
against arrivals.

V. RESULTS

To measure the efficiency of the proposed optimisation
methods, four simulations are carried out (with the same
traffic sample as in III-D): the two different ground traffic
solvers (i.e. the sequential method and the genetic algorithm
solver) are tested on two scenarios: in the first one, there
is no runway sequence to target, while in the second one,
the optimal runways sequences are computed and targeted as
explained before.

These four simulations are compared by the generated
delay, the slots deviations for concerned departures, and the
differences between the targeted slots and the final ones.
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A. Delay comparisons

The following table gives the global results of each sim-
ulation concerning the delay of “classical” departures (i.e.
the departures that are not constrained by a CFMU slot) and
arrivals:

Aircraft delay
Without With sequencing

Sequential Dep. 16h42 13h43
method 2min.10’/acft 1min.45’/acft

Arr. 1h56 3h12
10’/acft 16’/acft

GA Dep. 14h46 11h26
1min.55’/acft 1min.25’/acft

Arr. 2h12 5h33
11’/acft 28’/acft

Aircraft total and mean delay

These delays can also be measured as a function of the
number of taxiing aircraft on the airport, as shown on figure
8: the mean delay is calculated for each period of 10 minutes
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Fig. 10. CFMU deviations without sequencing
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Fig. 11. CFMU deviations with sequencing

of the day and is put in relation with the corresponding number
of taxiing aircraft in this period.

As one can see, the runway sequencing optimisation process
enhances the departures results of both solvers, and the sequen-
tial solver becomes almost as efficient as the genetic algorithm
one. Globally, the difference between a “basic” management
of taxiing aircraft (i.e. the sequential method without runway
sequencing) and the final genetic algorithm solver is really
significant: 45 seconds per aircraft are saved on the whole
day, and more than 1 minute par aircraft can be saved during
traffic peaks.

Of course, the arrivals delay shown on figure 9 follow
an opposite progression, especially with the final genetic
algorithm solver (for which the defined criterion voluntarily
give priority to departures). In an operational point of view,
the 20 seconds of delay added per arrival in compensation to
departures management enhancement should be profitable.

B. Deviations to CFMU slots

The figures 10 and 11 shows the distribution of the CFMU
slots deviations observed for the concerned departures.
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These results show that the CFMU slots are quite respected
(in fact, the only exceptions concern departures that are ready
to leave their gate too late to catch their slot, in accordance
with the CFMU requirements).

As no penalty was defined from 5 to 0 minutes before the
CFMU slot, the major slots deviations observed are globally
spread in this time period. As a consequence of the criterion
defined for the genetic algorithm solver, the runway sequenc-
ing process allows to concentrate the departures take-off times
at the beginning of the allowed period.

C. Deviations to targeted slots

The difference between the calculated runway sequences
and the final ones is measured: the figure 12 shows the
number of aircraft concerned by each value of slot deviation
formulated in minutes.

This figure shows that the runway sequences generated
with the genetic algorithm solver are closer to the targeted
ones, but there are still a lot of aircraft that don’t succeed in
catching correctly their initial assigned slot. This result shows
that the management of the taxiing aircraft is a very critical
step and should really take advantage of some appropriate
optimisation methods, rather than only be defined with some
basic circulation rules.

VI. CONCLUSIONS AND FURTHER WORK

In the first part of this article, a classical (and exact) method
has been implemented and tested to compute some optimal
runways sequences at Roissy Charles De Gaulle airport, taking
into account each traffic situation with precision, adding the
expected arrival flow fixed by approach sectors to the actual
ground positions of all taxiing aircraft. The simulation results
show that the runways sequences can be largely enhanced if
they are well organised with a sufficient anticipation time (the
largest possible anticipation time greater than 30 minutes). As
a consequence, the delay (and then the taxiing times) assigned
to departures at the airport level could be significantly reduced

if the surface management of the airport allows to perform
these targeted optimal runways sequences.

The second part of this article explores and proposes some
concepts that should be developed at the airport control level
to manage correctly the taxiing aircraft, while targeting the
computed runways sequences. This concepts can decrease
significantly the departures delay, but the simulations carried
out also confirm that this task is very complex during traffic
peaks, as far as the speed of the taxiing aircraft is not precisely
known and as far as the conflicts that have to be solved
between these aircraft affect the feasibility of the runways
sequences. The ground management of aircraft becomes again
more complex for runways shared by both departures and
arrivals, as departure delays can sometimes totally change the
optimal sequence to target.

Further work will consists in refining the way to target
a runway sequence at the airport level, by considering for
example some new methods to enhance the estimation of the
appropriate decisions that must be taken concerning the taxiing
aircraft, in order to keep the ground traffic situations consistent
with the targeted runways sequence.

Another development will concern the generalisation of
the constraints defined to perform the runways sequences
optimisation, taking into account more operational issues, like
the sequencing rules used by the airport controllers relative
to aircraft SID (Standard Instrument Departure) and STAR
(Standard Terminal Arrival Route).
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Abstract—Taxi-out delay is a significant portion of the 
block time of a flight. Uncertainty in taxi-out times 
reduces predictability of arrival times at the destination. 
This in turn results in inefficient use of airline resources 
such as aircraft, crew, and ground personnel. Taxi-out 
time prediction is also a first step in enabling schedule 
modifications that would help mitigate congestion and 
reduce emissions. The dynamically changing operation at 
the airport makes it difficult to accurately predict taxi-out 
time. In this paper we investigate the accuracy of taxi out 
time prediction using a nonparametric reinforcement 
learning (RL) based method, set in the probabilistic 
framework of stochastic dynamic programming. A case-
study of Tampa International Airport (TPA) shows that 
on an average, with 93.7% probability, on any given day, 
our predicted mean taxi-out time for any given quarter, 
matches the actual mean taxi-out time for the same 
quarter with a standard error of 1.5 minutes. Also, for 
individual flights, the taxi-out time of 81% of them were 
predicted accurately within a standard error of 2 minutes. 
The predictions were done 15 minutes before gate 
departure. OOOI data available in the ASPM database 
maintained by the FAA was used to model and analyze the 
problem. The prediction accuracy is high even without the 
use of detailed track data.    

Keywords-taxi-out delay; prediction; reinforcement 
learning.  

I.     INTRODUCTION 

Flight delays have a significant impact on the nation’s 
economy. The United States National Airspace System (NAS) 
is a complex system consisting of several components 
including the administration, control centers, airlines, aircraft, 
and passengers. Flight delays propagate over the NAS and 

increases with time over the length of the day due to the 
cascading effect. Stakeholders, particularly the ground and 
tower controllers, are overwhelmed during peak hours when 
the number of departures and arrivals increase; at times 
beyond capacity. Taxi-out delay is a major component of 
flight delays. Predictability of taxi-out time would help ease 
congestion and mitigate delays via better gate departure 
planning. Taxi-out time of a flight is defined as the time 
between gate pushback and time of takeoff. Increased 
predictability of taxi-time at the departure airport will also 
increase planning efficiency at arrival airports.  

Delays are caused by several factors. Some of these 
include increased demand, weather, near-capacity operation of 
major hub airports, and air traffic management programs such 
as Ground Delay Programs (GDPs) and Ground Stops (GS). 
The delay phenomenon is continuously evolving and is both 
stochastic and elastic in nature. The stochastic nature is due to 
the uncertainties that lie at the local level (such as the local 
control tower, arrival/departures movements on ground, and 
human causes), system level (such as GDP), and in the 
environment (weather). The elastic behavior is due to the fact 
that delay could be adjusted (positively or negatively) by 
flying speed, taking alternate routes, turnaround time on the 
ground, and position in the departure clearance queue 
especially during busy hours of the airport. In order to 
minimize the taxi-out delay component of the total delay, it is 
necessary to accurately predict taxi-out under dynamic airport 
conditions. This information in turn will allow the airlines to 
better schedule and dynamically adjust departures, which 
minimizes congestions, and the control towers will benefit 
from smoother airport operations by avoiding situations when 
demand (departure rates) nears or exceeds airport capacity.      

II.     LITERATURE REVIEW 
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Several research attempts have been documented to 
understand the departure process at airports. These include 
both simulation models and analytical formulations. The 
Departure Enhanced Planning And Runway/Taxiway 
Assignment System (DEPARTS) [1] developed at MITRE 
Corporation attempts to reduce taxi times by generating 
optimal runway assignments, departure sequencing and 
departure fix loading. Results of their analysis also indicate 
that pushback predictability could influence all phases of 
flight and traffic flow management.  

A simulation based study of queueing dynamics and 
“traffic rules” is reported in [2]. They conclude that flow-rate 
restrictions significantly impact departure traffic. The impact 
of downstream restrictions is measured by considering 
aggregate metrics such as airport throughput, departure 
congestion, and average taxi-out delay. Other research that has 
focused on departure processes and departure runway 
balancing are available in [3,4]. Many statistical models that 
consider the probability distribution of departure delays and 
aircraft takeoff time in order to predict taxi-time have evolved 
in recent years [5,6]. 

In [7] a queueing model for taxi-time prediction is 
developed. They identify takeoff queue size to be an important 
factor affecting taxi-out time. An estimate of the takeoff queue 
size experienced by an aircraft is obtained by predicting the 
amount of passing that it may experience on the airport 
surface during its taxi-out, and by considering the number of 
takeoffs between its pushback time and its takeoff time. 
However, this requires prior knowledge of actual takeoff 
times of flights and hence may be unsuitable for planning 
purposes. The model is valid for a specific runway 
configuration since the runway configuration at the future 
time of taxi-time prediction is unknown. Suggested extensions 
to the model include a runway configuration predictor. A 
queuing model based on simulation to test different emissions 
scenarios related to duration of taxi-out was developed in [8]. 
Some of the scenarios that are considered are redistribution of 
flights evenly across the day, and variation in number of 
departures under current capacity. The study showed that 
lower taxi-out times (and thus lower emissions) are 
experienced by airlines that use less congested airports and 
don’t rely on hub-and-spoke systems. Other research that 
develops a departure planning tool for departure time 
prediction is available in [9-13].  

Direct predictions attempting to minimize taxi-out delays 
using accurate surface surveillance data have been presented 
to literature [14,15]. Recent work using surface surveillance 
data presented in [16] develops a bivariate quadratic 
polynomial regression equation to predict taxi time. In this 
work data from Aircraft Situation Display to Industry (ASDI) 
and that provided for Northwest Airlines for DTW (Flight 

Event Data Store, FEDS) were compared with surface 
surveillance data to extract gate OUT, wheels OFF, wheels 
ON, and gate IN (OOOI) data for prediction purposes. 

A Bayesian networks approach to predict different 
segments of flight delay including taxi-out delay has been 
presented in [17]. An algorithm to reduce departure time 
estimation error (up to 15%) is available in [18], which 
calculates the ground time error and adds it to the estimated 
ground time at a given departure time. A genetic algorithm 
based approach to estimating flight departure delay is 
presented in [19].  

It is useful to keep in mind that a lot of the data is 
proprietary and the different attempts in the literature use 
different data sources depending on accessibility.     

III.     RL METHODOLOGY 

  In this research a machine learning approach is used for 
the task of taxi-out time Aa ∈  prediction, where A denotes 

the action space. The evolution of system state Xx ∈  is 
modeled as a Markov chain, where X denotes the system state 
space. The decision to predict the taxi-out time based on the 
system state is modeled as a Markov decision process (MDP). 
For the purpose of solving the MDP, it is necessary to 
discretize X and A. Due to the large number of state and action 
combinations (x,a), the Markov decision model is solved 
using a machine learning (reinforcement learning (RL), in 
particular) approach. 

The purpose of the RL estimator is to predict taxi-out time 
given the dynamic system state. The input to RL is the system 
state and the output of the learning process is a reward 
function R(x,a) where Aa ∈  is the predicted taxi-out values. 
The utility function (reward) R(x,a) is updated based on the 
difference between the actual and predicted taxi-out values 
r(x,a,j). We define reward r(x,a,j) for taking action a in state x
at any time t that results in a transition to state j, as the 
absolute value of error r(x,a,j) = |Actual Taxi-out – predicted 
Taxi-out| resulting from the action. The transition probability 
in a MDP can be represented as p(x,a,j), for transition from 
state x to state j under action a. Then the prediction system 
can be stated as follows. For any given Xx ∈ at time t there 
is a prediction a such that the expected value of error (Actual 
– predicted Taxi-out) is zero. Theoretically, the action space 
for the predicted taxi-out could have a wide range of numbers. 
However, in practice, for a non-diverging process, the action 
space is quite small, which can be discretized to a finite 
number of actions.  

For practical implementation since transition probabilities 
p(x,a,j) are not known, we use the reinforcement learning 
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version of the Bellman’s optimality equation [21] to update 
R(x,a) as follows 

AaXjxbjRjaxraxRaxR t

Ab

tt ∈∈++−=
∈

+ ,]),(min),,([),()1(),(1 βαα

where α is a learning parameter that is decayed over time, and 
β is the discount parameter.  

The state variables x={x1,x2,x3,x4,x5} for the taxi-time 
prediction problem were determined by analyzing the 
available data. Analysis of the data suggests that for a specific 
aircraft that is scheduled to pushback, the number in queue at 
the runway (x1), the number of departure aircraft co-taxiing 
(x2), and the number of arrival aircraft co-taxiing (x3) are the 
major factors that influence taxi-out time. In addition, taxi-out 
time changes gradually over the day. The taxi-out time during 
a given quarter was found to depend on the taxi-out times of 
the previous two quarters. So the average taxi-out time of the 
previous two quarters was considered as a factor influencing 
taxi-out time (x4). Along these lines, the time of day (x5) was 
also included as a factor. Thus, there are 5 variables that 
comprised the state vector. 

 Several measures of performance such as discounted 
reward, average reward, and total reward can be used to solve 
a MDP. At the beginning of the learning process, the R-values 
are initialized to zeros. When the process enters a state for the 
first time, the action is chosen randomly since the R-values for 
all actions are zero initially. In order to allow for effective 
learning in the early learning stages, instead of the greedy 
action (action with lowest R-value) the decision maker, with 
probability Pt, chooses from other actions. The choice among 
the other actions is made by generating a random number 
from a uniform distribution. The above procedure is 
commonly referred to in RL literature as exploration. The RL 
based functional block diagram is shown in Fig. 1. Theoretical 
details of the RL algorithm can be obtained from [20-24]. 

A. Obtaining Predicted Taxi-Out Time
Once learning is completed, the R-values (reward) provide 

the optimal action choice for each state. At any time t as the 
process enters a state, the action a corresponding to the lowest 
non-zero R-value indicates the predicted taxi-out time a. In 
what follows we present the steps of the RL algorithm in the 
implementation phase. The RL estimator was coded in 
MATLAB®.  

B. Steps in RL
• Step 1: Once the states, actions, and the reward scheme 

are set up, the next step is to simulate the t+45 look-ahead 
window. Assume 15 minute decision (prediction) epochs i.e.
prediction was done for flights in a moving window of length 
t to t+15 minutes. This means that for each departing flight in 
the 15 minute interval from current time, the airport dynamics 

was simulated for 30 minutes from its scheduled departure 
time. 

• Step 2: Simulate the first 15 minute window. For each 
flight in the window obtain the system state x. To calculate 
average taxi-out times before current time t, actual flight data 
between t and t-30 are used. Initialize R(x,a) to zeros. 

• Step 3: If exploration has decayed go to step 4, else 
choose arbitrary actions (predictions from set A). The window 
is then moved in 1 minute increments and all flights in the 
window are predicted again. This means that every flight, 
unless it leaves before scheduled time, has its taxi-out time 
predicted at least 15 times. Simulate the new window of 15 
minutes. Find the next state j for each flight. Compute r(x,a,j).
Update reward R(x,a) using the fundamental Robbin-Monro’s 
stochastic approximation scheme [25] that is used to solve 
Bellman’s optimality equation [21] provided earlier. 

• Step 4: If learning phase is in progress, choose greedy 
action a from set A (action corresponding to the lowest R-
value). The window is then moved in 1 minute increment and 
all flights in the window are predicted again. Simulate the new 
window of 15 minutes. Find the next state j. Compute r(x,a,j).
Update R(x,a). 

• Step 5: Continue learning by simulating every 15 
minute interval, until 45 minutes have been completed. Next, 
move the window of width 60 minutes by a fixed time 
increment (say 15 minutes) and repeat learning by going to 
Step 2. 

• Step 6: Continue learning with several months of 
ASPM data until a stopping, or a near-optimal criterion is 

reached such as ε≤−+ |),(),(| 1 axRaxR tt  whereε  is a 

very small number.  
• Step 7: Once learning is complete, the optimal 

prediction for a given state is the one that corresponds to the 
minimum R-value for that state. 

Figure 1.  Reinforcement Learning Based Functional Block Diagram for Taxi-
Out Time Prediction 

IV.    RESULTS 
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A. Data Source 
 OOOI (Out,Off,On,In) data was obtained for Tampa 

International Airport (TPA) from the ASPM (Aviation System 
Performance Metric) database maintained by the FAA 
(Federal Aviation Administration). Data from June 1st 2007 up 
to August 25th 2007 was used to train the RL based taxi-time 
estimator, and data for August 26th to August 31st was used for 
testing the accuracy of prediction. OOOI data provides the 
following information for each recorded flight – Scheduled 
pushback time from the gate, Actual pushback time from the 
gate, Actual Wheels Off time, Actual Wheels On time at the 
arrival airport, and Actual In time which is recorded when the 
aircraft reaches the gate after the taxi-in process. In addition, 
the ASPM database also provides an airline (not individual 
flight) specific seasonal average for the nominal or unimpeded 
taxi-out time and taxi-in time. In this research we assume that 
if an aircraft completes the corresponding nominal taxi-out 
time, it joins a runway queue. 

It is possible that an aircraft pushes back from the gate and 
for varying reasons may have to return to the gate and 
pushback again. It is unclear as to whether the actual pushback 
time reported by the airlines indicates the first pushback or the 
second pushback. The Bureau of Transportation Statistics 
(BTS) recently issued a directive [26] requiring all airlines 
reporting data to ensure that the first pushback time be 
recorded as the actual gate-out time. This clearly influences 
the measured taxi-out time.  

B. Observations 
We adopt two methods to analyze the results. First we 
compute the taxi-out time prediction accuracy for individual 
flights on a given day. Second, we evaluate the prediction 
accuracy of average taxi-out times in 15 minute intervals of 
the day.  Table 1 below summarizes the prediction accuracy 
for individual flights for six days in August 2007.

    TABLE 1. A comparison of prediction accuracy for individual flights 
across days of August 2007 for TPA. 

The results in Table 1 indicate that the mean of predictions for 
a given day are comparable to the mean of actual taxi-out 
times. We note that the standard deviations of predicted taxi-
out time values are not very closely matched with the standard 
deviations of actual taxi-out times. A possible reason for this 
is that we consider a flight to enter the runway queue if it has 
not taken off by the end of its nominal or unimpeded taxi-out 
time. The nominal taxi-out time data available for this 
research is however a seasonal average specified for each 
airline, and not for each individual flight. This is also our only 
measure in some sense of gate to runway distance. This will 
undoubtedly introduce further uncertainty in our predictions 
since factors such as runway configuration are not captured in 
this average. Also, predictions of taxi-out times are made 15 
minutes prior to scheduled pushback of flights. In what 
follows, we analyze an alternative method to compare the 
prediction results by considering the following four cases. 
         
Case 1: Consider all flights scheduled to pushback in a 
specific quarter (15 minute interval) of the day. Plot their 
corresponding mean predicted and mean actual taxi-out time 
with respect to the same quarter. Note that all flights that are 
scheduled to pushback in a certain quarter may not take off 
together (around the same time). This is because taxi-out time 
is defined as the time elapsed between pushback from the gate 
and take-off time; and thus depends on several other factors 
influencing individual flights such as distance of gate from 
runway, enforcement of downstream restrictions such as 
Ground Delay Programs (GDPs), Ground Stops (GS) and 
Miles-In-Trail (MIT).  

Case 2: Consider all flights that actually took off in a specific 
quarter of the day. Plot their corresponding mean predicted 
and mean actual taxi-out time with respect to the same quarter. 
In this case the flights being considered would have pushed 
back from the gate at different times spread over different 
quarters.  

Case 3: Consider all flights that were predicted (by the 
algorithm) to take off in a certain quarter (predicted off time 
can be computed by adding the predicted taxi-out time to 
scheduled gate-out time). Plot their corresponding mean 
predicted and mean actual taxi-out times with respect to that 
quarter.    

Case 4: Consider all flights that were predicted to take off in a 
certain quarter and plot their corresponding mean predicted
taxi-out times. Now, consider all flights that actually took off 
in that same quarter. Plot their corresponding mean actual
taxi-out times. Here we note that the flights that actually took 
off in the quarter being analyzed may not exactly match the 
set of flights that were predicted to take off in that same 
quarter – this is an inherent limitation of the data available in 
the ASPM database. Information regarding downstream 
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restrictions affecting individual flights is not available. Hence 
we cannot account for passing of aircrafts on the taxiway. 
Plots of the four cases are provided in Fig. 2-5 for 26th August 
2007. 

It is easy to see that cases 1-3 represents the average 
accuracy of prediction for a specified group of flights per 
quarter, while case 4 discusses average accuracy of prediction 
for a specified time interval of day which indicates behavior 
of the airport. In this study, Case 4 is extremely useful in 
predicting average airport taxi-out time trends approximately 
30 minutes in advance of the given time of day (specifying the 
take off quarter).  

 For each of the days and for each of the four cases, the 
accuracy of prediction was measured as the percentage of the 
time for which the mean predicted taxi-out time per quarter 
matched the mean actual observed taxi-out time for the same 
quarter with a standard error of 1.5 minutes. The results are 
tabulated in Table 2.  

    TABLE 2. A comparison of prediction accuracy of averages across days of 

August 2007 

V.     CONCLUSIONS 

The analysis using the artificial intelligence methodology  
(reinforcement learning) indicates that on an average, for a 
given day, the accuracy of mean predicted taxi-out time per 
quarter in comparison to the actual taxi-out time for the same 
quarter is approximately 93.7% (case 4) with a standard error 
of 1.5 minutes. It is to be noted that the prediction was done 
15 minutes before scheduled departure for individual flights 
which were then averaged in quarter time intervals. Prediction 
accuracy for individual flights was also tested, and on average, 
81% of flights were predicted within a root mean square error 
value of 2 minutes.  

It is expected that control tower operations, surface 
management systems, and airline scheduling can benefit from 
this prediction by adjusting schedules to minimize congestion, 

delays, and emissions, and also by better utilization of ground 
personnel and resources. Especially, with airport dynamics 
changing throughout the day in the face of uncertainties such 
as weather, prediction of airport taxi-out time averages 
combined with individual flight predictions, could help 
airlines manage decisions such as incurring delays at the gate 
as opposed to increasing emissions due to longer taxi times. 
Air Traffic Control would also benefit from this knowledge 
when making decisions regarding holding flights at the gate or 
ramp area due to increased congestion. This could improve the 
performance of air traffic flow management both on ground 
and in air across the entire NAS in the US and worldwide. It 
can be integrated to support the futuristic Total Airport 
Management concepts beyond Collaborative Decision Making 
[27] that envisions automation of several airport operations.  

As part of future work, accuracy of predications will be 
improved by incorporating runway direction. This is because 
runway configurations change during the day which could 
alter the gate to runway distance.  Also a sensitivity analysis 
of the learning parameters will be conducted. Further analysis 
to capture seasonal trends and incorporation of runway and 
gate assignments could improve prediction accuracy. Also 
study of other majors hubs are part of this ongoing research. 
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Case 1 Case 2 Case 3 Case 4 Day 

(August 
2007)

% 
accuracy 
Standard 
Error of 
1.5 min 

% 
accuracy 
Standard 
Error of 
1.5 min 

% 
accuracy 
Standard 
Error of 
1.5 min 

% 
accuracy 
Standard 
Error of 
1.5 min 

26th 97.1014 97.1014 100.0000 95.6522 
27th 88.4058 84.0580 88.4058 95.6522 
28th 88.4058 92.7536 78.2609 92.7536 
29th 89.8551 92.7536 92.7536 92.7536 
30th 98.5507 98.5507 98.5507 95.6522 
31st 89.8551 86.9565 94.2029 89.8551 
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Figure 2. Plot of Actual Taxi-Out Time vs. Predicted Taxi-Out Time

Figure 2. Plot of Actual Taxi-Out Time vs. Predicted Taxi-Out Time 

Figure 2. Case 1: Plot of Actual Taxi-Out Time vs. Predicted Taxi-Out Time 

Figure 3. Case 2: Plot of Actual Taxi-Out Time vs. Predicted Taxi-Out Time

Case 2 August 26th, 2007 

Case 1 August 26th, 2007
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Figure 4. Case 3: Plot of Actual Taxi-Out Time vs. Predicted Taxi-Out Time 

Figure 5. Case 4: Plot of Actual Taxi-Out Time vs. Predicted Taxi-Out Time 

Case 3 August 26th, 2007

Case 4 August 26th, 2007
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Abstract— Schiphol airport has become one of the major airline 
hubs in Europe as a result of KLM’s growth strategy in the 1980s 
and 1990s. To provide a high customer satisfaction level, it is of 
great importance for KLM to provide a highly reliable network. 
In this paper two performance indicators (PI) are identified to 
express this reliability: the arrival punctuality according to the 
KLM timetable and the percentage of KLM transfer passengers 
at risk of loosing their connection.  

This research addresses the effect of the performance of the 
Dutch air navigation service provider (Air Traffic Control the 
Netherlands – LVNL) on the arrival punctuality and the 
percentage of KLM transfer passengers at risk of loosing their 
connection. The contribution of LVNL is expressed in hourly 
inboud capacity and delays caused by its reduction as well as in 
terms of the LVNL performance indicator – sustainability of 
hourly capacity.  

The study has shown that there is a linear relation between the 
sustainability of hourly capacity, KLM arrival punctuality and 
the percentage of KLM transfer passengers at risk of loosing 
their connection. The relations are derived from the historical 
data and they are limited to KLM European inbound flights in 
the second bank of the day (based on the 7 banks system KLM is 
operating with) when two landing runways were in use. These are 
made based on sustainability value calculated for the given 
declared capacity. The derived models can be used for making 
estimations of arrival punctuality and the percentage of KLM 
transfer passengers at risk of loosing their connection for a given 
sustainability. The estimate values have been compared with the 
actual ones and have shown that the actual values lay well within 
the confidence interval of the models demonstrating the accuracy 
of the models.  

Furthermore, the effect of a reduced hourly inbound capacity on 
arrival punctuality and the percentage of KLM transfer 
passengers at risk of loosing their connection has been 
researched. When the capacity forecast value is higher than 
demand at Schiphol, LVNL induced delays are low. Values of 
arrival punctuality and the percentage of KLM transfer 
passengers at risk of loosing their connection are almost constant 
for small values of the LVNL influenced delays and therefore do 

not fluctuate much when the capacity forecast is higher than 
demand.  

The relationships found lay the basis for decisions support 
models and tools for optimizing and further developing the KLM 
network operations at Schiphol airport.  

Keywords: Schiphol airport, KLM, ATC the Netherlands, LVNL, 
arrival punctuality, transfer passengers, sustainability of hourly 
capacity, hourly inbound capacity. 

I. INTRODUCTION

KLM has about 11 million passengers each year arriving at 
Schiphol as one of the major European hubs. About 70% of 
them are transfer passengers. To serve these transfer 
passengers, KLM must assure high quality connections at the 
Schiphol hub, providing a quick but reliable connection onto 
the next flight. To offer an attractive travel schedule to its 
passengers KLM designed its timetable to minimize the travel 
time between origin and destination through short connection 
times. 

In order to maximize the number of high quality 
connections at Schiphol airport, KLM’s timetable has been 
constructed into several arrival and departure waves or banks 
(see Fig. 1). The duration between scheduled arrival time and 
scheduled departure time of a connection should be at least the 
minimum connecting time (MCT). If it is shorter than the 
MCT, passengers cannot make a connecting flight and tickets 
for such connections cannot be sold. 

As air travel demand increases, KLM faces the challenge 
to optimize and expand its hub operation at Schiphol airport as 
part of the competition between global airline alliances. To 
maintain and expand its market share KLM must offer more 
attractive connections through its hub at Schiphol. This growth 
of connectivity requires an increasing number of flights in 
arrival and departure banks. This increased peak demand leads 
to a saturation of airport capacity at the expense of increased 
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arrival-delays, which in turn affects the reliability of 
connections which is vital to KLM’s operation. 

The development of KLM’s network thus is determined by 
the balance between airport capacity and network demand. 
This capacity – demand balance governs both KLM’s 
strategic1 and tactical2 decision making process. To optimize 
this decision making process it is necessary to relate factors 
which play a role in KLM’s performance (such as arrival 
punctuality and the percentage of transfer passengers at risk of 
loosing their connections) to LVNL – factors (Air Traffic 
Control the Netherlands – factors, such as capacity forecast 
and sustainability) (see Table I). 

This paper researches relations between performance
indicators (PIs) of KLM and LVNL. The relationships
established in the study are used as models for forecasting 
values of KLM PIs (arrival punctuality and the percentage of 
KLM transfer passengers at risk of loosing their connection 
(percentage of the KLM sub-MCT passengers, see Table I)) 
based on a given sustainability of hourly capacity (LVNL PI). 
This paper is the follow-up study of the paper from Ref. [1] 
and forms a basis for the tools which can help KLM in 
developing and optimizing its network at Schiphol. 

II. DEFINITIONS

Table I gives a list of the definitions used in this paper. 

TABLE I. LIST OF DEFINITIONS USED IN THIS RESEARCH.

 Definition 

Arrival 
punctuality

The percentage of flights that arrived on time or 
earlier compared to the scheduled arrival time, i.e., 
SBA (at the gate).

Arrival delay 

The difference in time between scheduled on-block 
arrival time (at the gate) according to the timetable 
(SBA) and the actual on-block arrival time (ABA), 
i.e., ABA-SBA. A flight that arrived earlier than or at 
the SBA is considered to be “on time”. One minute 
late or more is considered to be “delayed”. 

FIR delay 

A delay of a flight within the Dutch Flight 
Information Region (FIR). It is calculated as a 
difference between the actual time an aircraft fliesa

and taxies from FIR boundary until gate (ABA-FIR) 
and a sum of nominal flight and taxi times from FIR
entry through specific sector to specific runway and 
from there to gate.  
[FIR delay= (actual flight time from FIR + actual taxi 
time from runway) – (nominal flight time from FIRb - 
nominal taxi time from runwayc)] 

ATFM delay 
A delay of the aircraft at the outstation caused by the 
reduced capacity at Schiphol airport. 

Transfer 
passenger

A passenger with a ticket for the connecting flight, 
arriving at Schiphol on a KLM inbound flight and 
leaving Schiphol on an outbound flight of any carrier. 

Minimum 
connecting time 
(MCT)

A minimum transfer time between the inbound and 
outbound flights a passengerd needs to make a 
connection to. Tickets can be sold only for the 
connecting flights with scheduled transfer time of at 
least MCT. For Schiphol, the MCT between both 

1 Strategic: referring to KLM’s network development process.
2 Tactical: referring to the network management process on the day 
of operation.

European inbound and outbound flight is 40 minutes,
other connections have MCT of 50 minutes. 

Sub-MCT 
passenger

A transfer passenger having an effective transfer time 
of less than MCT.e

Effective 
transfer time 

The time difference between actual arrival time of the 
inbound flight and schedule departure time of the 
connecting outbound flight. 

Capacity 
forecast 

A number of landings per hour, which can be realized 
based on the expected availability of the runways 
(due to the weather conditions, maintenance of the 
runways and/or available staff). It is issued 4 times a 
day for the next 6 hours by LVNL (ATC the 
Netherlands).f

Demand 
A number of planned landings (of all airlines) on 
Schiphol filed a day before their actual landing.g

Delta capacity 
A difference between the capacity forecast and 
demand. 

Declared 
capacity 

A number of landings per hour that can be handled 
by the LVNL. It is determined for a longer period of 
time (year) and slot allocations are based on it. 
Declared capacity is 68 landings per hour for years
2006 and 2007. 

Sustainability 
A percentage of time a declared capacity is indeed 
realized by the providers (see Fig. 2). 

a Actual flight time can be extended significantly due to the tactical flight management: vectoring 
(stretching the flight path) and/or use of holdings. 

b Nominal flight time is calculated as a median value of the difference between the touch down time 
(TDT) and time of the FIR entry (FIR): Nominal flight time = (TDT-FIR)median. It is calculated for an 

undisturbed flight from each ACC sector entry until a particular runway. 

c Nominal taxi time is calculated as a difference of the time the aircraft crosses the red line (the border 
between the platform and maneuvering area - it is considered in that case that the aircraft reached the 

gate) and the touch down time: Nominal taxi time = (time (crossing the red line) - TDT))aver. Only 
average taxi times are available at LVNL. 

d It is assumed that the baggage of the passengers is transferred together with the passenger to the 
connecting flight. 

e It is assumed that departure flights depart on time. 

f It may differ from the actual capacity, but rarely and therefore gives a reliable indication of the 
capacity at Schiphol. 

g Data are received from the Amsterdam Airport Schiphol (AAS) and KLM. 

At this point it is important to underline that in this research 
the percentage of the sub-MCT passengers used differs from 
the actual percentage of passengers who cannot make their 
connections. Actual percentage of passengers who cannot 
make their connection is lower than the percentage of the sub-
MCT passengers, because even if the passengers arrive with 
the effective transfer time smaller than the MCT, in some 
cases it is still possible to make their connections (such as: 
gates are close to each other, departing flight was delayed, 
passenger can reach the gate faster than assumed in the MCT 
value etc.). The percentage of the sub-MCT passengers is used 
here instead of the actual percentage of passengers who cannot 
make their connection to avoid a number of effects at the 
airport that cannot be influenced by the LVNL (such as: 
delays of the departing flights, delays in opening the aircraft 
doors etc.). Actual number of passengers who miss their 
connection is a result of a daily (tactical) handling of flights. It 
is not suitable for this research, because the results of the 
research will be used for the strategic development at 
Schiphol. 
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III. RELATIONS BETWEEN THE HOURLY INBOUND CAPACITY,
LVNL- INFLUENCED DELAY, SUSTAINABILITY OF HOURLY 

CAPACITY, ARRIVAL PUNCTUALITY AND PERCENTAGE OF THE 

SUB-MCT PASSENGERS

The aim of this paper is to research the relation between the 
important performance indicators (PIs): sustainability of 
hourly capacity (as an LVNL PI) and arrival punctuality 
according to timetable and percentage of the sub-MCT 
passengers (as the KLM PIs) (see Fig. 3(a)). Hence, it is 
needed first to better understand the relation at a lower 
aggregation level, i.e., between the LVNL –factors, arrival 
punctuality and percentage of the sub-MCT passengers (see 
Fig. 3 (b)).  

As LVNL-factors are considered:  
o Delays influenced by the LVNL (Dutch ATC), i.e., the 

delays at outstation caused by the reduced capacity  at 
Schiphol airport (ATFM delays) and delays within the 
Dutch FIR (FIR delays) (see Table I) and 

o Hourly inbound capacity. Hourly inbound capacity 
consists of the capacity forecast and delta capacity (see 
Table I). 

Research is limited to:  
o KLM European inbound flights connecting to outbound

flights of KLM or any other carrier. European inbound 
flights are chosen because they can be regulated by the 
Air Traffic Flow and Capacity Management (ATFCM) 
restrictions and therefore the impact of LVNL is higher 
on them; 

o summer 2006 and winter 2006/2007 (7 banks system) (see 
Fig. 1 (a)); 

o arrival bank 2 (see Fig. 1 (a)). This bank has been chosen, 
because demand of the flights in the core of the bank is 
close to the maximum inbound capacity. Moreover, this 
bank does not suffer from the snowballing effect (flights 
in the later banks can be delayed as a consequence of the 
accumulated delays during the day); 

o the periods when two landing runways were in use and 
one runway was used for the departures (from about 7.30 
until 9.15 LT); 

o Sustainability values calculated by using the declared 
capacity value of 68 landings per hour.   

The exact values on the axis in the graphs that follow are 
not given, because of commercial sensitivity of data for the 
parties involved in the research. 

 Fig. 4 shows delta capacity vs. capacity forecast for bank 2. 
From this graph the capacity demand (capacity forecast value 
when the demand is equal to the capacity forecast) is 
determined and it is the same in both seasons. Moreover, 
critical capacity and corresponding critical delta capacity for 
each season are denoted, because above critical capacity 
value, the percentage of the sub-MCT passengers will not 
change significantly (as will be discussed below). 

Fig. 5 shows that as long as the capacity is higher than the 
demand, ATFM+FIR Delay stays rather low and nearly 
constant, which is in about 80-90% of time (depending on the 
season). In summer the percentage of time with capacity 
higher than critical one is higher due to the better weather 
conditions (and therefore fewer restrictions) than in winter. 
However, when the capacity drops below the critical value an 
increase in the ATFM+FIR Delay occurs. The increase shows 
stronger slope for the winter season, which can be attributed to 
more frequent capacity reduction. These graphs are not fitted, 
because the numbers of measurement points in the region 
below critical capacity are not enough to obtain a reliable fit. 

Arrival punctuality and percentage of KLM sub-MCT 
passengers vs. ATFM+FIR Delay has been plotted in Fig. 6. It 
can be observed that the increase in the ATFM+FIR Delay 
causes the decrease in the arrival punctuality and increase in 
the percentage of sub-MCT passengers. For small ATFM+FIR 
Delay arrival punctuality as well as the percentage of sub-
MCT passengers stays almost constant. The scale of both x-
axis is the same. It can be noticed that for the same value of 
the ATFM+FIR Delay, the percentage of sub-MCT passengers 
increases rather slow whereas arrival punctuality decreases 
rather fast. This can be explained by the following: If the 
aircraft is even one minute delayed compared to the schedule, 
it is considered as delayed flight and it contributes to the 
reduction of arrival punctuality. However, a number of 
transfer passengers connecting to different outbound flights 
could be on this inbound flight. Therefore, the delay of the 
inbound flight does not mean that all passengers are under the 
risk of loosing their connecting flights. Only the passengers 
that arrive with the effective transfer time less than MCT are 
at that risk.  

Fig. 7 shows arrival punctuality and percentage of the KLM 
sub-MCT passengers vs. capacity forecast and delta capacity. 
The arrival punctuality does not change significantly above 
the capacity demand value and for positive delta capacity (see 
Fig. 7 (a), (b)). Below the capacity demand value and when 
the demand is larger than the available capacity, arrival 
punctuality drops rather fast. Percentage of sub-MCT 
passengers behaves more inertly (see Fig. 7 (c), (d)): when the 
capacity is above the critical capacity and related critical delta 
capacity (see also Fig 4), the percentage of the sub-MCT 
passengers stays almost the same. Note that the unit on y-axis 
in Fig. 7 (d) is half of the values of the unit on y-axis in Fig. 7 
(c). The explanation of this behaviour of the percentage of 
sub-MCT passengers is the same as for Fig. 6. 

Percentage of sub-MCT passengers vs. arrival punctuality 
exhibits almost linear behaviour (see Fig. 8). Higher arrival 
punctuality results in low percentage of the sub-MCT 
passengers. Each data point corresponds to the arrival 
punctuality and percentage of the sub-MCT passengers for a 
period of 30 days using method of sliding window with a 
timeframe of one week.  
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Relationships between dependences of the arrival 
punctuality and percentage of sub-MCT passengers vs. 
sustainability of hourly capacity are given in Fig. 9 (see also 
Fig. 3 (a)). Linear fits and the confidence interval are given 
and used as models to obtain the values for arrival punctuality 
and percentage of sub-MCT passengers for expected 
sustainability value. The models were tested for the bank 2 of 
summer 2007, because the same limitations to models apply to 
this period (see description of the limitations given above in 
this Chapter). Sustainability value for summer 2007 is 
estimated from the data available at LVNL [2]. Arrival 
punctuality and percentage of sub-MCT passengers values are 
estimated (forecasted) from the linear fit (see Fig. 9) for the 
estimated sustainability value and compared to the actual 
values for summer 2007. As it can be observed from the 
graphs, actual values for arrival punctuality and percentage of 
sub-MCT passengers are very close to the forecasted values 
and very well within the confidence interval. Hence, it can be 
concluded that this model can be used for the estimation of the 
arrival punctuality as well as percentage of sub-MCT 
passengers values and gives good results as long as the 
limitations to the model (given above in this Chapter) apply. 
In case that some of the conditions change (for instance, KLM 
changes the banks system from 7 to more, the model is applied 
to another bank of the day, sustainability is calculated for 
another value of declared capacity etc.) a new model has to be 
built.  

IV. CONCLUSIONS AND OUTLOOK

Research has been conducted to relate important 
performance indicators (PIs) for KLM: arrival punctuality 
according to timetable and percentage of sub-MCT 
passengers, and LVNL performance indicator – sustainability 
of hourly capacity.  

This high level research framework identified that a 
correlation is deducible between these PIs. Linear relations 
between them are found. The empirical models have been 
made for the KLM European inbound flights arriving in bank 
2 when two landing runways were in use and when KLM has 
been operating with 7 banks system (summer ‘06 and winter 
‘06/’07). The models were tested for summer ’07. It can be 
concluded that the actual values of arrival punctuality and 
percentage of sub-MCT passengers for estimated 
sustainability of hourly capacity for summer ’07 are close to 
the forecasted values and well within the confidence interval 
of the model. Hence, these models can be used for forecasting 
as long as the mentioned limitations apply.  

Additionally, when the capacity forecast at Schiphol is 
higher than demand, low LVNL-influenced delays occur. 
Arrival punctuality and percentage of sub-MCT passengers are 
almost constant for small LVNL-influenced delays. It is 
shown that arrival punctuality and percentage of sub-MCT 
passengers do not fluctuate much when the capacity at 
Schiphol is higher than demand. However, decrease in arrival 

punctuality and increase in percentage of sub-MCT passengers 
occur when demand exceeds capacity forecast values.

This research has been limited to bank 2. To apply it to the 
whole day, more research has to be done. This can be rather 
complex and results may not be easy to compare due to the 
snowballing effect of delays during the day and the difficulty 
of defining their exact cause.  

The follow-up study will focus on the potential optimization 
of the scheduled flying time for each KLM flight by
minimizing the effect of LVNL induced delays.   
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Figure 1. (a) Inbound and outbound KLM flights are organized at present in 7-banks system at Schiphol. Times shown are the local times (LT). Blue lines denote 
intercontinental flights (ICA) and the orange ones European flights (EUR) ; (b) Schematic representation of connecting flights: inbound flight is represented by 

the orange arrow (SBA-scheduled on-block arrival, i.e., the time a flight is scheduled to arrive at the gate, according to the timetable); delayed arrival is given by 
the red arrow (ABA-actual on-block arrival; i.e., the time the flight actually arrived at the gate); outbound flight is denoted by the blue arrow (SBD-scheduled off-
block departure; i.e., the time a flight is scheduled to depart from the gate, according to the timetable). Scheduled transfer time is the time between the scheduled 

on-block arrival of the inbound flight and scheduled off-block departure of the outbound flight the passenger is transferring to (calculated as SBD-SBA).
Scheduled transfer time consists of the MCT and the scheduled spare time. Effective transfer time is the time between actual arrival time (gate) of the inbound 

flight and the scheduled departure time (gate) of the outbound flight the passenger is transferring to (calculated as SBD-ABA). Effective transfer time consists of 
the MCT and effective spare time.  

Figure 2. Determination of the sustainability of hourly capacity. On x-axis percentage of time for a certain available capacity forecast (given on y-axis) is 
presented. Sustainability is a ratio between the gray area under the red line and the whole area under the red line (declared capacity). 

Figure 3.   (a) Research framework at the higher aggregation level; (b) Research framework on the lower aggregation level.
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Figure 4.   Delta capacity vs. LVNL capacity forecast.  

Figure 5.   (a) ATFM+FIR Delay vs. LVNL capacity forecast; (b) ATFM+FIR Delay vs. delta capacity. Each point represents the ATFM+FIR Delay calculated as 
an average value for a given capacity forecast or delta capacity value. 

Figure 6.   (a) Arrival punctuality vs. ATFM+FIR Delay; (b) Percentage of the KLM sub-MCT passengers vs.. ATFM+FIR Delay. Each point represents the 
arrival punctuality and percentage of the KLM sub-MCT passengers, respectively, calculated for each ATFM+FIR Delay. 
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Figure 7.   (a) Arrival punctuality vs. capacity forecast; (b) Arrival punctuality vs. delta capacity forecast; (c) Percentage of the KLM sub-MCT passengers vs. 
capacity forecast; (d) Percentage of the KLM sub-MCT passengers vs. delta capacity. Each point represents the arrival punctuality and percentage of the KLM 
sub-MCT passengers, calculated for each capacity forecast and delta capacity, respectively. These graphs are not fitted, because the number of measurement 

points in the region below critical (delta) capacity is not enough to obtain a reliable fit. 

Figure 8.   Percentage of the sub-MCT passengers vs. arrival punctuality. Each data point corresponds to the arrival punctuality and percentage of the sub-MCT 
passengers for a period of 30 days starting at the first day of the summer season (March 26th, 2006) and ending at the last day of the winter period in 2007 (March 

24th, 2007). Use is made of sliding window with a window of 30 days and rolling with a timeframe of one week. Hence the first data point corresponds to the 
arrival punctuality and percentage of the sub-MCT passengers of the flights between the period of March 26th – April 24th. The second data point corresponds to 

the period from April 2nd – May 1st etc. 
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Figure 9. (a) Arrival punctuality vs. sustainability of hourly capacity; (b) Percentage of the sub-MCT passengers vs. sustainability of hourly capacity. Each data 
point is calculated as in Fig. 8. 
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Abstract—Efficient boarding procedures are the basis for fast 

turnaround times. The boarding is an essential part of the critical 

path of the turnaround process, so time savings directly advance 

the overall process. Previous research results pointed out that the 

boarding time can be significantly reduced by using adapted 

boarding procedures. In this paper we present a comprehensive 

analysis of boarding procedures (A320-200, 174 passengers) 

considering different seat load factors, passenger acceptance of 

chosen boarding order, and arrival rates. The results of the 

analysis yield a lower boundary for an efficient boarding of 

approx. 40% acceptance rate, 50% seat load factor and an 

arrival rate of 7 passengers per minute. Furthermore, the use of 

the rear door has a substantial effect regarding the boarding 

efficiency. An enhancement of approx. 25 % is reached, without 

the disturbing influences of the strategy acceptance rate. 

Boarding; Critical path; Efficiency; Turnaround 

I. INTRODUCTION

To manage future challenges in aviation the Advisory 
Council for Aeronautical Research in Europe (ACARE) 
provided the Strategic Research Agenda 2 in 2004 [1]. Herein, 
the ACARE asks for efficient procedures and processes, new 
standards for service, safety, security and quality, as well as 
decreasing operational costs at all levels. To achieve these 
objectives High Level Target Concepts (HLTC) are defined, 
whereas the safety regulations always have major importance. 
In this context, boarding processes have to be high time 
efficient, i.e. short turnaround times (see fig. 1).  

Following Airbus’ definition for the turnaround (fig. 1) the 
turnaround time is defined as the aircraft parking time, between 
on-block and off-block. While the aircraft is at the position (at 
the gate or apron) processes like (un-) loading, catering, 
cleaning, refueling, and (de-)boarding are executed. Due to 
safety regulations and logistic requirements some processes run 
parallel to others and others have to be executed sequentially. 
The overall turnaround time is defined by the termination of 
the last process. According to fig. 1 the moving of passenger 
bridges, the boarding and the refueling are part of the critical 
path. Shortening the processes on the critical path implies a 
shortening of the overall turnaround process as well. Reduced 
turnaround times achieved by improved operational procedures 
have several positive effects. The airline reduces the ground 
idle time and saves ground costs while the airport benefits from 
the reduced gate (apron) occupancy time. 

Waste water
Potable water

Cleaning

at U1R
at M5R
at M4R

Catering at M2R

Bulk
Freight

LD-3 cargo AFT
LD-3 cargo FWD

Refuelling
De- / Boarding

Bridges

0 30 60 90

 waiting

 preparation

 duration

 critical path

time (s)

Figure 1. Turnaround time schedule of A380 (90 min, baseline) [2] 

Various research studies were performed on the field of 
efficient boarding procedures. They as a typical reference apply 
analyses for single aisle aircraft, such as the A320. Airbus and 
Boeing expect a business volume of single aisle aircraft of 
40 % and 42.5 % respectively until 2026. Both aircraft 
manufacturer plan to deliver approx. 17000 single aisle aircraft 
each (68 %, 62 % of production) [3, 4]. These aircraft often 
come into operation for low cost airlines, where the market 
pressure forces the airlines to be highly competitive and to 
achieve high efficiency at all operational levels. In this context 
the optimization of the boarding procedures could be one 
deciding competitive factor.  

There are different disturbances during the passenger 
boarding process. Landeghem and Beuselinck [5] divided the 
disturbances into three operational parts: calling passengers, 
boarding pass control at the gates, and passenger installation 
within the aircraft. An adequate strategy for reducing the 
boarding time is to split the passengers into groups, whereas 
these groups are separately called to enter the aircraft. Due to 
the high quantity of possible parameter variations, such as 
block size, block sequence or block affiliation Marelli et al. [6] 
highlight the importance of model driven evaluations to 
optimize the boarding procedures. These boarding evaluations 
provide an insight into the associated mechanisms. However, a 
simulation environment is only capable to run pre-defined 
scenarios, but it does not provide autonomous algorithms for 
developing the most efficient strategy (van den Briel et al. [7]). 
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II. SIMULATION APPROACH

Our research project mainly focused on disturbances 
occurring during passenger installation, namely the congestion 
in the aisle, the storage of hand baggage, and number of 
occupied seats between the aisle and the assigned passenger 
seat. However, disturbances based on passed rows are not 
taken into account. 

A. Aircraft

For the simulation environment an A320-200 aircraft 
seating layout is chosen, which is used within the airline Air 
Berlin [8]. The aircraft is a regular single aisle aircraft with 
three seats on each side of the aisle and with a seating capacity 
of 174 seats in 29 rows (see fig. 2). 

        

Figure 2. Aircraft seat layout 

B. Model

In contrast to the mixed integer linear program approach 
introduced by Bazargan [9] or the multi-parameter discrete 
random process from Bachmat et al. [10], our simulation model 
is based on the so called asymmetric simple exclusion process 
(ASEP). The ASEP was successfully used for road traffic 
investigations. The boarding can be described as a stochastic 
forward directed, one dimensional, and discrete (time and 
space) process as well [11-13]. For this purpose the aircraft 
layout will be transferred into a regular grid as shown in fig. 3. 
The regular grid consists of cells with a size of 0.4 x 0.4 m. 
Each cell can either be empty or contain exactly one passenger. 
front
door

rear
door

1 3 292725235 7 ......

Figure 3. Grid based simulation model 

To move forward the passenger can enter an empty cell at 
one timestep only. If the cell in front of is occupied the 
passenger has to wait in this timestep (probability to overtake 
passengers is set to zero). Assuming a maximum speed of 
0.8 ms-1 at the aisle (60 % of maximum passenger speed), the 
timestep has a width of 0.5 s. At each timestep during the 
simulation the position of all passengers is updated via a 
sequential shuffled update procedure [14, 15].  

The passengers enter the aircraft at the front (rear) door and 
move from cell to cell along aisle until they reaches the 
assigned seat row. For each simulation run the arrival time at 
the aircraft is determined as a constant factor (n passengers per 
minute (PPM)). Before entering the aircraft all arriving 
passengers join the aircraft queue. If the queue is empty, they 
proceed directly into the aircraft; while otherwise they have to 
wait until all passengers arrived earlier have entered the 
aircraft. If both, front and rear door are used for boarding, the 

passengers from seat row 1-15 use the front door and 
passengers with seat row 16-29 use the rear door.  

Additionally to the general ASEP model, we assumed that a 
passenger leave this one dimensional process (walking at the 
aisle), if he has reached the assigned seat row. The time t,
which the passenger needs to take his seat, depends on several 
factors. First, t depends on time of baggage storage tB, (related 
to the number of baggage) as well as on the time for handling 
occupied seats tS and on the response time tR of all involved 
persons. For all of the time components a statistical probability 
(triangle distribution) is defined (compare [5, 11]). The 
distribution values are determined in tab. I. 

TABLE I. PROBABILITY DISTRIBUTIONS

Distribution 

Time values (s) 

min.

value 

modus 

value 

max. 

value 

mean 

Value 

standard 

deviation 

store one piece 
of baggage 

5.0 10.0 20.0 11.67 13.23 

time for one 
seat movement 

1.8  2.4   3.0   2.40   1.04 

Reaction 6.0  9.0 20.0 10.5 12.77 

The response time tR can be directly calculated from the 
given probability distribution without any further input data. 
The storage time tB is calculated by adding a random value for 
each piece of baggage, generated with the determined baggage 
storage distribution function. To determine the number of 
baggage pieces the distribution in tab. II is consulted. 

TABLE II. BAGGAGE DISTRIBUTION

Number of baggage pieces 

0 1 2 3 

ratio (%) 0 60 30 10 

To determine tS the character of the seat row state has to be 
clarified. At the chosen layout with a 3-3 seat configuration 
four different kinds of seat row states are possible: 

Seat access without any disturbances, (state A)

Blocked aisle seat, (state B)

Blocked middle seat, and (state C)

Blocked aisle and blocked middle seat. (state D)

This disturbance list is sorted by the degree of arrangement 
complexity, by meaning of increasing time consumption. For 
example, to take a seat at the window with a blocked middle 
seat, the passenger at the middle seat has to move to the aisle 
seat and from there to the aisle itself (the aisle is blocked 
during the whole seating process). Now the window-seated 
passenger enters the seat row followed by the middle seat 
passenger (7 movements in total). 

However, the number of required movements to ensure the 
aisle availability is lower than 7, because following passengers 
can pass the row 2 movements earlier: passenger one (on 
middle seat) need 2 moves to the aisle, passenger enters the 
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row and reaches the middle seat (2 moves), at this moment 
passenger one clears the aisle by entering the seat row as well 
(1 move). The further seat row arrangements (get to the 
corresponding window seat and middle seat) will be proceed 
without influencing the aisle passengers.  

In the simplest case (state A) a passenger needs only 1
move to enter the row, B requires 4 movements, the third state 
C consumes 5, and the most complex row state D requires not 
less than 9 movements. Finally, tS is calculated as a product of 
required movements and a random number given by the 
probability distribution (tab. I). In order to speed up the 
boarding process, it seems obvious to eliminate the most time 
consuming disturbances first.  

C. Boarding strategies 

For prearranging the passengers before entering the aircraft 
a call-of-system is used at the boarding counter. To determine 
the efficiency of boarding strategies, four different strategies 
are chosen: 

Random: the passengers get into the aircraft without a 
special order. 

Outside-In: passengers with window seats enter the 
aircraft first, followed by passengers with middle seats, 
and passengers with aisle seats. 

Back-to-Front: the aircraft is parted into blocks, 
whereas the block with the highest distance is boarded 
at first. 

Block boarding (best sequence): the aircraft is parted 
into blocks, whereas the fastest sequence of the blocks 
is used for boarding. 

The random strategy is used as a baseline scenario to allow 
a target-performance analysis. Former studies pointed out, that 
the outside-in procedure is one of the fastest and suitable 
boarding strategies (see van den Briel et al. [7]). Therefore it is 
used to mark the upper limit of the boarding time. The back-to-
front method is often determined as an unfavorable procedure, 
because the effort for arranging passengers is disproportionate 
to the expected time savings.  

Finally, the common block boarding (fig. 4) is part of the 
analysis, although Landeghem [5] and Ferrari et al. [11] 
showed that block (or half-block) strategies are not 
significantly faster than random boarding procedures. 
However, a first evaluation with our simulation model yields 
different results, even considering several block sizes, block 
sequences, acceptance rate of boarding procedure, and seat 
load factors. Additionally, the use of the rear aircraft door is 
taken into account. An example of the block classification (6 
blocks) is given at the following figure (fig. 4).  
front
door

rear
door

IIIIIIIVVVI

Figure 4. Block classification at grid model 

Attention should be paid to the numbering sequence at 
fig. 4, which starts at the end of the aircraft. Consequently, the 

back-to-front procedure is equivalent to a block boarding 
procedure with the sequence 123456. 

D. Simulation runs 

The parameters AR (acceptance rate), SLF (seat load 
factor) and PPM (arrival rate - passenger per minute) are varied 
within the boarding simulation environment. The simulation 
scenarios are generated by the combination of the following 
factors, whereas the default values are declared in braces. 

SLF and AR from 20% to 100% {85%} 

Arrival rate from 1 to 40 (PPM) {85%} 

4 different boarding procedures {random} 

One and two door configuration {one door} 

Each scenario is simulated 10000 times, to allow a 
significant statistical analysis of the results. 

III. RESULTS

Waiting times arising from boarding disturbances are 
primarily caused by suboptimal seat row states. At random
boarding the probability of seat row state A (no blocked seats) 
is about 66% (tab. III), whereas the outside-in boarding 
increase the quota to nearly 91%. Even the state C could be 
reduced to a marginal quantity of 1%. Thus, the change-over 
from the random to the outside-in boarding procedure results in 
system enhancements up to 20% (see fig. 11, 12). 

TABLE III. SEAT ROW STATE FOR BOARDING PROCEDURES

Procedure 
Seat row state (%) 

A B C D 

Random 65.6 20.3 6.1 8.0 
outside-in (AR=0.85) 90.8   5.2 2.9 1.1 
outside-in (AR=1) 100 0 0 0 

The influence of the row disturbances is not limited to the 
local row. Depending on the number of passengers which are 
not able to pass this critical row the local disturbance affects 
the whole boarding process and therefore the boarding time. In 
the next picture (fig. 5) the overall waiting time with respect to 
aisle position is shown, where x = 0 is marked as the aircraft 
door. If a passenger is not able to move forward a marker is left 
on this particular position at each timestep.  

After the finishing the simulation all markers of each aisle 
position are counted. With increasing aisle length the waiting 
time declines. In the vicinity of door the waiting time is very 
high, indicating that the passengers could not move forward 
due to indirect disturbance in front of them. With increasing 
rate of arrival, this effect has greater influence. A large waiting 
time at the door is connected to a high queue length. If the 
gradient of the waiting time is nearly linear the optimal system 
load is reached. For the random boarding configuration with 
one door, AR = 0.85, and SLF = 0.85 the optimal system load 
is achieved at an arrival rate of approx. 9 PPM. 
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Figure 5. Waiting time 

To solve the increasing door-handed waiting time 
distribution the second door is used for the boarding process as 
well (fig. 6). Passengers with seat rows from 15 to 29 could 
leave the front door queue and are directly guided to the rear 
part of the aircraft, without disturbing the passengers from seat 
row 1 to 14. Due to the queue shifting and the enhanced 
passenger segmentation the optimal system load is increased 
from 9 PPM to approx. 14 PPM in the random configuration. 
The small discrepancy between the left and the right shape of 
the curve in fig. 6 is caused by the different assigned row 
numbers for each door (front: 15 rows, back: 14 rows). 
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Figure 6. Waiting time (2 doors) 

Generally, the passenger waiting time inside the aircraft can 
be separated into a direct and an indirect contribution. The 
direct part is only attributed to the number of baggage and the 
individual time for stowing the baggage. The indirect part 
depends on the seat row state and the aisle blocking time due to 
other passenger’s activities (stowing baggage, waiting for 
seating, or waiting for passing). In fig. 7 the accumulated 
waiting time characteristics is shown. The internal waiting time 
has only a small impact on the passenger itself. Due to the 
passenger interactions the external waiting time is the main 
contribution to the overall waiting time.  (46 passengers wait 
99.8 s or less, whereas the direct part has a size of 16.9 s and 
the indirect part a size of 73.9 s.) 
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Figure 7. External, internal and overall waiting time 

During the boarding the number of passengers without a 
seat is continuously decreasing. In fig. 8 the center line 
represents the mean value and outward lines are the 75th 
percentile, 90th percentile and the maximum (25th percentile, 
10th percentile and minimum, respectively). Depending on the 
stochastic model assumptions the overall boarding time varies 
between approx. 925s and 1550s (see fig. 8 at 0 passengers 
without seat). The shape of the boarding time corresponds to a 
normal distribution with  1191 s and  83.8 s. From 100 s 
to 900 s simulation times a nearly constant ratio of approx. 7.2 
s per passenger seating rate is observed. 
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Figure 8. Passengers without seat during boarding process 

After analyzing one single scenario, we focused on the 
comparison of different boarding strategies and parameter 
variations in the next paragraphs.  

A. Block boarding and optimal block sequence 

To determine the efficiency of block boarding two 
parameters have to be defined. The first parameter is the block 
size, which is similar to the number of rows which are boarded 
at the same time. Regarding to the A320 layout (fig. 4), the 
restriction to integer values, and the almost equal block size, 
the block number have to be element of {1,2,3,4,5,6,7,9,15}. In 
the following table (tab. IV) the simulation results for all 
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possible 3-block-sequences are shown in relation to the random
boarding. Due to the fact that the back-to-front boarding 
(sequence 123) is defined separate boarding procedure, it is 
separated from the block sequences. The simulation analysis 
yields in no significant benefit of the block sequences over the 
random boarding procedure.  

TABLE IV. BOARDING TIME FOR  ALL 3-BLOCK SEQUENCES

Sequence Mean 

 value (s) 

Standard

deviation (s) 

Efficiency 

(%) 

1-2-3 1173.9   81.9 + 1.4 
2-1-3 1246.5   89.5 -  4.6 
1-3-2 1332.4   96.4 -11.8 
3-1-2 1378.8 100.6 -15.7 
2-3-1 1419.8   96.0 -19.1 
3-2-1 1612.6 103.3 -35.4 

random 1191.0   83.8 0 

The characteristics of the best sequence block boarding 
shown in fig. 9 points out a significant relationship between 
block size and boarding efficiency. The creation of two 
separate blocks could improve boarding procedure by 3.9 %, 
whereas the efficiency decreases by using three blocks to 1.4 % 
for back-to-front and reaches even negative values of -4.6 % 
for block procedure. 
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Figure 9. Efficiency of different block numbers 

Using an appropriate block size of 6 blocks (approx. 5 rows 
per block with 30 passengers) the efficiency of back-to-front
drops to -10.7 %, but increases for block to the prior level of 
3.9 %. A further seat row segmentation finally results in 
efficiency measurements of -40.6 % and 10 % respectively. To 
evaluate the best block sequence, all possible sequences were 
tested; an n block configuration produces n! specified
sequences. The 720 sequences for a 6 block configuration are 
shown in fig. 10, whereas the variance is exemplary 
highlighted by error bars. Obviously, the sequence 246135 
(compare fig. 4) with = 1133.5 s, = 72.52 s is significantly 
faster than all other sequences and the sequence 654321 is the 
slowest sequence (  = 2005.4 s,  = 122.4 s). Even though the 
sequence 135246 should be as fast as 246135, the impact of the 
reduced row number at block 6 (only 4 rows instead of 5) 
results in different values of  = 1141 s and a  = 78 s.  
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Figure 10. Sequences (720) for 6-block boarding procedure 

The simulation runs for the different block sizes points out, 
that alternating block sequences are much faster than other 
sequences. If the passenger group of the first block enters the 
aircraft they are queued in the aisle segment of the prior block. 
This prior block with occupied aisle should not be used for 
boarding and therefore one block is skipped in the block
boarding sequence. Furthermore, the most efficient sequence 
starts always even numbered (246...) and followed by the odd 
numbered blocks (135...). In our further analysis the 6 block 
classification is used. In this context the back-to-front and the 
block nomenclature represent the block sequence 123456 and 
246135 respectively. For the two door configuration this 
nomenclature has to be adapted. The blocks 123 are boarded 
through the rear door and 456 are boarded at the same time 
through the front door. Hence, the sequence for back-to-front is 
342516 and for block 253416. In contrast to the one door 
boarding passengers, the effective block size is reduced to 3, 
because the passenger from blocks 123 do not disturb 
passengers from blocks 456.  

B. Comparison of boarding procedures 

To analyze the different boarding strategies one parameter 
(SLF, AR, PPM, number of doors) varies and the other 
parameters are kept constant at their default values defined in 
section II.D. For the comparison of the different boarding 
procedures the random procedure acts as a baseline indicator. 
This procedure is always marked with a solid line in the 
following figures. The investigation starts with a one door 
configuration, but the results of the two door configuration are 
already shown on the opposite. Due to the use of the same 
scale gradations an overall evaluation of the efficiency can be 
ensured. The inserted diagrams show the corresponding 
standard deviation characteristics.  

With the increment of the acceptance rate (AR) from 0.2 to 
1.0 (see fig. 11, 12) the boarding time of the outside-in
procedure decreases at an average of 44.8 s per 0.1 acceptance 
rate for one door configuration and 23.4 s for two door 
configuration. At AR = 0.32 the outside-in procedure reaches 
the breakeven point. As expected, the random boarding times 
are constant, whereas the two door configuration shows an 
improvement of 25.9 % regarding to the boarding time and a 
reduced standard deviation of 28.4 s.  
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1) One-Door Boarding 
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Figure 11. Boarding results using one door (acceptance rate AR, seat load  
     factor SLF, and passenger per minute PPM vs. time) 

2) Two-Door Boarding 
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Figure 12. Boarding results using two doors  (acceptance rate AR, seat load  
     factor SLF, and passenger per minute PPM vs. time) 
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The block boarding reaches the maximum efficiency of 
3.9 % at AR = 0.85 (one door). In contrast, the block boarding 
is not efficient at the two door configuration. If the AR exceeds 
the 0.62 level at the one door configuration the back-to-front
procedure gets inefficient, and induces no significant efficiency 
enhancements at the two door configuration. This inverse 
effect of block and back-to-front procedure was already point 
out in section III.A (see fig.9). The analysis of the SLF 
variation yields nearly linear correlations between the SLF and 
the boarding time, except the back-to-front procedure in the 
one door configuration. Analogue to the acceptance rate the 
boarding time gets inefficient at a certain point (SLF = 0.68), 
whereas the standard deviation already indicates this trend at 
SLF = 0.37. 

The analysis of the increasing arrival rate provides no 
additional information about the comparison of different 
strategies. However, the direct comparison of the one door 
versus a the two door configuration shows that the arrival rate 
of approx. 11 PPM (one door) and 16 PPM (two door) assign 
an upper value for the arrival rate regarding to the boarding 
efficiency. From this point of view a further increment of the 
arrival rate will only have a marginal influence on the boarding 
time. This result corresponds to the waiting time analysis at the 
beginning of section III.  

Finally, the comparison of the one door versus the two door 
configuration yields the results shown in tab. V. The parameter 
AR, SLF and PPM are kept at their default values of 0.85 %, 
0.85 % and 14 PPM respectively. The standard deviation 
percentage refers to the procedure regarding mean value, 
whereas the efficiency refers to the random boarding with a 
one door configuration.  

TABLE V. COMPARISON OF ONE DOOR VS. TWO DOOR CONFIGURATION

 procedure mean (s) standard deviation  Efficienc

y

(%) 
(s) (%) 

1
 d

o
o

r 

random 1191.0 83.8 7.0 0.0 

outside-in 968.3 65.8 6.8 18.7 

back-to-front 1324.3 94.8 7.2 -11.2 

block 1151.7 80.8 7.0 3.3 

2
 d

o
o

r 

random 886.8 55.6 6.3 25.5 
ouside-in 764.3 35.8 4.7 35.8 
back-to-front 901.2 57.7 6.4 24.3 
block 1018.8 69.2 6.8 14.5 

The utilization of the second aircraft door results in an 
enhanced efficiency of 25.5 %, without even considering 
particular boarding procedures. In comparison to the outside-in
procedure (one door) an additional improvement of 7 % and 
reduction of the standard deviation by 0.5 % is realized. 
Furthermore, the result points out that back-to-front and block
boarding are not recommended procedures. A marginal 
efficiency value of 3.3 % with a nearly unchanged standard 
deviation does not legitimate the application of the block
boarding at the one door configuration. Looking at the two 
door configuration, the outside-in procedure achieves the best 
efficiency of 35.8 % with the smallest standard deviation of 
4.7 %. 

IV. CONCLUSION

This paper presents a simulation model to evaluate different 
boarding procedures and the influence of the variation of the 
corresponding input parameter (seat load factor, passenger 
acceptance rate of boarding procedure and arrival rate). The 
results of the simulation runs show the expected high 
efficiency of the outside-in boarding procedure and the 
marginal advantage of adjusted block procedures. With the 
utilization of the second aircraft door further enhancements are 
achieved. Airlines with apron-parking aircraft could easily use 
a second door for boarding. To achieve an efficiency 
enhancement of approx. 25% (see tab. V), the passengers have 
to split up in two groups only, regarding their assigned seat 
row.  
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Abstract— this paper presents a research effort to study future 
air cargo demand using new generation Very Light Jets. Cargo 
demands are generated at county and airport level using T100D 
and Woods & Poole demographics data. At airport level, a 
growth factor based FRATAR model is applied to distribute air 
cargo demand among cargo airports up to year 2025. Historical 
trends of all-cargo carriers load factors are analyzed. An 
economics model is built to study Very Light Jet cargo transport 
cost. Cases studies are conducted to assess the competitiveness of 
the VLJ in terms of transport time and cost. Throughout our 
analysis, air cargo is further categorized into freight and air mail 
as they have different characteristics. 

Keywords-component Very Light Jet, Air Cargo, Growth Factor, 
Demand Forecast

I. INTRODUCTION

This paper is composed of two parts. Air cargo 
demand at airport and county levels is described in the first 
part. A Very Light Jet (VLJ) cargo transport cost model and 
case studies are presented in part two. The traditional four-
step-model is applied and this paper addresses demand 
generation, distribution and mode split.  

The first part uses Bureau of Transportation Statistics 
Air Carrier Statistics Domestic Market Database (T100D) as 
the primary data source. Air cargo demand is generated at 
around 900 cargo airports based on socio-economics. A 
growth factor based FRATAR model is applied to distribute 
predicted air cargo demand. In addition, demands at special 
transfer locations such as Memphis Airport (hub for FedEx) 
and Louisville Airport (hub for UPS) are redistributed.  

In the second part of the paper, a cargo aircraft 
economics model is proposed to estimate cargo shipping cost 
using VLJ.  The first Very Light Jet, Eclipse 500 from Eclipse 
Aviation is used as the prototype vehicle in the analysis. 
Various cost components including hourly variable cost, 
annual fixed cost, periodic cost, personnel cost, and facility 
costs are integrated in the model. The cost estimates are 
derived from estimates published by Business and 
Commercial Aviation and ARG/US Operations Planning 
Guide [1]. The model generates life cycle cost metrics 
including cost per hour, cost per mile, and cost per pound-
mile, and a summary of annual cost components. Air cargo 
size and load factor are also analyzed. 

II. LITERATURE REVIEW

Freight demand modeling has emerged as a major issue 
in the transportation industry. State and regional cargo demand 
modeling have received extensive attention in recent papers 
[2][3][4][5][6]. These models usually concentrate on rail and 
truck operations. State-of-the-Practice freight databases are 
well documented by A. Mani and J. Prozzi [7]. 

There are several nation-wide freight models in the U.S. 
and Europe. Freight Transportation Research Associates 
(FTRA) developed an input/ output model that forecasts 
freight demand in the U.S. The model collects data from 1965 
through 2004 at 3-digit Standard Transportation Commodity 
Code (STCC) level and assigns shipments to rail, truck, 
pipeline and water [8]. Another national freight model, Global 
Insight’s North American Trade and Transportation Data 
(TRANSEARCH INSIGHT) represents a more detailed multi-
modal model. The model utilizes Global Insight’s quantitative 
economics model to forecast freight volume up to 2030. It 
estimates inbound/outbound shipments at BEA (Bureau of 
Economic Analysis) and county level in terms of 4-digit 
STCC commodity [9]. 

In addition to proprietary databases, the Federal 
Highway Administration is developing a Freight Analysis 
Framework (FAF) that integrates data from various databases 
to estimate freight flow among states, regions, and major 
international gateways [10][11]. The first generation of FAF, 
FAF1, is based on Bureau of Transportation Statistics (BTS) 
Commodity Flow Survey (CFS) 1997. CFS is one of the most 
commonly used freight flow databases in the literature. It 
collects sample data through survey forms from a universe of 
about 800,000 establishments [12].  However, CFS is 
estimated to cover about 70-80 percent of the U.S. cargo 
movement [13]. Therefore, the FAF model incorporates 
complimentary data sources to complete missing elements of 
CFS records. The first version, FAF1 estimates shipment in 
1997 and provides forecasts for 2010 and 2020. The new 
product, FAF2, derives inputs primarily from CFS 2002 and 
predicts freight shipments through 2035 in 5 year increments 
[13]. It is comprised of three categories of data including CFS 
within-scope data, auxiliary data and CFS out-of-scope data. 
CFS within-scope data comes directly from CFS 2002. 
Auxiliary data represents complementary databases and is 
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used in a log-linear model and iterative proportional fitting to 
estimate CFS out-of-scope data. The most detailed Origin-
Destination (OD) table is a region to region OD table by mode 
by 2-digit SCTG code. 

   National freight movement modeling attracts 
extensive attention in Europe as well [14]. In Great Britain, a 
national multi-mode freight model, Great Britain Freight 
Model (GBFM), has been developed to predict freight demand 
and policy impacts [15]. The model estimates international 
cargo movements between counties within Great Britain and 
Europe as well as internal county to county and postcode to 
postcode cargo flows. Policy impacts can be evaluated via a 
set of operating cost models and transport route 
characteristics. A logit model is applied for mode and route 
choice. Meanwhile, there are several similar models such as 
Sweden SAMGODS [16][17], Norway NEMO [18], and 
Belgium WFTM [19]. All of them represent network models 
with cost functions and freight flows on modes and routes 
[20]. Besides network models, discrete models are widely 
used. Italy’s SISD and the Netherlands’s TEM models belong 
to this family [20]. In addition to TEM, the Netherlands has 
two other freight models that employ different philosophy 
[21]. The first one is SMILE, a model that introduces logistic 
segmentation and intermodal transport chains into a 
multimodal network [22]. The second model, MOBILEC, 
applies casual relationships between economy, mobility and 
dynamic growth [23]. France has two national freight models. 
Simulation techniques are used in the first model to forecast 
demand and assess policy impacts whereas the second model 
(named Transalpine) model is based on transport costs [20].  

   Apart from multi-mode cargo database, there are 
several dedicated air cargo databases. The Official Airline 
Guide (OAG) Cargo Database produces annual worldwide 
cargo schedules between origin and destination [24]. OAG 
Cargo covers cargo data from 138 carriers (as of Nov. 2006) 
who report their statistics to OAG. However, data from 
mainline cargo shippers such as FedEx, UPS and Airborne are 
not included. A more complete database, the FAA’s Air 
Carrier Activity Information System (ACAIS) All-Cargo 
Activity Report covers 492 domestic carriers in 2007 [25]. It is 
designed for Federal funding allocation but not for direct 
cargo demand modeling because it only records the maximum 
possible cargo landing weight at airports, i.e. the maximum 
landing weight of scheduled cargo flights no matter how much 
payload is carried. Another public database, BTS Form 41 
T100D Domestic Market database, comprises fewer carriers 
(64 all-cargo carriers in 2005) but includes mainline shippers 
and actual payload records. It consists of monthly data 
reported by certified U.S. air carriers on passengers, freight 
and mail transported [26]. Furthermore, it provides critical 
information on available capacity and seats, aircraft type, 
service class, aircraft hours, etc. Therefore, it is used as the 
main data source for airport-to-airport cargo flow estimation. 

III. MODELING

In the beginning, multi-modal public databases 
such as FAF and CFS are explored to estimate air cargo 
share. However, due to the absence of detailed mode 
specific data, especially the air mode, it is difficult to 
quantify air cargo components using FAF and CFS. 
Consequently we turned to the air transportation oriented 
database T100D as our main data source. Figure 1 shows the 
flowchart for Very Light Jet cargo demand generation and 
distribution.  

Figure 1: Very Light Jet Cargo Demand Generation and 
Distribution Flowchart.  

T100D is used as the primary database and the 
baseline OD flows are derived for freight and mail. An airport 
influence area study is conducted to associate airport growth 
with neighboring county demographic growth. A growth 
factor based FRATAR model is used to distribute demand 
among OD pairs. The following sections will elaborate on 
each subject. 

A. AIRPORT TO AIRPORT CARGO DEMAND 

T100D consists of monthly data reported by certified 
U.S. and foreign air carriers on passengers, revenue freight 
and mail. Our analysis emphasizes on the cargo components 
of this database - revenue freight and mail. Conventional four-
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step model is applied to estimate VLJ cargo market share and 
demand. Domestic airport to airport cargo flows, including 
freight and mail, is extracted from origin and destination 
airports in the demand generation step. A demand prediction 
up to 2025 is obtained using growth factors. This paper covers 
demand generation, demand distribution and mode split.  

Freight and mail demands are generated at airports 
using T100D database (year 2003). Different airport identifier 
naming conventions are discovered between T100D and FAA. 
An effort is made to convert T100D airport ID to FAA airport 
ID using auxiliary data source such as airnav.com and 
airliners.com in order to obtain necessary airport facility data 
offered by FAA Landing Facility Database.  

1) AIRPORT SERVICE RADIUS ANALYSIS 
VLJ is capable of operating at small to medium 

community airports to save transport time. To explore the 
potential cargo transport demand of the VLJ, it is necessary to 
redistribute the cargo demand at current cargo airports to 
surrounding counties and then re-evaluate the airport choice.  

In order to relate airport with counties demographics, 
a service radius analysis is conducted.  First, a population 
based county centroid is located at each county based on 
census track level population data. Then a correlation study is 
made using ArcGIS. Any county centroid within the service 
radius is assumed to be served by the airport. In our analysis, 
we assume T100D cargo airports are part of the hub-spoke 
system and are able to connect to other airports. Under this 
assumption, all T100D cargo airports could be candidate cargo 
airports for the county within their service radius. Three 
different scenarios are examined, i.e. 60 -120 miles, 70-120 
miles and 90-150 miles. The radius varies proportionally to 
airport production and attraction demand. In the first scenario, 
one third of the cargo airports are unable to couple with any 
county. Therefore the lower bound of the radius is increased 
and the results are reexamined. By increasing the minima to 
90 miles and the maxima 150 miles, all continental cargo 
airports can be coupled. However, there are counties cannot be 
coupled any neighborhood airports. In this case, the closest 
cargo airports are assigned to them. Similarly, if the airport 
cannot find a nearby county, the closest county is assigned. On 
average, around 20 counties can be served by one airport, 
implying a significant overlap in the service area considering a 
total of 3,000 counties in the continental U.S.  

2) REGRESSION ANALYSIS 
The outcome of service radius analysis is the 

association of airport and counties based on demand. 
Demographics of served counties can be explained as 
explanatory factors for future airport growth. 

Various regression analyses are conducted to explain 
cargo demand versus socio-economic factors. County 
demographic data such as total employment and population 
are the initial trial parameters. As a result of the collinearity 
test, any pairs of the three parameters cannot be used 
simultaneously in the regression due to high collinearity. 
Linear regression produces satisfactory R-square value after 

removing several outliers which include large airports 
attracting and producing enormous cargo or hubs for major air 
cargo operators such as UPS and FedEx. Therefore, a single 
variable linear relationship is used. Transportation industry 
employment and earning are used as independent variables for 
freight and mail respectively. 

3) GROWTH FACTOR 
The Woods and Poole Complete Economic and 

Demographic Data Source provides county demographics data 
and forecast from 1970 to 2025 for a total of 3,091 counties 
[28]. Based on county-airport association and W&P 
demographic prediction, a two-by-two growth factor matrix is 
developed for each cargo airport by airport type (as origin 
(production) or destination (attraction) airport) and cargo type 
(freight or mail). 

For outliers such as Memphis and Louisville airport, 
FAA Terminal Area Forecast (TAF) demand forecast is used. 
TAF includes forecasts for active airports in the National Plan 
of Integrated Airport System (NPIAS). It should be noticed 
that growth factors of these hub airports are smaller than the 
growth factors of small to medium airports obtained from 
demographics growth. This can be explained by terminal 
congestion levels and the potential to use small to medium 
airports to detour demand of those hub airports. By this 
procedure, a complete growth factor matrix is built (See Figure 
2).

Figure 2: Mail Attraction Growth Factor in Year 2010. 

4) FRATAR MODEL 
FRATAR model is a growth factor based demand 

distribution model. Given both origin and destination growth 
factors, demand distribution prediction can be obtained using 
following equation.  

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9381



ij j
ij i

ix x

t G
T T

t G
=    Equation 1

Where ijT = number of trips estimated from zone i to zone j

             iT  = future trip generation in zone i

             it  = present trip generation in zone i

             ,j xG  = growth factor 

             ijt  = present trips between zone i and j

             ixt  = number of trips between zone i and other zone x

���#�����#���
����������������������
���#������
��#���������

��
������
�����

�&�������!��'������
� #���.�<3&"&3�

����&�����#����  &���������
 �
��&���&���� 
�������!�!
����
���

�
����������������������&���! ����'��
�!�!��$

Figure 3). The model converges quickly after a few 
iterations. 

Figure 3: Mail Attraction at County Level in Year 2010. 

B. COUNTY DEMAND ASSIGNMENT 

Initially, cargo demand at airports is assigned to 
neighboring counties within service radius based on regression 
analysis.  Initially, cargo demand is distributed to counties 
proportionally to their share to the total demographics served 
by the associated airports. Then demand is summed up if one 
county has multiple service airports.  

Two largo cargo centers exist in the country, 
Memphis International Airport (MEM) and Louisville 
International Airport (SDF), hubs of FedEx and UPS,
respectively, function as sink nodes in the initial distribution. 
These nodes do not represent the true cargo destination and 
thus warrant a secondary redistribution step. This step treats 
MEM and SDF as transfer nodes. A simple transfer rate is 

assumed: 90% of freight and 85% of mail demand reached 
MEM is redistributed and at SDF, 90% and 75%.  This rule 
assures a symmetric cargo flow arriving and leaving MEM 
and SDF. 

After the two-step distribution, the county demand 
OD matrix was collected by rows and columns to obtain 
county level demand generation. 

Figure 4 shows air mail demand attraction at county 
level.

Figure 4: Mail Attraction at County Level. 

   

C. AIR CARGO WEIGHT STUDY 

Upon completion of cargo demand generation and 
distribution, total air cargo demand and OD flows are 
projected at county level. However, VLJ is not capable of 
accommodating all the demand due to capacity and weight 
balancing constraints.  Practically VLJs are unable to transport 
shipments beyond 1,000 lbs. Therefore it is necessary to study 
air cargo size distribution to estimate VLJ compatible cargo 
demand.  

Air cargo weight distribution can be derived from the 
Commodity Flow Survey (CFS) from the four regions 
reported. Study shows that there is no significant difference in 
the four regions for shipment less than 1,000 lbs. This result 
justifies a national cargo weight analysis concentrating on 
shipments less than 1,000 lbs. It shows approximately 40% of 
current air cargo is compatible with VLJ aircraft. 

D. CARGO AIRCRAFT ECONOMICS MODEL 

VLJ aircraft economics models are developed using 
STELLA Research 7.0. Various cost components including 
hourly variable cost, annual fixed cost, periodic cost, 
personnel cost, and facility costs are integrated in the model. 
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The model allows users to modify parameters such as jet fuel 
cost, load factor, number of pilots, flight hours per year, 
percent resale value, profit margin, mission stage length, 
annual pilot salary, and percent repositioning flights. The 
model provides Life Cycle Cost Metrics, including cost per 
hour, cost per mile and cost per pound-mile, and a summary of 
annual cost components.  

Figure 5: Eclipse 500 Economics Model. 

Life-cycle costs of similar small cargo aircraft, 
Cessna Caravan and Falcon 20F, are also modeled for 
comparative purposes. The cost estimations are derived from 
data published by Business and Commercial Aviation and 
ARG/US in the Year 2004 Operations Planning Guide. 
Average load factor is obtained from BTS Air Carrier 
Summary Data T2 as the quotient of revenue ton-miles over 
available ton-miles. From the historical trend revealed by T2, 
average load factor is assumed to be 0.65. Life-Cycle cost 
estimates for the three aircraft are shown in  

Table 1.

Table 1: Small Cargo Aircraft Economics Model Output.

Aircraft 
Total Cost per 
Hour (Dollars) 

Cost per Pound Mile 
(cents / lb-mile) 

Eclipse 500 974 0.25 
Cessna 

Caravan 
1,112 0.50 

Falcon 20F 2,258 0.63 

E. CASE STUDIES

Case studies are conducted to assess the 
competitiveness of VLJ cargo operations. Commercial cargo 

service providers such as UPS and FedEx are modeled as the 
primary competitor. Both FedEx and UPS offer same day and 
second day expedite service. In our case studies, UPS Ground 
and UPS Sonic-Air express service are modeled as the primary 
commercial service competing against the on-demand cargo 
service using VLJ.  
 It is assumed that the VLJ aircraft operates either as a 
dedicated on-demand service or with a load factor of 0.65. The 
former means the VLJ aircraft will be used solely for the 
requested package whereas the latter combines the package 
with other payloads. Two package sizes, i.e. 100 lbs and 200 
lbs, and ten distance categories (100 – 1000 miles) are 
evaluated. Estimation of VLJ travel time is based on 
assumption that 3,000+ airports available for VLJ cargo 
operation [29]. The closest airport to the origin and destination 
zip code is chosen as origin and destination airport. The result 
(for 200lbs) indicates that VLJ aircraft require the least 
transport time thanks to its point-to-point operation concept. In 
the cost competition, the position of cargo VLJ operation 
greatly depends on load factor. A load factor of 0.65 is 
sufficient for the first place in the competition. However, 
schedule delays may be added for transport time. If the 
operation is completely dedicated to this package, cargo VLJ 
will be most expensive one among the three methods.  

IV. RESULTS AND CONCLUSIONS

This paper presents demand generation, distribution 
and partial mode choice of the four-step model to study VLJ 
cargo transport capability. Air cargo demand is generated 
and distributed at 900 cargo airports and 3,091 counties for 
the entire US. A strong linear correlation is found between 
cargo demand and demographics. Transportation / 
Communication / Public Service employment and earnings 
are found to be the best explanatory variables for freight and 
mail demand respectively.   

It is observed that cargo demand concentrates at 
highly populated area. As a result of cargo airport service 
area analysis, more than 200 counties cannot locate a cargo 
airport within 60-120 mile radius. And it is under the 
assumption that all airports appearing in T100D are reliable 
enough to offer regular air cargo service. More counties will 
be isolated if only airports with regular cargo service are to 
be considered.  

Growth factor analysis indicates that the potential 
growth tends to concentrate at high density where 
congestion could constrain projected growth in the future. 
By operating from point-to-point and reduce ground time at 
under-utilized rural airports, VLJ offers an attractive 
alternative mode for highly time sensitive shipment. Case 
studies suggest that VLJ provides substantial travel time 
savings compared to expedited commercial service currently 
available. VLJ offers competitive prices if moderate to high 
load factors are achieved. 
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V. MODEL LIMITATION AND RECOMMENDATIONS

 In the distribution analysis, a static airport network 
has been applied. Emergence of new cargo OD pairs is not 
considered in the model. Furthermore, the demand distribution 
is limited by T100D OD pair network. Intermodal operations 
that reflect the true origin and destination are approximated by 
service area. Small to medium hubs’ sorting and redistribution 
function is not considered in this analysis. A dynamic air 
cargo operator behavior model and the inclusion of small to 
medium hub redistribution step will enhance our distribution 
model and in turn improve mode choice. Further validation is 
needed. 
 Our primary data source, T100D, does not provide 
information on small cargo carrier operations such as air taxi. 
A database collection analysis should be undertaken to 
understand this market segment.  
 A complete mode choice module needs to be built to 
estimate VLJ market. Several parameters need to be 
addressed, including percentage of highly time sensitive cargo, 
percent repositioning flights, commodity value of time, 
commercial cargo transporter expedite service cost structure, 
and reliability of VLJ operations.  
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Abstract— Today advertisements can be seen everywhere, on the 
seats of grocery carts, on the walls of an airport walkway, on the 
sides of buses, heard in telephone hold messages and they can 
even be seen on the fuselage of an aircraft or on-board. On-board 
advertising recently becomes a significant source of revenues for 
airlines all over the world. Inspired by ground public transport, 
air carriers have started to explore a great potential of on-board 
marketing and advertising. Advertising on-board provides 
smarter and cost-effective way of communicating with the 
customer and it is one of the new methods to inform potential 
customers about products and services and how to obtain and use 
them. However, compared to other means of transport, the 
potential of advertising on-board of aircraft seems to be 
untapped. It is necessary to realise that revenues from on-board 
advertising can help airlines to keep their competitiveness. 
Despite the fluctuation of fuel price, airlines will be able to 
maintain constant fare thanks to revenues from advertising. The 
main objective of our study is to analyse a real potential of on-
board advertising. The study is mainly focused on low-fare 
airlines as these reach both high fleet utilisation and high load 
factors. These facts make low-fare carriers being an ideal market 
for on-board advertising. By means of this study, we would like 
to answer the question, if Michael O’Leary’s dream of no-fare 
airline can come true in near future or if it is just utopia. 

Keywords; on-board advertising, ancillary revenues, operating 
costs

I. INTRODUCTION

Public transport is generally considered to be very valuable 
marketplace for advertising. In big cities, there are thousands of 
people using public transport services every day. In London, 
over 3 million passenger journeys are made across the 
underground network every day and London Tube earns 
billions of Euros every year from its advertising space [1]  

Commercial advertising is an indispensable source of 
revenue for many coach and railway operators, providing 
services on the regional, national, and international level. In the 
field of passenger transportation, advertising becomes a very 
efficient tool for being competitive.  

Compared to other means of transport, air transport seems 
to be behind in the on-board advertising development. Many 
airlines have already started to use the advertising space in 

aircraft cabins for the promotion of hotel chains or car rental 
companies but the market is by far untapped. Moreover, the 
development in the field of on-board services and on-board 
entertainment will definitely lead to an increase of the on-board 
commercial advertising potential. 

The main aim of this article is to perform an analysis of the 
on-board advertising potential and find out if further 
development in this field can provide airlines with sufficient 
financial resources and thus lead to deployment of the no-fare 
business model. In our opinion, a good concept of on-board 
advertising can bring a significant competitive advantage for 
many airlines regardless of their business model. The 
advertising revenues can partly compensate growing fuel 
prices, and traditional airlines do not need to collect fuel 
surcharges. On-board advertising in combination with latest 
on-board technologies could also lead to transformation of low-
fare airlines to no-fare airlines. Currently, no-fare flights are 
used as very efficient marketing tool, but in the future the on-
board marketing and advertising may be used for reducing or 
covering the cost of travel.  

The possibilities of on-board marketing and advertising are 
almost unlimited.  It does not need to be used only for the 
promotion of hotel chains or car rental firms. The whole air 
transportation process provides a great resource of advertising 
channels and opportunities. The following list presents a 
fraction of possible advertising and marketing spots which are 
not exclusively on-board the aircraft:  

• Menu card; 

• Window application; 

• In-flight announcements; 

• Headrest covers; 

• Product sampling; 

• Air sickness bag; 

• In-flight magazine; 

• Exterior aircraft branding; 

• Meal tray table back; 

• Overhead bins; 
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• Cabin crew uniforms; 

• Boarding pass; 

• Promotional leaflets; 

• Happy Snack Bags; 

• Drink Tumblers; 

• Napkins; 

• On-board testing (e.g. wine, perfumes); 

• In-flight entertainment (IFE) systems. 

II. PSYCHOLOGY OF ON-BOARD ADVERTISING  

In general, passengers perceiving advertisements on-board 
an aircraft are considered to be a good target for marketers. The 
reason is simple. The aircraft cabin is a closed space restricting 
the movement of passengers. Remaining seated for several 
hours at one particular place a passenger would start reading an 
in-flight magazine, pay attention to headrest covers and read all 
the booklets. Another reason that marketers are interested in 
the passenger is free time that he/she has to perceive an 
advertising message. 

Psychological condition of passenger plays an important 
role. As passenger does not assume huge advertising 
campaigns as it is seen on TV he will perceive messages from 
in-flight magazine more quietly. Moreover, there is an 
opportunity of repeated contact with the advertising message. 
Having looked through all products offered the passenger may 
turn once again to the booklet or journal which was liked. 
According to statistics, 20 % of air passengers take a magazine 
with them after the flight [16]. Although in-flight magazines 
can be found in each aircraft (no matter of what kind of airline 
an aircraft belongs to) the concept of magazine as well as 
whole on-board marketing and advertising needs to be different 
for each airline, depending on its business model and taking 
into account requirements and needs of its passengers, 
considering that the passengers’ needs and requirements can be 
specific regarding particular city pairs. 

It is also necessary to point out that current marketing and 
advertising opportunities will multiply once the passenger is 
connected to Internet or is allowed to use his/her Blackberries 
or phones during the flight. 

III. DIFFERENT BUSINESS MODELS

A. Traditional Airlines 

The operational model of most traditional airlines is based 
on hub-and-spoke operations. Their networks usually consist of 
short-haul and long-haul routes. The flight schedule is set in 
order to offer passengers the most attractive times and to 
ensure the connectivity between short-haul and long-haul 
flights. In other words, during the day there is a time when 
short-haul flights feed the long-haul flights and there is also a 
time when long-haul flights feed short-haul connecting flights. 
Thanks to this feature, the operation of traditional airlines at 
major airports form typical arrival and departure peaks. 

Traditional airlines form alliances (e.g. Star Alliance, One 
World, and Sky Team). Thanks to membership in alliances, the 
traditional air carriers are able to take passengers seamlessly 
from anywhere to everywhere. 

Nowadays, the traditional airlines have a monopoly in the 
long-haul market. Long-haul operation generates an 
indispensable number of passengers for connecting short-haul 
flights. 

Advertising in the cabin of long-haul aircraft can have 
disadvantages due to several reasons. Although long-haul 
aircraft have huge seat capacity, these are able to carry only 
limited passengers per day. Due to long legs, the aircraft can be 
operated only on one or two flights per day. It means that only 
a limited number of people will see the advertisement. 
Moreover, taking into account a flight lasting 10 – 15 hours the 
cabin full of posters could be disturbing and could reduce the 
level of passenger’s comfort.  

On the other hand, the cabin of long-haul aircraft could be a 
great place for on-board marketing (e.g. tasting of wine). Wide-
body aircraft are also usually equipped with excellent in-flight 
entertainment systems. Once the in-flight connectivity is 
introduced, these systems will become a virtual store of 
unlimited possibilities.  

Considering the short-haul flights operated by traditional 
airlines, these provide more space for on-board advertising. 
The requirements posed on the level of comfort in the cabins of 
short-haul aircraft are much less demanding compared to long-
haul aircraft. Although daily utilisations of these aircraft are 
significantly lower, they are able to fly about 6 legs per day. As 
a result of this, more passengers could be carried during each 
day. 

B. Charter airlines 

The charter airline business model is based on selling 
whole seat capacity of the aircraft to tour operators. Once the 
contract between airline and tour operator is signed, marketing 
and consequently the load factor is tour operator’s 
responsibility. 

The charter airline operation and business model is 
currently the most efficient in the market as all flights are 
profitable for the air carrier. The tour operator bears the risk of 
financial loss. 

Charter airlines usually have very high fleet utilisation. The 
fleet utilisation can reach as much as 17 hours per day. These 
carriers operate short- to medium- haul point-to-point flights. 
Their flights are not scheduled. Time and destination of each 
flight depends on the requirements of the tour operator.  

These airlines usually operate single aisle aircraft, with high 
density seating configuration. Depending on route lengths, the 
aircraft can fly 6 to 8 legs per day. Moreover, most of their 
passengers are holidaymakers. Charter airlines are therefore a 
huge and very specific market that is considerably easy to 
address by properly selected advertisement. 
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C. Low-fare airlines 

The low-fare business model is based on reducing operating 
costs with a view to offer passengers a very competitive fare. 
The air ticket price usually include only air transportation and 
all additional services like airport check-in, priority boarding 
and on-board services are charged extra.  

Low-fare airlines operate scheduled, short-haul, point-to-
point passenger services serving usually regional or secondary 
airports. In order to reduce operating costs, these carriers 
operate single type fleet and cabins of their aircraft have very 
high density seating configuration. Average fleet utilisation 
usually reaches more than 12 hours per day and each aircraft 
flies about 8 legs per day. 

As these airlines usually offer the lowest possible fare, they 
are able to achieve average load factor of more than 80 %. 
Thanks to these features, the aircraft operated by low-fare 
airline can carry more than 1,200 passengers per day. It means 
that low-fare market has very good potential regarding on-
board marketing and advertising as it hits relatively high 
number of potential customers.  

It is also possible that growing revenues from advertising 
will sooner or later lead some low-fare carriers to introducing 
no-fare business model. Advertising and additional services 
will become primary source of profit for such airlines and air 
transportation will be provided to passengers for free. Of 
course, the transformation from low-fare to no-fare business 
model will be feasible only for the biggest in the market (e.g. 
Ryanair). The advertising revenues directly relate to fleet size, 
aircraft utilisation and load factors. Taking into account 
Ryanair’s performance in recent years, its aircraft are very 
attractive and very efficient advertising channels.  

For our further analysis, we have selected low-fare business 
and operational model as it seems that high aircraft utilisation 
and high load factors make low-fare airlines be a good 
marketplace for on-board advertising and its further 
development. Moreover, thanks to low operating costs these 
airlines are very close to deploy no-fare business model. 

IV. ANALYSIS OF LOW-FARE AIRLINES ANCILLARY 

REVENUES

Revenues from non-ticket sources (ancillary revenues) are 
of vital importance for many airlines worldwide, especially for 
those running low-fare business models. These revenues are 
generated mostly by the services that passengers are to buy 
before or during their travel experience. Legacy airlines bundle 
these services into the price of air ticket while low-fare airlines 
charge them extra. TABLE I shows potential sources of non-
ticket revenues for airlines. 

TABLE I. : POTENTIAL SOURCE OF ANCILLARY REVENUES FOR AIRLINES

On-board sales of food and beverages 
Baggage check-in charges 
Excess baggage charges 
Seat assignments charges 
Fee charged for purchases made with credit cards 

Ancillary 
Revenues 

Commissions from the sales performed via airline website 
(e.g. hotels, car rentals, transportation from/to airport) 

Commissions from the sale of travel insurance 
Commissions from the sale of airport lounge access 
On-board advertising 

Some legacy carriers use other sources of non-ticket 
revenues. For example: miles or points sold to banks issuing 
co-branded credit cards, travel partners such as hotel chains 
and car rental companies and other partners such as online 
malls, retailers and communication services. These services 
refer to frequent flyer ancillary revenues and we will exclude 
them from our analysis as we are focusing on low-fare airlines’ 
business model. 

To introduce no-fare operational model, low-fare airlines 
will rely strongly on ancillary revenues and on-board 
advertising revenues. Even now, many airlines try to attract 
their passengers to buy as many non-ticket services as possible. 
Aircraft cabins full of on-board advertisements can be widely 
seen as well. 

This is happening because non-ticket services and on-board 
advertising revenues are becoming of high value for low-fare 
airlines. Considering major European low-fare airline Ryanair, 
its non-ticket services and on-board advertising generated as 
much as  8.5 per passenger in 2007 [2]. Other examples of 
specific ancillary revenue amounts including on-board 
advertising revenues can be seen on the following figures. Fig. 
1 shows ancillary revenue amounts per passenger for three 
well-known European low-fare airlines in 2006 and 2007. Fig. 
2 shows ancillary revenues per aircraft per month for the same 
carriers. 

Figure 1. Per passenger ancillary revenues ( )a
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Figure 2. Ancillary revenues per aircraft per month ( )a

a. Aircraft types and numbers used for the analysis: 

Ryanair: 2006 120 B  737-800 (189 seats) 

2007: 133 B 737-800 (189 seats) 

EasyJet: 2006:  87 A 319 (156 seats) 

 32 B 737 – 700 (149 seats) 

   3 B 737 - 300 (149 seats) 

2007: 107 A 319 (156 seats) 

 30 B 737 – 700 (149 seats) 

SkyEurope: 2006:  14 B 737-700 (149 seats) 

2007:  14 B 737-700 (149 seats) 

Ryanair and other carriers offer many of their flights for 
less than  10 (when booked in advance). It is interesting that 
(according to the Fig. I) ancillary revenues per passenger 
collected by Ryanair in 2007 are almost the same (  8.52) [2]. 
Average annual growth (2005-2007) of ancillary revenues 
(15% for Ryanair and more than 20% for EasyJet) shows 
potential of further increase in number of air tickets given to 
passengers for free. Although the annual growth in the case of 
SkyEurope was not so significant, results of our consultations 
with SkyEurope representatives indicates that this trend will 
change in near future and SkyEurope will follow its 
competitors. 

V. ON-BOARD ADVERTISING REVENUES AS A SIGNIFICANT 

SOURCE OF AIRLINES’ PROFIT

Some airlines provide exact figures regarding on-board 
advertising revenues in their annual reports. For example Air 
Berlin generated revenue of 1,500,000 (  0.11 per passenger) 
from advertising in its in-flight magazine in 2005. This revenue 
was slightly less than revenues from trip-insurance (  0.12 per 
passenger) and pre-assigned seats (  0.12 per passenger) [5]. 

EasyJet quantified its on-board advertising revenues up to 
55 million last year [3]. The revenue of  1.43 per passenger 
from on-board advertising makes this airline 13 times more 
successful than Air Berlin. These figures give EasyJet a 
potential for further development and reflect the fact that 
airline’s high revenues from on-board advertising and non-

ticket services are not a utopia. However, there is still the 
question if Ryanair and other low-fare carriers will be able to 
introduce no-fare business model in near future. 

It is clear that Air Berlin, EasyJet and Ryanair already offer 
free fares to its customers. One quarter of Ryanair’s passengers 
travel “for free”. It is marketing policy that says: “We are 
offering you the lowest possible fare and you don’t need to 
look for better value for your money.” 

But Ryanair’s chief executive officer Michael O’Leary 
goes even further and promises making all the flights free by 
2010. He might be slightly optimistic because his company 
generated the biggest ancillary revenues per passenger in the 
market (as for 2007 [2]) although it currently uses only four on-
board advertising channels. As shown in TABLE III, there are 
some other channels (including prices) that are not used by 
Ryanair but remain interesting for other carriers. 

VI. OPERATING COSTS PER AIRCRAFT PER MONTH

For further analysis we had to estimate monthly operating 
costs of aircraft operated by low-cost carrier. As our further 
analysis is focused mainly on SkyEurope’s and Ryanair’s 
business models, our estimation of operating costs is based on 
SkyEurope’s and Ryanair’s annual costs breakdowns and 
considers both B737-700 and B737-800 aircraft. 

In our calculation, we assume that proportion of particular 
cost items in single year time horizon (as published in airlines’ 
annual reports) is same as the proportion of particular cost 
items per block hour. If we know the proportion of particular 
cost items and value of at least one cost item, we are able to 
calculate other cost items (see TABLE II). In our calculation, 
the fuel costs were used as a baseline, as we were able to 
calculate these for each aircraft type using Eurocontrol 
BADA’s Aircraft Performance Summary Tables [10]. Needless 
to point out, that both airlines Ryanair and SkyEurope use 
single type fleets. 

TABLE II. ANNUAL COSTS PROPORTIONS [IN THOUSANDS OF ]

Ryanair [2] SkyEurope [4] 
Operating costs 

Costs Proportion Costs Proportion

Aircraft fuel 693331 39.28% 57892 22.60% 

Sales and marketing 23795 1.35% 13231 5.16% 
Maintenance, material and 
repairs 

42046 2.38% 19405 7.57% 

Staff costs 226580 12.84% 25832 10.08% 

Navigation charges 199240 11.29% 23522 9.18% 

Airport and handling charges 273613 15.50% 70477 27.51% 

Depreciation and 
amortisation 

104859 5.94% 15304 5.97% 

Aircraft rental 143503 8.13% 1488 0.58% 

Other 58183 3.30% 29029 11.33% 

Total 1765150 100.00% 256180 100.00% 
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TABLE III. : ON-BOARD ADVERTISING REVENUES ACCORDING TO CHANNELS USED BY DIFFERENT LOW-FARE AIRLINES IN 2007 ( )

Channel RYR [6] b GWI [7] b WZZ [8] b ESK [9] b Generic Airline 

Menu card    360 360 

Window application    1,500 1,500 

In-flight announcements  29,900   29,900 

Headrest covers  29,900 7,200  29,900 

Product sampling  4,000  570 4,000 

Air sickness bag    2,750 2,750 

In-flight magazine Ink Publishingc UHURAc Ink Publishingc Ink Publishingc n/a 

Exterior aircraft branding 16,700 12,500  15,000 16,700 

Meal tray table back 13,700 12,600 5,000 3,500 13,700 

Overhead bins 19,500  8,000 3,500 19,500 

Cabin crew uniforms   880 350 880 

Boarding pass  24,900   24,900 

Promotional leaflets  1,750  430 1,750 

Happy Snack Bags  6,250   6,250 

Drink Tumblers  6,250   6,250 

Napkins  6,300   6,300 

E-ticket bannerd    8,000 8,000 

Newsletter bannerd  1,100  40,000 40,000 

Booking engine bannerd  280   280 

Booking confirmation bannerd  1,080   1,080 

Potential advertising revenue 
per aircraft per month 

49,900 136,810 21,080 75,960 191,300 

b. Acronyms (according to ICAO):  RYR – Ryanair; GWI – Germanwings; WZZ – Wizz Air; ESK – SkyEurope 

c. Airlines usually use services of specialised publishers to produce their in-flight magazines. The very competitive business of these specialised publishers (e.g. Ink Publishing, UHURA) is based on production 
of in-flight magazines for airlines all over the world. Both production costs and profit of the publisher are covered by advertising in these magazines. Each airline has its own in-flight magazine which is adapted 
to its specific needs and requirements. Magazines are provided to airlines for free and usually do not generate air carriers any direct revenues.  The main purpose of in-flight magazines from airlines’ point of 
view is promotion of airlines’ services and destinations. The articles in these magazines should motivate passengers to travel with a particular airline. Production of in-flight magazines is based on „Reason to 
fly“ policy. 

The advertising revenues of in-flight magazines relates to number of passengers that can potentially read the magazines. Therefore the in-flight magazines are provided to airlines for free but airlines have to 
guarantee certain fleet size, aircraft utilisation and load factors. In the case when airlines have operational or financial problems leading to reduction of fleet size or significant decrease of load factor, the 
publishers can withdraw the contract. 

d. These channels are not considered to be on-board advertising channels however they directly relate to flying passengers. Passengers receive their e-tickets and booking confirmations after the online booking 
reservation (using booking engine) of their flights have been made. Newsletter is also of wide passengers’ attention. Electronic newsletter is distributed to more than 3 million e-mail addresses (case of 
SkyEurope).

According to last Ryanair’s annual report [2], average 
daily utilisation of its aircraft in 2007 was 13.56 block hours. 
Assuming that an average month has 30 days, the average 
monthly utilisation of one aircraft is 406.8 block hours. 

According to last SkyEurope’s annual report [4], average 
daily utilisation of its aircraft in 2007 was 10.75 block hours. 
Assuming that an average month has 30 days, the average 
monthly utilisation of one aircraft is 322.5 block hours. 

Using Eurocontrol BADA’s Aircraft Performance 
Summary Tables [10], we have estimated an average fuel 
consumption of both aircraft types considered. According to 
our estimations, fuel consumption of B737-700 is 680 US 
gallons per block hour and fuel consumption of B737-800 is 
690 US gallons per block hour. According to IATA Fuel 
Monitor website [11], the average fuel price in 2007 was 
1.56 per US gallon.  

It means that monthly fuel costs per SkyEurope’s B737-
700 are  342,108 and monthly fuel costs per Ryanair’s 
B737-800 are  437,880. 

Further calculations are based on operating cost 
breakdown as stated in the latest Ryanair’s [2] and 
SkyEurope’s [4] annual reports. Other operation costs were 
calculated considering the ratio of fuel costs and particular 
operating cost items.    

Following TABLE IV shows SkyEurope’s and Ryanair’s 
monthly operating costs per one aircraft. 
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TABLE IV. : CALCULATION OF MONTHLY OPERATING COSTS PER 
AIRCRAFT IN 2007 ( )

Operating costs Ryanair [2] SkyEurope [4]

Aircraft fuel 437,880 342,108 

Sales and marketing 15,028 78,188 

Maintenance, material and repairs 26,555 114,672 

Staff costs 143,099 152,652 

Navigation charges 125,832 139,001 

Airport and handling charges 172,803 416,478 

Depreciation and amortisation 90,631 8,793 

Aircraft rental 36,746 171,544 

Other 66,225 90,438 

Total 1,114,797 1,513,875 

According to figures from the latest annual reports [2] and 
[4], Ryanair carried 42,500,000 passengers and SkyEurope 
carried 3,312,443 passengers in 2007. Considering these 
figures, one SkyEurope’s aircraft carried 19717 passengers in 
an average per month and one Ryanair’s aircraft carried 26629 
passengers in an average per month. It means that operating 
costs per passenger amount  76.78 in case of SkyEurope and 
41.86 in case of Ryanair. 

The following TABLE V. shows potential advertising 
revenues per passenger calculated according to number of 
passengers carried by particular airlines in 2007. Analysis in 
TABLE V. refers to maximum potential of on-board 
advertising revenues but does not reflect current figures of 
advertising revenues.  

As shown in the table, there are big differences between 
potential advertising revenues per passenger as they are 
directly connected to number of passengers carried, fleet size 
and daily utilisation. Germanwings seems to be the most 
effective compared to its competitors however it carried almost 
6 times fewer passengers than Ryanair. This results from the 
fact that the number of aircraft used by Ryanair is almost 5 
times higher than number of aircraft used by Germanwings as 
well as from the fact that there is strong imbalance in number 
of on-board advertising channels used by these airlines.  

SkyEurope has started to work on identifying on-board 
advertising opportunities 6 – 9 months ago. Currently it offers 
several advertising channels not only on board of its aircraft, 
but on company’s website as well. It is anticipated that in near 
future the advertising will generate a significant portion of its 
revenues. 

There are still some advertising channels that are not used 
by particular airlines but remain interesting for others. In order 
to achieve the maximum potential of on-board advertising; 
revenue airlines could preferably use all the available 
advertising channels. This is met in our model of Generic 
Airline that virtually uses all the above listed channels. We 
have defined Generic Airline with a view to analyse the 
maximum potential of all currently known advertising channels 
taking into account that these would be used by one airline. As 
channels are considered to be sold at their maximum market 

prices (according to the analysed air carriers’ price lists), the 
highest possible advertising revenues can be achieved.  

Taking into account the available data, number of 
passengers per month per aircraft for the Generic Airline was 
calculated as an average of Ryanair’s, SkyEurope’s, Wizz Air’s 
and Germanwing’s figures. 

TABLE V. : ESTIMATION OF POTENTIAL ADVERTISING REVENUES PER 
PASSENGER ( )

RYR [2] GWI [7] WZZ [8] ESK [4] Generic 
Airline 

Number of 
passengers in 
2007 

42,500000 7,090000 3,000000 3,312443 n/a 

Fleet (number of 
aircraft) in 2007  

133 27 15 14 n/a 

Number of 
passengers per 
aircraft per month 

26,629 21,883 16,667 19,717 21,224 

Potential 
advertising 
revenue per 
aircraft per month  

49,900 136,810 21,080 75,960 191,300 

Potential 
advertising 
revenue per 
passenger   

1.87 6.25 1.27 3.85 9.01 

VII. CONCLUSIONS AND OBSERVATIONS

A. Generic airline potential 

The aim of our analysis was to assess current situation in 
advertising revenues that are generated by airlines. We also put 
emphasis on potential advertising revenues estimation.  

Based on our calculations (see TABLE II.), operating costs 
per passenger amount  76.78 in case of SkyEurope and 
41.86 in case of Ryanair. TABLE IV shows that our Generic 
Airline (using all advertising channels sold for the maximum 
market prices) generates slightly more than  9 potential 
revenue per passenger. This means that advertising revenues of 
Generic Airline could possibly cover up to 12 % of current 
SkyEurope’s operating costs per passenger (as referred in 
TABLE II.) respectively up to 22 % of current Ryanair´s 
operating costs per passenger (as referred in TABLE II.).  

Although it seems that our Generic Airline does not have a 
potential to generate advertising revenues big enough to cover 
the total operating costs of typical low-fare airline, there are at 
least two more sources of airlines’ revenues. These sources 
relate to on-board marketing and airlines qualify them as listing 
and marketing fees for goods sold on-board aircraft (in case of 
SkyEurope listing fees are  2,000 per product per year and 
marketing fees  5,000 per product per year). In case of 
SkyEurope, on-board marketing generates inconsiderable 
revenues. There are also some airlines selling their flight 
timetables for advertising purposes. 

B. Risk analysis 

From our point of view we have identified two main risks 
resulting from airline’s business being dependant on revenues 
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from advertising. Once the model of no-fare airline is 
introduced airline may possibly face the rapidly changing 
demographic and social structure of its passengers. This can 
lead to the fact that price sensitive airline customers will no 
more be attractive market for advertisers.  

There is one more risk that we have identified. Once the 
airline is dependent on revenues from on-board advertising the 
airline has to guarantee certain fleet utilisation as well as 
certain load factors. If there is a crisis in the air transport 
market (as the one after September 2001), the airline won’t be 
able to fulfill the above mentioned conditions that are usually 
specified in the contract between carrier and advertisers. This 
can finally lead to loss of advertising revenues and 
consequently to worse airline’s financial situation. 

VIII. FUTURE OF ON-BOARD ADVERTISING

If 12 % of SkyEurope’s operating costs per passenger 
respectively up to 22 % of Ryanair´s operating costs per 
passenger can be covered by existing advertising channels 
imagine that airlines used more channels of advertising and 
revenues in near future? 

One channel which could help airlines to cover the 
operating costs from the advertising revenues is the in-flight 
entertainment (IFE) system. IFE is considered to be the future 
channel for advertising. IFE with personal LCD screens at 
every seat has always been a domain of long-haul wide-body 
aircraft. The passengers on single-aisle aircraft had to be 
satisfied with drop-down LCD screens or ceiling mounted CRT 
(Cathode Ray Tube) screens. However, the development of IFE 
systems goes further and some airlines, such as West Jet and 
Delta Airlines have already equipped their narrow body aircraft 
with personal screens on every seat. It is anticipated that 
development of new technologies like Electronic Paper Display 
(very light, very thin, flexible paper-like display with ultra-low 
power consumption) will make personal IFE systems very 
attractive for single-aisle aircraft [12]. 

Finally, it can be admitted that transformation of low-fare 
airlines to the no-fare business model is possible; partly thanks 
to on-board advertising revenues as well as increased prices of 
non-ticket services (including e.g. checked baggage fees, 
check-in fees and priority boarding fees). Such kind of 
transformation can only be expected in case of having a large 
fleet airline with sufficient aircraft utilisation and load factor. 
On the other hand, we are aware that utilisation of all the 
available ancillary revenues sources would generate significant 
investment costs as well as would lead to an increase of the 
operating costs. However, we anticipate that investments in 
future advertising channels will bring airlines continuous 
income. 

Nevertheless, the introduction of the no-fare business 
model can lead to a significant change in airlines passenger 
demographic mix, which can potentially have a very negative 
impact on airlines attractiveness for the advertising market. 

There are certainly many different scenarios how the LCC 
market strategy will evolve. We don’t pretend that on-board 
advertisement will turn round the market and bring free flying. 
However, the income from on-board advertisement can be a 

contribution to further reduction of cost of travel and can 
expand the air travel market to new potential passenger who 
would not fly at all.  

As already mentioned till this time the airline companies 
focused on additional financial sources closely related to the air 
travel (insurance, car rental, hotel accommodation etc.). The 
reason why the income form adverts was not used in larger 
extent yet is that it is completely different business and airlines 
don’t have necessary know – how. With respect to this most 
airlines can sell the on-board advert capacity to specialised 
companies. However, to be able to maximise their profit they 
must be able to specify the advertising potential. Our paper 
could contribute to this.  

IX. FUTURE WORK

Our initial research revealed both, the great potential of on-
board advertising and several issues that will be addressed in 
our future research.  

To be able to proceed further we will develop economical 
model that should allow us to perform demand sensitivity 
analysis as well as detailed what-if analysis. Our current work 
is focussing on various simulation scenarios that define various 
levels of airline’s business dependency on on-board advertising 
revenues. The main aim of our research is to find ideal 
equilibrium between on-board advertising revenues and other 
sources of income considering various airline business models.  
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Abstract—In this paper we analyze an incentive scheme 

based on air navigation service charges modulation that 

could help in reducing ATFM delays, inducing users to 

make a better and more uniform use of capacity, especially 

in those situations in which the distribution of traffic is 

known to be non homogeneous. A first experiment 

indicates the feasibility of implementing such a system and 

further investigations and refinements of the model are 

going to be performed in the next future.

Keywords: En-route charges, Air navigation service 

charges; Incentive schemes; ATFM delays.

I. INTRODUCTION

Air transport is a key element for the world’s prosperous 
evolution and represents a major pillar of its economy, as it
sustains local national economies, global trade and tourism. In 
2005 European Commission stated that “Air transport 
contributes €220 billion to European gross domestic product 
and employs 3.1 million people. It is also an important aspect 
of European cohesion ensuring the rapid and efficient 
movement of people and goods, but also providing essential 
access to remote region”[1].

In 2006 the EUROCONTROL Central Flow Management 
Unit (CFMU) recorded 9.6 million IFR movements in the 
European skies, which represent an increase of 4.1% with 
respect to the previous year and this trend is expected to 
continue in next years, reaching a total number between 15.5 
and 18.9 million IFR flight movements in the
EUROCONTROL Statistical Reference Area (ESRA) by 2025
[2].

Unfortunately these growth figures are coupled with a 
worsening in the performances of the whole system. During 
2006 overall punctuality deteriorated for the third consecutive 
year (21.4% of flights arrived late in 2006, while they were 
17.2% in 2003).

Part of these delays is due to ATFM measures. In fact when 
traffic demand is anticipated to exceed the available capacity in 
en-route control centers or at an airport, ATC units may call for 
“ATFM regulations” and all the aircrafts subject to ATFM 

regulations are held at the departure airport according to 
“ATFM slots” allocated by the CFMU. The ATFM delay of a 
given flight is consequence of the most constraining regulation 
applied either at one airport or over an en-route sector along its 
route. This imbalance between traffic demand and available 
capacity and resulting ATFM delays can have various ATM-
related (staffing, etc.) and non-ATM related reasons (weather, 
airport scheduling, etc.).

Total number of minutes of delay caused by en-route 
ATFM measures has increased by 15% in 2006 and represents 
the majority of ATFM delays (56%). The average en-route 
ATFM delay increased from 1.3 minutes to 1.4 minutes per 
flight in 2006, meaning that the goal of 1 min/flight is still far 
to be achieved [3].

ATM has currently no mandate and limited scope to help 
improve punctuality and predictability, hence the opportunity 
of added value from ATM in air transport is currently 
underexploited.

In this paper we propose some possible incentive schemes
based on en-route charges modulation that could help in 
reducing ATFM delays, inducing users to make a better and 
more uniform use of capacity, especially in those situations in 
which the distribution of traffic is known to be non 
homogeneous. We maintain consistency with the current 
charging regulations and do not propose new rules conversely 
to what proposed by [4]. Congestion pricing is widely viewed 
by economists as the most efficient mean to alleviate traffic 
congestion and to influence travelers’ choice of route and 
travel mode. The traditional congestion prices policies are 
mainly based on a congestion toll imposed on each user which 
equals the external cost of congestion caused by the user on 
the system [5], [6], [7]. In economical terms the congestion 
toll objective is to make the user internalize the external cost 
caused by its own exploitation of the resource, which can be 
estimated for instance through the use of empirical data or 
with queuing theory [8].

Our approach differs from the traditional one, since we try 
to make the local objective of a selfish profit maximizing user 
coincide with the global objective of achieving the minimum 
total delay at system level. To achieve this goal we propose to 
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provide to those users who contribute to improve the global 
efficiency (by modifying their demand) an incentive which 
offsets the increase of their cost.

A first preliminary simulation run on an actual operating 
environment has shown the potential offered by this system in 
consistently reducing global delay, with minor changes in 
flight paths. Further investigations and validation of the model 
are currently underway.

The remainder of this work is organized as follows. Section 
2 gives a brief description of the European charging system. 
Section 3 describes the principles of re-routing aircraft to 
enhance capacity, while in Section 4 we propose two possible 
scenarios of implementation of an incentive scheme. Section 5
summarizes the conclusions.

II. THE EUROPEAN CHARGING SYSTEM

Current ATC service in Europe finances its operations by 
adequately charging airspace users in accordance with EC 
Regulation 1794/2006, which came into force on the 1st

January 2007, laying down a common charging scheme for air 
navigation services (‘the Regulation’) [9]. Air navigation 
service charges are composed of en-route and terminal charges 
due to the provision of air navigation services for the en-route
and terminal segments of the flight, respectively. In particular, 
the en-route charge r for a specific flight in a specific en-route

charging zone is equal to rr d p t , where d is the distance 

factor, pr is the en-route weight factor of the aircraft and t is the 
en-route unit rate of the en-route charging zone. A “charging 
zone” is defined as a volume of airspace for which a single cost 
base and a single unit rate are established. So far charging 
zones coincide with national boundaries, each under the control 
of an ANSP establishing its own cost base and unit rate. 
Nevertheless the Regulation states that a charging zone can be 
set regardless of national boundaries. The product of the 
distance and weight factors is referred to as en-route Service 
Unit (SU), i.e. 

rSU d p . These parameters are calculated as 

follows:

d is the distance factor and is obtained by dividing by 
one hundred the number of kilometers flown in the 
great circle distance between entry and exit point of the 
en-route charging zone, according to the latest known 
flight plan filed by the aircraft operator. The distance 
to be taken into account is to be reduced by twenty 
kilometers for each take-off and each landing on the 
territory of a Member State.

50rp MTOW , i.e., the en-route weight factor is 

equal to the square root of the quotient obtained by 
dividing by fifty the number of metric tons in the 
maximum certificated take-off weight (MTOW) of the 
aircraft.

t is the unit rate for the en-route charging zone.

In all Contracting States except United Kingdom (which 
adopts a price cap mechanism), the unit rate is based on the 
Full Cost Recovery (FCR) principle stating that all en-route
costs for ANS regulatory and supervisory functions are fully 

recovered through en-route charges. When the full cost 
recovery principle applies, the en-route unit rate is calculated 
by dividing the forecasted chargeable costs for providing en-
route air navigation services by the forecast number of 
chargeable en-route service units for the relevant year. The 
balance resulting from under or over recovery of previous 
years is included in the forecast costs. The amount R of en-
route charges due for a flight through states 1,…,n is equal to

1

n

i

i

R r (1)

where ri is the amount due to the i-th ANSP for the en-
route air navigation services provided, i.e.,

50
i i i i i

MTOW
r d t SU t (2)

Unit rates are set for each charging zone on an annual basis 
and can be modified during the course of the year only if 
unexpected major changes in traffic or costs occur (Article 13 
of the Regulation).

Besides the new definition of charging zone, independent 
from national boundaries, another major innovation introduced 
by the Regulation is the first opening to incentive schemes 
based on en-route charges:

“Member States may establish or approve incentive 
schemes consisting of financial advantages or disadvantages 
applied on a non-discriminatory and transparent […] resulting 
in a different calculation of charges […] When a Member State 
decides to apply an incentive scheme […] in respect of users of 
air navigation services  it shall, […], modulate charges incurred 
by them in order to reflect efforts made by these users to 
optimize the use of air navigation services, to reduce the 
overall costs of these services and to increase their efficiency, 
in particular by decreasing charges according to airborne 
equipment that increases capacity or to offsetting the 
inconvenience of choosing less congested routings.” [9]

This new distinctive feature provides ANSPs with an 
operational instrument to exert some demand management 
which could help in dealing with the congestion problems
systematically faced by them.

III. RE-ROUTING TO REDUCE AIRSPACE DELAYS

From an airline perspective en-route charges constitute a 
direct operating cost associated with the execution of the flight. 
In fact the direct operating costs of an airline can be divided 
into flight operations, maintenance and depreciation, where 
“flight operations” category generally comprehends three main 
sources of cost [10]:

flight crew;

fuel and oil;

airport, terminal and en-route charges.

The delay also constitutes a cost for Aircraft Operators
(AOs) and its unit value can widely vary depending on the type 
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of aircraft, the type of delay and the total amount of delay 
experienced by a particular flight. The cost of delay has been 
deeply investigated by [11]. According to the direct operating
cost-breakdown we can assume that an airline that decides to 
re-route a particular flight performing a longer route then the 
originally planned one, will experience in general higher fuel 
costs, while route-charges costs may increase, decrease or 
remain constant depending on the new entry and exit points of 
the charging zones overflown. The flight crew cost, expressed 
on a time rather than on a distance basis, can be included in the 
cost of delay, according to the methodology adopted in [11].

Thus a flight delayed by an ATFM regulation will 
experience a delay cost that may be higher than the cost of re-
routing depending on the entity of the delay and the deviation 
of the re-routed path from the original one. On the other hand, 
the non homogeneous distribution of traffic in Europe can 
create as a consequence that different sectors of the same 
ANSP experience opposite congestion problems: one regulated 
and the contiguous one with spare capacity, thus implying that 
a limited rerouting action could make a flight avoiding the 
regulated sector and respecting its original time schedule. But 
which is the amount of delay that triggers the convenience 
point for an AO to re-route and what are the consequences that 
this re-routed flight generates on the system? We want to 
obtain some numerical figures that answer to these questions.

The idea is to identify a situation where 2 contiguous traffic 
volumes (TVs) have different accommodation capabilities: the 
first is affected by a regulation, meaning that the demand to 
flight over it exceeds its capacity, and the second without any 
active regulation, meaning that there is still spare capacity 
offered to users. We identified this particular situation in the 2
traffic volumes (LIPPNUX and LIPPSUX) under the control of 
Padova ACC, in Italy (See fig.1). In the period from 6 July to 2 
August 2006 (corresponding to AIRAC1 284), the traffic 
volume of LIPPNUX was often affected by a regulation for 
ATC capacity reasons (see Fig. 2), limiting the maximum 
number of flights to 42-47 per hour, according to the different 
regulations. During the same period no regulations were 
registered on the contiguous traffic volume LIPPSUX. As one 
can see, during this particular period the call of a regulation on 
LIPPNUX is exercised almost on a daily basis, while for 
LIPPSUX there is no regulation in place. This means that the 
excess of demand over capacity systematically verifies, so this 
situation could be predicted with reasonable accuracy in the 
pre-tactical phase.

We reduced the scope of our analysis to a single day, 16
July 2006, when a regulation over LIPPNUX was capping the 
maximum number of flights to 44 per hour from 7.20AM to 
14.30PM. With COOSAC2 tool we identified that during the 
activation of this regulation 321 flights passed through 
LIPPNUX, 157 of them suffered a delay and the regulation

                                                          
1

AIRAC (Aeronautical Information Regulation And Control) defines a series 
of common dates and an associated standard aeronautical information 
publication procedure for States. Each cycle lasts 28 days, always starting on 
Thursday.
2

COSAAC is a tool initially developed at CENA, used to assess ATFM 
concepts such as flexible use of airspace and ATFM delays.

active on LIPPNUX was the most penalizing one for 100 
among them.

Figure 1. LIPPNUX and LIPPSUX traffic volumes.

Figure 2. Regulations activated on LIPPNUX during the reference period.

We analyzed the FPLs corresponding to these 100 flights, 
as recorded by CFMU, and we identified that the option of re-
routing through LIPPSUX, in order to avoid LIPPNUX,
actually existed for just 2 among them, although this option 
was not chosen. Hereafter we will refer these 2 flights, 
respectively as AZA and SWR, according to the code of their 
operator. For all the other flights in the set, the re-routing 
option was either unfeasible or leading to an excessive 
extension of the trajectory, so we considered them as fixed.

     Table I reports the direct operating costs associated with 
both AZA and SWR flights, where the cost of delay has been 
considered equal to 1 €/min according to [10] and the cost of 
jet fuel was fixed at 0.53 €/l according to the figures provided 
by IATA [12]. For each flight the fuel consumption was 
calculated according to the nominal performances reported by 
BADA model for the different types of aircraft [13]. Table I
shows that both AZA and SWR chose the cheapest option in 
the original scenario, even if the cost of delay was included in 
it. Their delay was in fact just 17 and 12 minutes respectively, 
meaning that the cost associated with it was relatively small 
and the switch to a conditional route would have represented a 
less convenient option. Nevertheless the figures in Table II
show that benefits accruing from a re-routing are larger if 
considered from a global traffic volume perspective than for 
the single flight.
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TABLE I. DIRECT OPERATING COSTS OF THE SELECTED FLIGHTS

Route

Callsign

(first 3 

chars)

Dist

(NM)

En-

route

charge

Cost

Fuel

Cost

Delay

Cost

Total

Cost

AZA 458 281 1409 17 1707
original

SWR 746 982 5054 12 6049

AZA 467 305 1436 0 1740
rerouted

SWR 772 1016 5230 0 6246

 All values in €

TABLE II. EFFECTS OF RE-ROUTING

Actual

values on 

LIPPNUX

Values on 

LIPPNUX 

with AZA

re-routed

Values on 

LIPPNUX 

with SWR

re-routed

Values on 

LIPPNUX 

with AZA

and SWR 

 re-routed

N° Flights 321 320 320 319

N° flights
Delayed 

157 147 147 141

Total sector 
delay

(mins.)
1795 1683 1696 1619

Delay
difference

(mins.)
/ -112 -99 -176

Source: COSAAC

A total reduction of 112 minutes is expected on the whole 
LIPPNUX TV if AZA re-routes through LIPPSUX, 99 minutes 
if SWR re-routes and 176 if both re-route.

The function that links the delay of the sector to the delay 
of a single flight is nonlinear and this fact means that the 
penalties suffered locally by the airline for re-routing its flight 
are more than compensated globally by the enhanced 
conditions that it allows in the airspace.

In the case that a reduction in the en-route charge cost 
would be offered to them, the re-routing could eventually 
represent the most convenient option and induce them to 
release their en-route ATFM slots over LIPPNUX, thus leading
to a more than proportional benefit for the remaining traffic.

In the following, we estimate the reduction in route charges 
that has to be offered to these particular users in order to make 
profitable to them to re-route their flights.

IV. TWO CONGESTION PRICING SCHEMES

A. Each traffic volume as a different charging zone

The first proposed incentive scheme is based on the 
creation of two different charging zones each corresponding to 
a different traffic volume. Hence each traffic volume has its 
own unit rate associated. According to the formula for en-route

charge calculation, dividing a charging zone in several smaller 
ones represents a general higher cost for users, since the 
distance factor would be calculated according to the great circle 
distance between entry and exit points of each charging zone
rather than between the entry and exit points of the unique one 
(see Figure 3).

Figure 3. Distance factors under the different scenario

To determine the unit rate threshold values that make it 
convenient for each flight to re-route, we built the cost function 
associated to each route. Than we equalized the cost function 
relative to the original FPL to the one associated with the re-
routed one and we obtained a new linear function linking the 
unit rate on LIPPNUX with the unit rate on LIPPSUX. By 
assuming that the direct cost of operating a flight is equal to the 
sum of delay costs, en-route charges and fuel, it follows that:

CdO+CrO+CfO = CdR+CrR+CfR (3)

where d refers to as the cost of delay, r to as the cost due to 
en-route charges, f to as the cost of fuel. The subscript O refers 
to as the original FPL and R to the re-routed one.
In accordance with Equations (1) and (2), and with little
algebra, it follows that 

LIPPSUXLIPPNUX tbat               (4)

where

LIPPNUX

LIPPSUXi LIPPNUXi

fO
i
rOdOfR

i
rRdR

SU

cccccc

a

and
LIPPNUX

LIPPSUX

SU

SU
b .

For each flight we have thus determined the indifference 
curve, a straight line with slope b and intercept a, formed by 
that pairs of unit rate values, according to which the 2 options 
of re-routing and maintaining the original trajectory, are 
equally preferred by the user as they imply the same direct 
operating cost (see Fig.4).
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Figure 4. Unit rate values scenario A

For each flight the correspondent function divides the plane 
into 2 regions, one in which each pair of unit rate values make 
it cheaper to fly according to the original route and the other 
containing the pairs of values that make it convenient to fly the 
re-routed one. We thus defined a total of 4 different regions, 
identified as A,B,C and D in Figure 4. According to the region 
in which the pair of values is chosen, the flights will be induced 
to re-route or to maintain the original flights, in order to 
comply with capacity constraints also on the other sectors. For 
instance unit rate values in region A would not promote re-
routing by any of the two flights, whereas points in region C 
would foster re-routing for both flights.

The points on one line correspond to those unit rate pair of 
values that equal the cost of performing the original route and 
the cost associated to the modified one. 

For example, considering that the Italian unit rate for the 
sample period was fixed at 67.67 €, the increase of LIPPNUX 
unit rate to 90€ and the decrease of LIPPSUX unit rate to 40€ 
triggers the convenience point for AZA to re-route but not for 
SWR, whereas 155€ and 60€ values would drive both to re-
route.

If we decide to maintain the unit rate of LIPPNUX equal to 
the reference national unit rate at 67.67 €, LIPPSUX unit rate 
value that makes it cheaper the re-route has to decrease until 
54.45 € for the AZA, and to inadmissible negative value for 
SWR. Otherwise if we would charge a sort of congestion toll 
on LIPPNUX, leaving the original unit rate on LIPPSUX
unchanged, we should rise LIPPNUX unit rate up to 88.50 € 
before AZA prefers to re-route and up to 122.50 € before both 
AZA and SWR prefers to re-route.

Even though the impact on total delay is straightforward, 
these results show that re-routing is achieved by means of 
really high en-route unit rate values, thus limiting the 
feasibility of such approach. Previous studies as [14] also 
claim that “Even if route charges were an important 
component of airline operating costs they can hardly be used 
as the sole means of demand management without being 
associated with any other incentive like punctuality”. In 
addition, with the implementation of this incentive scheme, 
the flights which maintain their planned FPL on LIPPNUX 
have to pay a higher amount of en-route charges due to the 

changes in the unit rate values. This situation could be 
considered as unfair because users would generally pay more 
for receiving the same ATC services during the execution of 
their flight. On the other hand this surcharge could be 
considered as a charge on the externality cost they generate in 
exploiting a limited resource like capacity. In any case, it is 
still a challenging issue to mathematically model the impact of 
such new charges on the route choices of all the TV users.

B. A different unit rate per flight

Another way of implementing the incentive scheme would 
be to maintain the charging zones as they are defined in the 
actual situation (e.g. one single charging zone for Italian FIR) 
and proposing a discount in en-route charges amounts to all the 
fights that decide to re-route in order to avoid a congested 
sector (e.g. LIPPNUX). Anyway this would eventually lead to 
a less controllable behavior of the AOs since a flight that 
performs most of its flight on Italy would prefer to re-route in 
order to pay less not only in the contingency sector (i.e. 
LIPPSUX), but during all the execution of the flight within the 
national FIR. Under this scenario the link functions between 
unit rate values modify, and they are reported in Figure 5. With 
little algebra from Equation (3), for each flight the formula for 
calculating the unit rate under this incentive scheme B is the 
following:

1I i

LI do rO fO dR rR fRI
i LILI

t c c c c c c
SU

(5)

where LI refers to the  Italian airspace under consideration.

Figure 5. Unit rate values scenario B

Under this second implementation scenario, given the 
reference national unit rate value at 67.67€, this value should 
be discounted to 57.07 € and 51.20 € to induce respectively 
AZA and SWR to re-route in order to avoid the congested 
airspace. These values are slightly higher than the ones found
under scenario A, because now the discount offered to the AOs 
would be applied along the whole route segment internal to 
Italy and not only on the LIPPSUX segment.

This scenario could be seen by users as fairer as it does not 
introduce penalization for flights which does not re-route, but 
just a benefit to the cooperating AOs, which decide to re-route 
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their flight to enhance the global situation. On the other hand 
the ANSP would experience a loss of income since the lower 
charge collected from the two flights would not be 
counterbalanced by a higher cost imposed on other users.

To ensure a balance between ANSP experienced cost and 
revenues, the Full Cost Recovery principle could provide a 
solution, just as in the present system. Any gap between the 
actual costs of ANSP and its income would be treated exactly 
as today when establishing the national unit rate, including it as 
an under-recovery in the formula, thus sharing the cost of the 
incentive among all users who can potentially experience the 
benefits of its implementation.

The ANSP would be responsible for the adoption of such 
an incentive scheme, establishing in advance its form of 
implementation and the related unit rate modulation, in order to 
allow the users to schedule in advance their flight according to 
the chosen scheme.

V. CONCLUSIONS

We have assessed 2 different potential implementations of 
an incentive scheme, whose objective is to drive users in 
making a better usage of capacity resource from a system 
perspective, by reconciling the single user objective (the 
minimum cost) with a global one (the minimum total delay). 
The very first results obtained from a simulation based on a 
real traffic sample indicate the potential of such a system, 
which can notably reduce the delay on a specific sector by 
rerouting a very few number of flights. We assume that the re-
route action can not be imposed by a central authority but has 
to be induced through a modulation of en-route charges amount 
that each user has to pay for the air traffic services it receives.

En-route charges can be modulated to provide a demand 
management tool both from a legislative perspective, as this is 
permitted by the Regulation, and from an operative one, as 
indicated by the simulation results.

Implementation scenario A represents a finest tool to drive 
the demand according to the global objective of minimum 
delay, as the decomposition of a larger charging zone into 
smaller ones allow to better control the behaviour of single 
users and to closely bind the unit rate of a TV with its level of 
traffic. Nevertheless it would require some major changes with 
respect to the present charging system which, though compliant 
with the Regulation, could give rise to some objections from 
users about equity and cost effectiveness. On the other hand the 
implementation scenario B requires only minor changes to the 
present system but could eventually lead to less deterministic 
responses of users’ behaviour as well as less cost reflectivity.

Other implementation scenarios and their impact on 
stakeholders deserve further study, especially the assessment of 
the consequences of the scheme on the Full Cost Recovery 
principle and the estimation of the non-linear function that 
links the presence of an aircraft with the total ATFM-delay of 
the sector.
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Abstract - In this paper, we address the problem of making 

inferences about a population of infrastructure facilities from a 

subset that is a biased sample. We consider the case in which the 

sample is biased towards facilities in worse condition or requiring 

more expensive repair. Two methods are developed that incorporate 

a model of the process through which the sample is selected. One of 

the methods is based on well-known truncated distributions, 

whereas the other assumes that the bias operates continuously. The 

methods are applied to a class of facilities under the FAA’s 

jurisdiction known as “un-staffed facilities.” These consist of 

structures housing radars, navigation aids, radio beacons, and other 

ground-based equipment, and no previous system-wide evaluation 

has been attempted for these facilities. We present and discuss the 

estimates obtained from both the methods, and examine their 

goodness-of-fit with the sample. Given the premise that bias exists, 

the continuous bias model proved more suitable. However, the 

continuous bias model did not surpass the truncation models in 

terms of goodness-of-fit.  

I. INTRODUCTION

Infrastructure maintenance and repair decisions, along with 
supporting budgets, are based on data about facility condition, 
cost factors, and budgetary constraints. In some infrastructure 
systems, comprehensive condition surveys are done periodically. 
In other systems, condition surveys over the entire population of 
facilities are not done. Reasons for this can include excessive 
cost, accessibility constraints, and a reactive “fix it when it 
breaks” approach to infrastructure management. But even in such 
cases, there may be partial data (of a subset of the population) on 
condition, replacement or repair needs, and associated costs. 
With adequate knowledge about the procedure used to gather 
such data, reasonable extrapolations can be made about the entire 
population. 

In this paper, we address such a problem of making 
inferences about a population of infrastructure facilities from data 
for a sample of them. The unique aspect of the problem is that the 
sample is biased in a particular fashion. Specifically, we consider 
the case in which the sample of facilities is biased toward 
facilities in worse condition or requiring more expensive repair 
(or even replacement). Such a bias may exist for a variety of 
reasons. For example, if the infrastructure manager is accustomed 

to budgets that are insufficient to bring all facilities to “like-new” 
condition, it will reasonably focus its condition-monitoring 
resources on the more “urgent” and “expensive” facilities.  

We develop a method to address such a bias in the sample. 
The method incorporates a model of the process by which the 
sample is selected. We then demonstrate this method for a case 
study, which is a set of Air Traffic Control (ATC) facilities 
operated by the Federal Aviation Administration (FAA). The 
contributions of this paper are two-fold. First, we develop a 
method for utilizing biased sample data to derive information 
about the entire population. The kind of bias treated here is 
generic and may be encountered in a wide variety of situations. 
Second, we apply this method to a class of facilities under the 
FAA’s jurisdiction, known as “un-staffed facilities” and 
consisting of structures housing radars, navigation aids, radio 
beacons, and other ground-based equipment, for which no 
previous system-wide evaluation has been attempted. FAA has 
identified such a comprehensive un-staffed facility evaluation as 
critical to the ongoing re-structuring of its infrastructure assets 
[1].  

The rest of this paper is organized as follows. We first 
motivate and state the problem. We then identify a possible 
method for addressing the problem derived from previous 
literature, and discuss its shortcomings. We next propose more 
innovative and appropriate methods, followed by a description of 
the case study. We then apply the alternative methods to several 
different classes of FAA un-staffed facilities, compare their 
results, and demonstrate the advantages of our proposed method.   

II. PROBLEM STATEMENT AND MOTIVATION

Consider a system of diverse infrastructure facilities spread 
over a wide region, managed by a government or private agency. 
The periodic allocation of maintenance and replacement funds to 
facilities is based, at least in part, on information about facility 
condition. The specific information provided is the cost of 
bringing a subset of facilities to “like new” state. Only a subset of 
facilities is included because it is not feasible (or even desirable) 
to bring all facilities to such a state, and the cost of developing 
the information of any given facility in non-negligible. Finally 
assume that agency policy is to prioritize maintenance and repair 
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activities on facilities in the worst condition, and thus with the 
highest restoration costs, there being a strong correlation between 
poor condition and high restoration cost. 

Given these circumstances, it is reasonable to suppose that the 
subset of facilities for which cost information is provided will not 
be representative of the entire set, but rather be skewed towards 
those in the poorest condition. These cost estimates provided for 
a given class of facility can be treated as a sample of the 
population, but it is a biased sample in which facilities in a poor 
condition (and thus with higher restoration costs) are more likely 
to be included.  

Suppose now that the agency wishes to use restoration cost 
data from these biased samples to estimate properties of the 
populations from which they are drawn. These properties might 
include the cost of restoring all facilities to “like-new” condition, 
or the probability distribution of these costs for individual facility 
types. There may be various motivations for this, including 
internal “budget drills” or the wish to publicly document the 
extent to which maintenance budget is “under-funded.” Whatever 
the reason, and irrespective of its validity, the technical problem 
is to use available data for a purpose it was not originally 
intended for, and hence is imperfectly suited. Our aim is to 
investigate how to do this. 

Let us now formalize the above problem. Let X  be a random 
variable that is the cost of bringing a given type of facility to 
“like-new” condition. Suppose there are N facilities of this type, 
and that we have cost information for  of these facilities. Let 

 be the probability that facility i is included in 
the sample, and suppose that  depends on  the value of  for 
facility . Further, assume that the function  is 
positive monotonic; more specific assumptions about the function 
will be discussed below. Given our sample data , our 
objective is to estimate the probability density function (PDF) for 

, .

III. ALTERNATIVE APPROACHES

We now present three approaches to this estimation problem. 
The main difference between them is the specific assumptions we 
make about the function .

A.   Truncation Models 

The most basic approach for modeling this kind of data is to 
assume that the sample is a truncated sample, with truncation 
point being . Thus, we assume in this case that the cost data is 
drawn from the set of facilities whose restoration cost is above a.
Given this assumption, a truncated distribution function can be 
constructed from the probability density function (PDF) and 
cumulative distribution function (CDF). Thus, if is the 
PDF of the un-truncated distribution and is the cumulative 
distribution function (CDF), the density of the truncated random 
variable can be written as [2]: 

(1)

Along with the parameters of , the truncation point 
will also be an unknown parameter to be estimated. The 
estimation of  is subject to the constraint that , where 
is the lowest value in the sample. The likelihood function for this 
approach can be written as  

(2)

For estimation of this model, it can be shown that the 
constraint  is binding (proof is included in appendix 1). 
Thus, the truncation point would be the lowest value in the 
sample, and estimation involves determining the parameters of 

 only.  

The above approach employs the cost data only. In most 
cases, the total number of facilities, including those without cost 
data, is also known. This information can be used in the 
estimation process. In order to do so, we must make an 
assumption about the process that determines whether or not a 
given facility appears in the sample. Two assumptions may be 
considered. First, we can assume that all of the facilities whose 
cost is above a are included. In this case, we know that if a 
facility is excluded, its cost must be below a. This yields the 
likelihood function: 

(3)

where  be the set of facilities in the sample, and  is the entire 
set, with . Again, the estimation of  is subject to the 
constraint that , where  is the lowest value in the 
sample. Using arguments similar to appendix 1, it can be easily 
seen that this constraint is binding. We call this approach 
truncation with complete sampling (TWCS). 

Alternatively, we can assume that the data represents only a 
fraction of the facilities whose restoration cost is greater than the 
truncation value. This sampling fraction thus becomes an 
additional parameter to be estimated, along with the truncation 
point and the parameters of . In effect, we assume that the 
facilities are initially screened to eliminate those whose 
restoration cost is less than a, and that a fraction p of the 
remaining facilities are included in the sample. The process could 
also begin by choosing a sample from all the facilities, and then 
eliminating from that sample those with a cost below a. The 
likelihood function is the same regardless of the sequence, but is 
most intuitively expressed if it is assumed that the initial sample 
includes all the facilities. It is given by: 

(4)
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The first product is for facilities not in the sample, either 
because they were initially sampled and had a cost less than a, or 
because they were not initially chosen for the sample. The second 
product corresponds to facilities in the sample. Note that when 

, this model reduces to the previous one. As before, 
estimation of  is subject to the constraint that , and using 
arguments similar to appendix 1, it can be seen that this 
constraint is binding. We call this approach truncation with 
incomplete sampling (TWIS). 

Both of these models have an important limitation. The bias 
toward facilities with higher restoration costs takes the form of 
rule that simply excludes facilities with costs below a certain 
value. The data is treated as an unbiased sample of those facilities 
that pass the cost test. A more plausible assumption is that the 
bias operates continuously: the higher the cost, the more likely 
the facility will be included. This is the basis for the next set of 
models. 

B.  Continuous Bias Models 

These models assume that as facility repair cost increases, the 
probability of the facility being included in the data increases in a 
continuous fashion. These may be no absolute minimum cost, but 
facilities with low repair costs are very unlikely to be sampled. In 
the previous truncation based models, we modeled this selection 
as a constant probability, p, for all facilities with repair cost 
above the minimum value. Now selection is modeled as a 
monotonically increasing function of the repair cost. 

Perhaps the simplest such model is that the selection 
probability is a linear function of the repair cost, with the 
probability being zero for the lowest repair cost in the sample, 
and 1 for highest. Formally, if  and  be the lowest and 
highest values in the sample respectively, the probability of 
inclusion in the sample is: 

(5)

In this case, the likelihood function can be written as: 

(6)

The first product term covers the facilities that are not 
included in the sample, and the second term gives the 
contribution of the sample in the likelihood function. The integral 

 is the probability that a facility is selected. The 
likelihood maximization should yield a result such that 

 nearly equal to the ratio of sample to 
population. 

The advantage of the above method of linearly increasing 
probability is the ease of estimation. Equation (5) gives a pre-
determined probability for each data point in the sample, and 

there are no added parameters to be estimated besides the 
underlying distribution. This stems from the linear relationship 
and assigning probability values to the largest and smallest data-
points. However, these assumptions themselves are a 
shortcoming of the above approach. This is because firstly, the 
relationship need not be linear, and secondly, even if the 
relationship is linear, determining the parameters of the linear 
relationship by assigning probabilities to smallest and largest 
values is restrictive. A more refined approach is to estimate the 
parameters of the sample selection model along with those of the 
cost distribution.   

As stated earlier, the functional form used to model sample 
selection should be positive monotonic, since the selection is 
skewed towards higher values. Further, for the ease of estimation, 
the function should preferably be smooth for , where  is 
the repair cost. Equation (5) shows that estimation involves 
evaluating a definite integral that varies with the parameters 
being estimated, and a non-differentiable selection function 
would add to the complexity of an involved estimation. This 
criterion questions the logical extension to the functional form in 
(5), where  and  would be parameters to be estimated rather 
than lowest and highest values in the sample. The function 
in (5) is not differentiable at  and , and this would lead to a 
complicated estimation procedure. 

Due to the above reasons, we adopt a binary logit model for 
sample selection. The probability of a facility with a particular 
repair cost, x, being present in the sample is: 

(7)

where  and  are parameters to be estimated and  is a 
positive monotonic function. For  ,  approaches 1 as 

 becomes very large. Moreover, in this model sample selection 
can be represented as a utility maximization process, in which the 
expression  can be interpreted as the deterministic 
utility of including facility i in the sample as compared to the 
alternative of not including it, whose deterministic utility is 
assumed to be 0. The likelihood function remains the same as in 
(6). Estimation, however, is considerably more difficult as 
compared to the earlier methods because the definite integral 
includes unknown parameters of both the probability function 
and the repair cost distribution. We call this approach the 
continuous bias approach (CB). 

IV. CASE STUDY: UN-STAFFED FACILITIES IN THE NATIONAL 

AIRSPACE SYSTEM

A.   Introduction and Objective 

The Federal Aviation Administration, as a part of its ongoing 
re-structuring of its infrastructure assets, plans to 
comprehensively evaluate the un-staffed facilities in the National 
Airspace System (NAS). Un-staffed facilities are structures that 
house communication, navigation, and surveillance equipment.  
The number of physical assets in the NAS is significant. The 
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NAS contains about 5,000 unstaffed facilities and 9,000 
structural towers. Although the number and importance of such 
facilities is significant, it appears that the state of the art in 
assessing facility conditions and its performance is not very 
advanced [1,3,4]. 

NAS facilities are very diverse in terms of their type, 
construction and size, geographic location, environment and the 
traffic area they serve [9]. This diversity represents one of the 
major challenges in assessing facility condition and performance 
at an aggregate level. The entire NAS has been divided into nine 
different regions, based on different climactic and local 
conditions [9]. Because of the large number of diverse unstaffed 
facilities distributed across the entire NAS it would be extremely 
expensive to systematically assess and evaluate each facility and 
to establish a comprehensive data-base within a short time-frame. 
Instead, it is proposed to assess the condition of a representative 
sample of facilities from different regions.  

The ultimate objective of our work is to develop a sampling 
methodology for this assessment. In order to do this, it is 
desirable to develop preliminary estimates of the mean and 
variance of repair cost for different classes of facilities so that 
accuracy of estimates yielded by different sample sizes can be 
predicted. These preliminary estimates are based on samples of 
facilities for which cost data are available. As noted above, these 
existing samples are skewed toward facilities with high repair 
costs. The preliminary estimates can then be used to design a 
sampling methodology based on stratified sampling [5]. 

B.  Data and Methodology 

As stated before, the entire NAS is divided into 9 regions, 
with each region having its own sub-divisions. There are 12 
different types, and a table with abbreviations for different 
facilities is reproduced from [9] in appendix 2. For each facility, 
the respective sub-division assigns a subjective measure (Facility 
Condition Index, FCI) of the condition of the facility, with the 
assignment being updated at least once every year. This FCI is on 
a scale of 1 to 5, with 1 denoting a new facility, and 5 denoting 
need for replacement.  

The data provided included the following: 

The population of a particular type of facility in any one 
of the 9 regions. 

For a certain subset of facilities, the deferred maintenance 
cost (DMC) was provided. DMC represents the cost of the 
repair that has been deferred for that financial year. This 
estimate is based on subjective judgment and periodic 
cursory inspection of facilities suspected to be in need of 
repair. Further, most of the data is for facilities which are 
judged to have an FCI value of 4 or 5.  

In [9], the authors give the sizes of the total population and 
the sample for which deferred maintenance cost is available for 
each facility type. These data are not the result of a thorough 
inspection but based on quick appraisals, to be used for budget 
allocation. Nevertheless, some FAA managers state that these 

estimates are a good representation of the real cost. In the 
following sections, we assume these data are accurate and use 
them to estimate, for individual facility types, the underlying 
distributions of deferred maintenance cost. We do this for all 
types except TDWR’s and ASDE’s, whose sample sizes of 8 and 
6 are too small to yield meaningful results.  

C.  Analysis 

In this analysis, we assume that the repair costs are 
lognormal, or the log of the costs is normally distributed. This is 
clearly more plausible than the normal, because cost must be 
non-negative, but includes only two parameters, making 
estimation tractable. We also conducted experiments with other 
distributions including the folded normal and the exponential 
distribution (see table 4), but found the lognormal to have the 
best results. More complicated distributions, such as the Gamma 
might also be tried, but they would make estimation more 
difficult. Moreover, as discussed below, goodness-of-fit tests 
performed after estimation yielded acceptable results for most of 
the facility types. The functional forms for the lognormal 
distribution are given below in (8). 

(8)

1)  Truncation: We first present results from maximizing the 
likelihood function in (2), which considers only the sample cost 
values, not the fraction of the population sampled. As mentioned 
above, the maximum likelihood estimate for the truncation point 
is the lowest value in the sample, leaving just the two log-normal 
distribution parameters for numerical estimation. The results of 
this estimation are given in table 1. The parameters A and B are 
the same as defined in (8). 

The Kolmogorov-Smirnov (KS) test was performed on the 
truncated probability function defined in (2). As shown in table 1, 
the estimated distribution passes the KS test for the .05 
significance level in almost all cases.

TABLE 1. ESTIMATION RESULTS FROM SIMPLE TRUNCATION

Facility Type A B KS Test Value

ALS 8.768
(0.426)

1.945
(0.327)

0.083
#

ARSR
10.483
(0.162)

1.476
(0.105)

0.063
#

ASR
9.47
(0.209)

1.718
(0.183)

0.057
#

AWOS / ASOS 9.27
(0.181)

1.035
(0.123)

0.236

GS 9.295
(0.115)

1.471
(0.078)

0.111

LOC
9.3

(0.134)

1.717
(0.098)

0.118

MALS / SSALS
9.422
(0.855)

2.221
(0.87)

0.073
#

RCAG 9.6
(0.101)

1.45
(0.055)

0.076
#

RTR
9.673
(0.121)

1.529
(0.097)

0.079
#

VOR
9.588
(0.062)

1.355
(0.038)

0.049
#

(Values in brackets are standard errors for estimates)

Underlined and italicized estimates are significant at 0.05 level
#
Estimated distribution passes KS test at 0.05 level

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9406



As discussed before, the likelihood function used in the above 
estimation ignores potentially important information concerning 
the proportion of the population included in the sample. This 
information is particularly relevant if we assume that the sample 
includes all facilities whose DMC is greater or equal to the 
truncation value. In this case the likelihood function is given in 
(3). Estimation results, which appear in table 2, are much 
different than those in table 1, with lower A values and higher B 
values. Moreover, in virtually all cases, the fitted distribution 
fails the KS test. This suggests that the assumption that the data is 
a complete sample of values exceeding the truncation value is 
wrong. 

TABLE 2. ESTIMATION RESULTS FROM MODIFIED TRUNCATION WITH 
COMPLETE SAMPLING (TWCS) 

The third truncation model, described by (4), relaxes the 
assumption that the entire population above the cutoff point is 
included in the sample, but still exploits information about the 
proportion of the facilities included in the sample. The 
parameters for estimation are the parameters of the lognormal 
distribution (A and B) and the sampling fraction . Further, it 
should be noted that as a consequence of the estimation, the 
expression  should be equal to the ratio of the 
sample to the population. The results of the estimation, along 
with the values of this expression and the ratio of sample to 
population are given below in table 3.  

As expected, the sample-to-population ratio predicted 
matches to observed ratio. Moreover, the estimated values for 

 are very close to this ratio as well. This means that virtually 
all the exclusions of facilities excluded from the sample are the 
result of incomplete sampling rather than truncation. This also 
explains why the estimated values for A and B in Table 3 are so 
close to the estimates for the Simple Truncation model (Table 1). 
If exclusions from the sample are nearly always a consequence of 
random sampling rather than truncation, then accounting for the 
excluded facilities in the log likelihood function has very little 
effect.

2) Continuous Bias Models: Estimation results from the 
truncation models reveal that, if the samples in our data are 
indeed biased toward more facilities with higher DMC values, 

then this bias is not well represented using models based on 
truncation. It appears from those results that if a bias in fact 
exists, it results not from categorically excluding facilities whose 
DMC is below a certain value, but from a tendency to include 
more facilities with high DMCs. This suggests the use of a 
continuous bias model. Since we are using the lognormal 
distribution, we used natural logarithm for the function  in 
(7).  

TABLE 3. ESTIMATION RESULTS FROM MODIFIED TRUNCATION WITH 
INCOMPLETE SAMPLING (TWIS) 

As stated before, this approach involves evaluating a large 
definite integral that varies with the parameters to be estimated. 
One way to do this is to use maximum simulated likelihood, 
where simulated probabilities are used instead of actual 
probabilities [6, 7]. However, our model definition involves only 
a one-dimensional definite integral, and hence we used the 
Newton-Cote’s quadrature rules (trapezoidal rule) to approximate 
the integral [8]. Newton-Cote’s formulas work by using 
interpolating functions to evaluate the integral, and in our case, 
we use the linear interpolation. The results from the estimation 
are given in table 4.  

TABLE 4. ESTIMATION RESULTS FROM THE CONTINUOUS BIAS APPROACH

Facility Type A B
KS Test

Value

Sample

Size
Population

ALS 4.874
(0.572)

3.826
(0.702)

0.177
#

42 126

ARSR 7.769
(0.409)

3.89
(0.603)

0.361 85 136

ASR
3.824
(0.594)

4.804
(0.839)

0.234
#

77 249

AWOS / ASOS
0.851
(2.73)

5.02
(1.721)

0.370 36 600

GS 0.445
(0.839)

6.136
(0.953)

0.316 187 914

LOC 0.909
(0.96)

6.652
(0.941)

0.273 194 1150

MALS / SSALS
7.494
(5.383)

7.382
(2.661)

0.156
#

17 711

RCAG
0.983
(0.599)

7.447
(1.349)

0.412 217 633

RTR 0.172
(0.997)

6.451
(1.007)

0.293 179 1030

VOR
5.9

(0.148)

4.203
(0.314)

0.335 487 967

(Values in brackets are standard errors for estimates)

Underlined and italicized estimates are significant at 0.05 level
#
Estimated distribution passes KS test at 0.05 level

Facility Type A B p
Sample

Fraction

Sample

Size
KS Test Value

ALS 8.764
(0.427)

1.947
(0.327)

0.375
(0.056)

0.333 0.333 42 0.083
#

ARSR 10.478
(0.162)

1.476
(0.105)

0.625
(0.042)

0.624 0.625 85 0.062
#

ASR
9.468
(0.208)

1.716
(0.183)

0.316
(0.03)

0.309 0.309 77 0.058
#

AWOS / ASOS
9.266
(0.181)

1.035
(0.123)

0.061
(0.01)

0.060 0.060 36 0.234

GS 9.292
(0.114)

1.47
(0.078)

0.205
(0.013)

0.205 0.205 187 0.112

LOC 9.297
(0.134)

1.718
(0.099)

0.17
(0.011)

0.169 0.169 194 0.119

MALS / SSALS
9.419
(0.857)

2.222
(0.871)

0.028
(0.009)

0.024 0.024 17 0.073
#

RCAG
9.597
(0.101)

1.449
(0.055)

0.342
(0.019)

0.342 0.343 217 0.077
#

RTR 9.671
(0.121)

1.529
(0.097)

0.174
(0.012)

0.174 0.174 179 0.080
#

VOR
9.584
(0.062)

1.356
(0.038)

0.504
(0.016)

0.503 0.504 487 0.050
#

(Values in brackets are standard errors for estimates)

Underlined and italicized estimates are significant at 0.05 level
#
Estimated distribution passes KS test at 0.05 level

Facility Type A B
Sample

Fraction

Sample

Size

KS Test

Value

ALS
7.025
(1.088)

2.33
(0.668)

1.206
(0.659)

9.891
(1.362)

0.334 0.333 42 0.091
#

ARSR 9.415
(0.269)

1.973
(0.232)

1.846
(0.691)

16.136
(2.612)

0.620 0.625 85 0.055
#

ASR 8.94
(1.521)

1.676
(0.313)

0.339
(0.82)

3.898
(3.332)

0.309 0.309 77 0.066
#

AWOS / ASOS
9.221
(0.757)

0.998
(0.118)

0.086
(0.789)

3.544
(3.641)

0.060 0.060 36 0.242§

GS
7.86
(0.41)

1.682
(0.166)

0.84
(0.201)

8.443
(0.628)

0.203 0.205 187 0.100§

LOC
7.474
(0.456)

1.95
(0.184)

0.782
(0.155)

8.073
(0.451)

0.167 0.169 194 0.100§

MALS / SSALS 7.779*
(1.971)

1.767
(0.483)

0.66*
(0.428)

9.566
(1.35)

0.022 0.024 17 0.104
#

RCAG
8.291
(0.381)

1.764
(0.194)

0.941
(0.261)

8.783
(0.849)

0.340 0.343 217 0.067
#

RTR
8.196
(0.566)

1.71
(0.197)

0.774
(0.249)

8.39
(0.842)

0.173 0.174 179 0.068
#

VOR 8.247
(0.17)

1.908
(0.132)

1.81
(0.331)

14.909
(0.948)

0.502 0.504 487 0.077

(Values in brackets are standard errors for estimates)

Underlined and italicized estimates are significant at 0 .05 level

* Estimates significant at 0.1 level
#
Estimated distribution passes KS test at 0.05 level

§ Estimated distribution passes KS test at 0.01 level, fails at 0.05 level
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The parameter that captures bias in this model is . Estimates 
for this parameter are positive in every case, implying that, as 
expected, higher cost facilities are more likely to be included in 
the sample. Moreover, based on a one-tailed test,  is significant 
at the .10 level in eight cases and at the .05 level in seven. Thus 
in most cases we can be fairly sure that a bias toward higher 
DMC facilities exists. Furthermore, based on the earlier
estimation results, the truncation models are essentially 
equivalent to the continuous model with . Thus rejection of 
this hypothesis implies that the continuous bias model is the most 
valid of those considered. 

Table 4 also summarizes the KS test results comparing the 
predicted distribution for the observations in the sample to the 
observed data. In six of the 10 cases, the null hypothesis that the 
data came from the fitted distribution cannot be rejected at the .05 
level. Of the remaining four cases, in three the null hypothesis 
cannot be rejected at the .01 level, while in one it is rejected at 
both .05 and .01 levels.  

3)  Model Comparison: We now compare results of the various 
models, in particular the CB and the TWIS, which we found to be 
the most satisfactory of the truncation models. With regard to 
goodness-of-fit, KS test results from the continuous bias and 
TWIS models closely resemble one another. The three facilities 
with the poorest distribution fits are the same in both models, and 
the magnitudes of the KS statistics in these cases—and most 
others--are quite similar. Thus, while estimation results, as well 
as the perception of FAA facility managers, comport better with 
the continuous bias model, the goodness-of-fit results do not 
support this conclusion. 

To further explore the differences between the CB and TWIS 
models, we plotted the fitted PDFs and sample selection 
probabilities, and compared predicted CDFs and observed data. 
The plots for three facility types are given in figure 1.  The PDF 
derived from the TWIS model is almost always shifted to the 
right of the one obtained from the CB model. The shift is greater 
when the probability of selection derived from the CB model 
changes more (in a proportional sense) over the central region of 
the PDF—this is the situation in which the bias will have the 
greatest effect. An instructive counterexample is the 
AWOS/ASOS case, where the PDFs are nearly identical and the 
selection probability is nearly constant in the central region. 

While the PDFs and sample selection probabilities generally 
look very different for the two models, the resulting CDFs for 
sampled observations are strikingly similar. As the KS tests also 
revealed, for most facilities modeled CDFs also fit the empirical 
distributions quite well. Of the three cases with the poorest fits, in 
two the modeled distributions appear to have thicker right tails 
than the observed data, while in the other (which has just 17 
observations), it appears that the central part of the distribution is 
more complicated than suggested by either model. 

The ultimate aim of these models is to estimate the average 
DMC for each type of facility. Estimates from the four models 
appear in Table 5. Estimates from the CB model are less than 

those from any of the others. Comparing CB and TWIS 
estimates, the difference ranges from around 9% for ARSR’s, to 
over 300% for localizers. It is also notable that only the CB 
model yields estimates of the population mean that are 
consistently below those of the sample mean. This again 
demonstrates that the CB model was the only one that actually 
demonstrated the bias believed to exist by FAA subject matter 
experts. 

TABLE 5. COMPARING SAMPLE MEAN TO ESTIMATED POPULATION MEAN

V. CONCLUSION

We have investigated the problem of estimating the 
parameters of a distribution from a sample of data in the face of 
known, or assumed, biases in the sampling process. In our 
application, the data are costs of restoring unstaffed facilities 
maintained by the FAA to support flight operations. Cost 
estimates are available for some facilities, but the samples are 
believed to be biased toward high cost instances. We have sought 
practical methods of inferring the cost distribution for the entire 
population that take this bias into account. There are many other 
settings, in infrastructure management and beyond, in which such 
a situation may exist, and to which our methods may also apply. 

We have experimented with two ways of modeling the bias: 
(1) truncation, which assumes that facilities are systematically 
excluded if their restoration cost falls below a certain value, and 
(2) continuous bias, which allows the sampling probability to 
increase gradually as cost increases. Estimation results for the 
truncation models suggest that truncation is not a major source of 
sample bias, while results from the continuous model do suggest 
bias. Thus, if we accept the premise that such bias exists, then the 
continuous bias model proved more suitable. On the other hand, 
the latter model did not surpass the truncation models in terms of 
goodness-of-fit. In other words, the data do not, in and of 
themselves, favor the continuous bias model.  

Facility Type

Mean of Data

or Sample

Mean

Estimated Population Mean

Simple Truncation

Truncation with

complete

sampling

Truncation with

incomplete

sampling

Continuous

Bias

ALS 42 43 198 43 17

ARSR 95 106 4,571 106 86

ASR 46 57 4,699 57 31

AWOS / ASOS 17 18 127 18 17

GS 30 32 233,800 32 11

LOC 44 48 1,636,000 48 12

MALS / SSALS 86 146 378,900 146 11

RCAG 40 42 2,948,000,000 42 19

RTR 40 51 916,400 51 16

VOR 42 37 2,501 37 24
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Throughout our analysis, we have maintained the assumption that 
the restoration cost has a log normal distribution. This was 
chosen as the most plausible two-parameter distribution for our 
setting, and results show that it works quite well for most 
facilities. It would certainly be desirable to extend these methods 
to more general distributions, but this may prove difficult, 
particularly for the continuous bias model. Estimation proved 
challenging even with a two-parameter distribution. As the 
number of parameters increases, bias effects and properties of the 
actual distribution will become harder to disentangle. Ultimately, 
the better approach is almost certainly to collect an unbiased 
sample. The methods presented here are best used as means of 
developing preliminary estimates from which efficient sampling 
strategies can be devised. 

Appendix 1: Binding Nature of Constraint on Truncation Point 
for Simple Truncation 

Let  be the probability distribution function (pdf) of the 
underlying population distribution that we are trying to estimate, 
with  and  being the parameters of the distribution. Let  be 
the truncation point for the estimation, with  being a parameter 
to be estimated too. Let  be the sample values, sorted 
in increasing order. Thus,  is the smallest value in the sample, 
and the estimation of the truncation point  is done subject to the 
constraint that . Now, the truncated distribution that we 
are trying to estimate can be written as 

(9)

where

(10)

Thus, the likelihood function can be written as 

(11)

And the log-likelihood function becomes 

(12)

If  and  are the parameters of , then both the 
numerator and denominator of the likelihood function are 
dependent on  and . However, only the denominator 

 depends on the truncation point . Consider the 
cumulative distribution function . For any parameters 

 and , the value of  increases monotonically with ,
since it is the area under the pdf for . Thus, the 
function  also increases monotonically with  for a 

given  and . Hence, the constraint  becomes binding 

while maximizing the log-likelihood function in terms of ,
and .

Appendix 2: List of abbreviations related to different types of 
facilities 

Abbreviation Facility Type 

TDWR Terminal Doppler Weather Radar 
ASR Airport Surveillance Radar 

ASDE Airport Surface Detection Equipment 
ARSR Airport Route Surveillance Radar 
RTR Remote Transmitter Receiver 
RCL Radio Communication Link 
RML Remote Microwave Link 
TML Television Microwave Link 
VOR VHF Omni-directional Range 

VORTAC VOR collected with TACAN 
TACAN Tactical Aircraft Control and Navigation 

LOC Localizer 
ALS Approach Light System 

MALS Medium Intensity Approach Lighting System 
SSALS Simplified Short Approach Lighting System 
AWOS Automated Weather Observation System 
ASOS Automatic Surface Observing System 

NEXRAD Next Generation Weather Radar 
LLWAS Low Level Wind Shear Alert System 
RCAG Remote Communication Air / Ground 

GS Glide Slope 
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Abstract— This paper discusses one of the major problems 
concerning current dispersion modelling techniques used around 
airports; the source dynamics characterization. Due to the lack of 
information and non-availability of experimental data, common 
dispersion models rely on very simple source approximations. 
Through a staged process, the paper shows a more accurate 
representation of the plume dynamics of an aircraft during the 
take-off phase. Using Computational Fluid Dynamics, useful data 
can be collected to represent and understand the fluid mechanics 
associated with the dispersion process. The results can help 
dispersion modelers with better source dynamics representation 
and benefit the management of aircraft time separation delays in 
the take-off and landing phases. 

Keywords-Source Dynamics; Airports; Take-off; CFD; LIDAR; 
LES; Buoyant Jets; Ground Effects; Dispersion Models; Air 
Quality. 

I. INTRODUCTION

There is a growing concern on the pollution resulting from 
airport operations because of the expansion of air traffic over 
the years. It is forecasted that future air traffic movements will 
increase at a mean annual rate of 5 to 7% [1]. According to 
Schafer et al., 15,000 aircraft are already populating the sky 
and an expected 2,200 billion of passenger kilometers are 
flown each year [2]. 

It is estimated that 3.5% of the global warming from human 
activity comes from air transportation, and it is predicted that 
this figure will rise to 15% by 2050 if no measures are taken to 
control air traffic, according to the intergovernmental panel on 
climate change [3]. 

Global effects such as depletion of the ozone layer and 
global warming are a direct consequence of local activities. To 
assess these impacts and quantify the amount of pollution 
resulting from airport operations, airport operators and 
regulators rely on different techniques to estimate existing 
situations and predict future scenarios. On-site monitoring is 
one technique that has been used but it is rather costly and does 
not isolate airport-related sources. Another option is the use of 
dispersion modelling techniques to approximate emission 
dispersion within a virtual domain. There are three modelling 

techniques commonly used in the aerospace industry, namely 
Gaussian, Lagrangian and Eulerian models. Each technique has 
advantages and drawbacks associated with the way they treat 
the problem. This paper examines one problem that has been 
known to both Gaussian and Lagrangian models, the source 
dynamics characterization. 

It is known that the main source contributors at an airport 
are the emissions from aircraft engines and emissions from 
traffic inside and around the airport [4]. These are all moving 
sources, thus there is a real need of properly representing them 
in a simulation. This paper will first discuss why there is a need 
for improvement and how source dynamics are actually 
implemented in Gaussian and Lagrangian models. A discussion 
will then follow on different ways to characterize a moving 
source, before focusing on the real aim of the paper: the use of 
near-field Eulerian simulation to help improve Gaussian and 
Lagrangian models. To achieve this goal, several reports 
prepared as part of the ALAQS project (Airport Local Air 
Quality Studies), managed by EUROCONTROL, will be 
recalled and a staged process analysis will be done to finally 
analyze the dispersion process of a complete aircraft during 
take-off. 

II. THE NEED FOR IMPROVING EXISTING AIRPORT 

DISPERSION MODELS

There are three main types of dispersion modelling 
techniques, namely Gaussian, Lagrangian and Eulerian. The 
Gaussian model relies on a simple formula that calculates the 
concentration field emitted by a source “under stationary 
meteorological and emission conditions” [5]. In the Lagrangian 
particle models, the concentration is calculated through 
integration across the entire computational domain [5]. A 
gridding system is used to discretize the domain and to 
calculate localized concentrations within the grid. The Eulerian 
technique, on which Computational Fluid Dynamics (CFD) 
simulators are based, solves the governing equations of fluid 
flow with numerical methods. The basic idea of CFD is to 
discretize the control volume into small sub-domains, creating 
a grid system similar to the Lagrangian technique. The 
fundamental equations of fluid flow are solved either explicitly 
in the case of Direct Numerical Simulation (DNS) or are sub-
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modelled in the case of Large Eddy Simulation (LES) or 
Reynolds Averaged Navier-Stokes (RANS). 

Fleuti [4] provided a simple comparison of these models in 
an airport context using the commercial software packages 
ADMS-Urban, LASPORT and EPISODE for Gaussian, 
Lagrangian and Eulerian models, respectively. The report 
shows that Lagrangian and Eulerian methods offer advantages 
over Gaussian models in both spatial and temporal resolutions 
[4]. 

Farias & ApSimon [6] studied the contribution of NOx 
from traffic and aircraft emissions around Heathrow airport. 
The Gaussian ADMS-Urban software was used to compare 
results obtained at different monitoring stations located in 
populated areas. They found some discrepancies between the 
two; the ADMS-Urban model overestimated aircraft 
contribution and underestimated the traffic contribution in 
comparison with monitoring data. 

This over-prediction of airfield-related traffic was also 
observed by Fleuti & Hoffmann [7] in their study of Zurich 
airport with the Lagrangian model LASAT, in which 
simulation results were compared with monitoring sites located 
at different positions across the airfield. They concluded that 
the landing and take-off phase emission factors were lower in 
real condition than the simulated ones. 

Fleuti et al. [8] also carried out a sensitivity analysis of 
Zurich airport, and pointed out that the emissions from the 
aircraft main engine dominate all other sources of pollutants. 
This was later confirmed by Celikel et al. [9] in their emission 
inventory at Zurich airport. Using the ALAQS-AV tool set, 
they showed that NOx emissions from aircraft sources around 
Zurich airport in 2003 were found to be approximately 80.7% 
of the total emissions [9]. 

III. SOURCE DYNAMICS TREATMENT BY GAUSSIAN AND 

LAGRANGIAN MODELS

Both ADMS and LASAT have integrated functions to take 
into account the dynamics of an airplane, but they are in a way 
very simplistic. The Gaussian ADMS model treats this problem 
by assigning an accelerating jet source to represent the effects 
of buoyancy and momentum of an aircraft engine [10]. Farias 
and ApSimon [6] criticized this approach because it is lacking 
features that “may contribute to thermal buoyancy” for the 
traffic emissions. In the case of aircraft emissions, the pollutant 
release occurs at different heights with fast moving sources 
during a short period of time [6]. They later added that ADMS, 
although highly suitable for dispersion from stacks, needs 
adjustments for ground traffic use because there are differences 
in “mechanics governing dispersion from these emissions” [6]. 

LASAT, on the other hand, rely on parameters calibrated 
by means of Dusseldorf DOAS measurements, which are also 
available for APU, GPU and vehicle source dynamics [11]. To 
characterize the take-off phase, LASPORT used an initial 
uniform box of 50m wide and 25m high having parameters 
(velocity and turbulence) of the exhaust plume decaying in a 
time scale of a minute or two [12]. Fleuti et al. [8] pointed out a 
major drawback concerning this method, because these 
parameters are not fixed and rely on constant changes to get the 

adequate results. For instance, they needed to increase the 
vertical source extent for vehicle exhaust they studied from 2m 
to 8m, and the Auxiliary Power Unit (APU) was also changed 
using more recent information from the Frankfurt airport air 
quality studies [8]. 

The ALAQS-AV tool set has the capability to impose a 
smooth and shift approach on these different modelling 
techniques [11]. This concept is based on the principle that 
emissions from engine exhausts can be shifted spatially 
downwind and smoothed to replicate the real plume dynamics 
of the jet engine. The smooth and shift approach used by 
ALAQS-AV employs LASPORT default parameterization 
values for different types of moving sources present at the 
airport [13]. 

Because of its time and length scales, the emission is done 
through an hourly passive grid source. A major drawback of 
this technique is its non-accountability of the meteorological 
conditions; the effects of the wind direction and magnitude are 
not properly treated, and this has a consequence in the 
directional exit of the plume and its rise [13]. These parameters 
are set in the model without any differentiation of the type of 
aircraft which was operational within the hour. This “one type 
set of data fits all” approach has also been criticized by Farias 
and ApSimon [6] because ADMS uses only one set of 
buoyancy and momentum parameters for all aircraft. 

Yu et al. [14] showed that the major disadvantage of using 
air quality models is the lack of knowledge on emissions rates 
of pollutants from different types of engines, and these vary 
greatly during different phases of an aircraft. This argument 
was also raised by Schafer et al. [2], who pointed out that the 
only source of data available up to now is the ICAO database, 
but unfortunately this does not give any information 
whatsoever about the source dynamics. Fleuti et al. [8] also 
expressed the need for information concerning the plume 
characteristics in their sensitivity analysis; this parameter was 
found to have a major influence in the dispersion process. Like 
Schafer .et al. [2], they argued that the knowledge of how much 
emission is being released is important but the dynamics 
associated with it is also of great relevance. 

IV. INADEQUACY OF LIDAR MEASUREMENTS FOR SOURCE 

DYNAMICS CHARACTERISATION

One possible answer is to use Light Detection and Ranging 
(Lidar) equipment. Lidar systems consist of the transmission of 
a light signal pulse through a laser sheet; particles emitted from 
an engine backscatter the light and the laser receives back the 
signal, showing the presence of a certain particle at a location 
along the sheet [15]. Depending on the quality of the 
equipment, it is possible to analyze the results up to every 
second, with a resolution of about 10 meters, operating at the 
ultraviolet wavelength of 355nm [16], but this comes at a high 
price as a complete mobile facility has to be built. Examples 
are the Rapid Scanning Lidar Facility (RASCAL) introduced 
by the Manchester Metropolitan University or the Ozone 
Profiling Atmospheric Lidar (OPAL) by the National Oceanic 
and Atmospheric Administration. RASCAL is a self-contained 
mobile unit with the necessary equipment to work 
autonomously with on-board meteorological facility. Apart 
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from the equipment cost, there are several disadvantages 
associated with the use of Lidar to characterize source 
dynamics. 

Starting with the meteorological conditions, it is likely that 
the wind speed and direction will not be constant and the 
changes that may occur will alter the fluid dynamics, hence 
dispersion. This makes it harder to compare one observation to 
another and correlate the results in order to have a proper 
understanding of the dynamics. 

To be able to capture a pollutant, the particle has to reflect. 
In other words, the size of the particle is important. Usually 
aerosol, in the order of “100 nanometers with an average of 30 
nanometers”, is measured to give an approximate description 
of the plume on the laser sheet [15]. Wayson et al. [15] also 
found that these particles can only be seen using their OPAL 
system operating in the very low ultra-violet wavelength 
(355nm). This means that this device has to be used to its limit 
to capture the parameters of interest. 

This search for small particles causes some problems, 
especially around airports where several other sources can 
pollute the Lidar results. Eberhard et al. [16] reported some of 
the problems concerning the low contrast between the 
backscattering and the signal from the ambient air. They found 
that some aircraft presented very low or no plume relative to 
the ambient air, and explained that this was due to backscatter 
particles having the same size as the ambient air. What is more 
intriguing is the fact that they found conditions where the 
plume has less backscatter than the ambient air, due to “a 
combination of volatilization of the ambient particles passing 
through the engine and low particle emissions” [16]. Another 
possible explanation is that the background concentration and 
interaction with other sources present around the airport are 
greater than the emission released by the engines. 

According to Angus Graham from Manchester 
Metropolitan University (private communication), Lidar data 
have to be processed in order to be readable, and this involves a 
considerable amount of processing and manpower, at a cost 
that cannot be neglected. Eberhard et al. [16] also pointed out 
that only 40% of their measurements were retained after this 
“processing and quality control”. This finally gave the plume 
characteristics of only 21 types of aircraft. 

To conclude this discussion on Lidar, only a sheet can be 
analyzed making the analysis two-dimensional. It is often 
interesting to know the dispersion process not only on the 
vertical plane but also in the lateral direction, because some 
concentration may be trapped into wing-tip vortices and travel 
around the airport, as will be shown later in this paper. Another 
problem with the analysis is that it is only qualitative. 
Moreover, there are disagreements concerning the take-off 
phase. Wayson et al. [15] found compact ground-based plumes 
for all types of airplanes, whereas Graham et al. [17] in the 
Project for the Sustainable Development of Heathrow (PSDH) 
report found a non-compact ground plume for the B747-400. 
Yamartino et al. [12] tried to directly compare LASPORT’s 
initial box with the plume size dimensions reported by Wayson
et al. [15], and found it rather impossible to do so because of 
the time scale used by both analyses. Ignoring this, it was 
revealed that LASPORT produced values twice as large as the 

ones reported by Wayson et al. The explanation for this 
difference is that the measurement values taken by Wayson et 
al. are for the plume at a very early stage, before even the 
dissipation of the plume’s internal and thermal energy had 
taken place [12]. Yamartino et al. [12] concluded that issues of 
plume entrainment and rise characterization have to be 
resolved before Gaussian or Lagrangian models can perform 
accurately in airport-related dispersion studies. 

V. EULERIAN MODEL AS A WAY TO UNDERSTAND AND 

CHARACTERIZE SOURCE DYNAMICS

As discussed previously, Fleuti [4] compared the results of 
the Eulerian commercial package EPISODE to ADMS-Urban 
and LASPORT. This is a unique comparison between the three 
techniques, but unfortunately EPISODE is not a 100% Eulerian 
model. The calculation of the large scale dispersion process is 
done through an Eulerian grid where an averaged form of the 
Navier-Stokes equation is computed via the K-theory [4]. The 
small scales, on the other hand, are calculated through a 
subgrid scale Lagrangian or Gaussian model [18]. These near 
source treatments are usually done by point or line source 
dispersion [18]. 

Within the ALAQS project initiated in 2003 by the 
Eurocontrol Experimental Centre, Aloysius et al. [19] provided 
a comparison between CFD and LASAT simulations for 
airfield emission dispersion. It is believed this report was the 
first attempt to compare full Eulerian and Lagrangian models 
for pollutant dispersion around an airport. The CFD studies 
were based on the Large Eddy Simulation (LES) method to 
predict the dispersion of NOx, assumed to be a non-reactive 
pollutant, from the airport runways. A number of other 
simplifications were introduced to the model to reduce 
computing time, such as the terrain and the runways which 
were respectively flat and modelled as area sources. 

Although the simulation of the air traffic at Zurich airport 
was done for a one-day period only, the results for the fourth 
hour of the day were interesting because of the changes in wind 
direction and magnitude, and emissions values, that happen 
during that period of time. Those changes were found to 
happen four times during that particular day, mainly due to 
airport operations or severe meteorological conditions. 

The predicted dispersion patterns and the magnitudes of the 
NOx concentrations showed good agreement between the 
Eulerian and Lagrangian models. The notable differences were 
that LASAT predicts higher concentrations at ground level than 
CFD. At higher altitudes, LASAT predicts an intuitive 
dispersion throughout the control volume whereas CFD 
presents some recirculation. Although the magnitude of this 
recirculation is in the order of less than 1 ppb in this case, this 
can be higher for larger airports. In addition, it was found with 
the CFD simulation that: 

• Vortices play an important role at high wind 
speeds, making the flow recirculate around the 
control volume. 

• Buoyancy is dominant when emissions are high 
and wind speed relatively low. 
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Figure 1.  Vertical velocity comparison between CFD and 
theoretical methods for non-buoyant free jet 

Free jet without buoyancy Free jet with buoyancy 

Figure 2.  Mean velocity profile comparison between buoyant and non-buoyant free jet 

• Large vortices contain high concentration of 
pollutant and do most of the transport. 

• The influences of small eddies are small, and their 
number increases when large vortices break down 
due to the surrounding flow and the wind 
magnitude. 

• Changes in wind direction alter the flow rotation 
creating vortices in different directions. 

It has also become apparent from this study that the 
application of CFD to the simulation of a full airfield is 
currently unreasonable. The CFD model required more than 8 
days of processing time to reach its transient solution for a 
single hour simulation using 8 dual core processors optimized 
for parallel processing. In comparison, LASAT took about 60 
seconds to compute the solution. But it was concluded from 
this report that CFD allows for a much in-depth assessment of 
how emissions are transported, and the wealth of information it 
provides means that it would be extremely beneficial if applied 
to more localized airfield studies such as source dynamics. 

The strategy adopted in this study to validate the CFD 
results was to gradually increase, through a staged process, the 
complexity of the simulation towards representing the near-
field effects of aircraft exhaust plumes under realistic 
conditions. This paper will go through this process from a free 
jet engine to a complete aircraft on the runway. 

The LES model was initially used to investigate the 
differences between turbulent buoyant and non-buoyant jets in 
a free atmosphere condition, highlighting the mechanism of 
dispersion behind the exhaust. The non-buoyant free jet was 
compared with existing experiments and analytical results [20]. 
The non-buoyant simulation results were found to agree with 
classical results, replicating the characteristic self-preserving 
behavior of a free jet after the flow development region (Fig.1). 
The buoyant jet, on the other hand, breaks the symmetrical 
pattern of the flow showing a rise of the axial velocity above 
the centerline axis, as illustrated in Fig. 2. 

The disappearance of the potential core was found to be the 

result of turbulence penetration, leading to the fully developed 
region. In the potential core, the jet entrains the ambient fluid 
surrounding it, triggering an enhancement of turbulence. Its 
intensity begins to act and increases further along the axis, 
resulting in a decay of the axial velocity. Compared to the 
buoyant jet, the non-buoyant jet has a longer potential core 
because it is not restrained by the buoyancy effects acting on 
the flow. 

The spreading of the jet was found to be linear in the case 
of non-buoyant release and followed very closely the 
theoretical predictions. The buoyant jet, on the other hand, can 
be divided into three different linear regions: 

• The jet region, closest to the exhaust, where the 
linear curve matches closely the non-buoyant line. 

• The plume region, furthest away from the exhaust, 
where a high spreading of the jet can be observed 
because the buoyancy effect is dominant. 

• The intermediate region, where the flow 
undergoes a transition from pure jet-like to plume-
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Figure 3.  CFD and experimental results for the non buoyant 
wall jet vertical velocity profile 

Free jet Wall jet 
Figure 4.  Comparison of mean velocity profile of buoyant free and wall jet after 10s

like behavior. 

Vortices around the spanwise direction play an important 
role in the jet dispersion, as they regulate the potential core 
length when the counter-rotating vortices collide in the 
centerline axis and help the buoyancy jet to rise higher than the 
non-buoyant jet. 

A second study within the ALAQS project aimed to 
provide an understanding of the impact of the presence of the 
ground on the fluid dynamics of the jet [21]. Before carrying 
out such comparison, a validation similar to the one presented 
in [20] was done on this wall jet against existing experimental 
and analytical results for a non-buoyant condition. Only then 
the buoyant case was analyzed and used to assess the impact of 
the solid boundary on the fluid mechanics of the jet flow. Once 
again, the results of the CFD simulation of the non-buoyant 

wall jet agreed very well with the classical results. An 
illustration of this is presented in Fig. 3, where it successfully 
replicated the boundary layer profile created by the wall and 
the free shear layer profile generated by the ambient fluid. 

The comparison between the buoyant free and wall jets 
(Fig. 4) revealed several differences. First, the potential core 
was found to be much longer for the wall jet than for the free 
jet. This has an effect on the flow penetration through the 
control volume; the wall jet offers a deeper penetration than the 
free jet. The maximum velocity decays much faster for the free 
jet than for the wall jet. This leads to a correlation between this 
parameter and the penetration properties previously discussed, 
as the penetration involves higher velocity pushing into the 
control volume.  

There is also an interconnection between all the parameters 
discussed previously and the streamwise vortical structure of 
the buoyant wall jet. As in the case of the buoyant free jet, 
counter-rotating vortices are created on one side by the 
surrounding fluid and on the other by the solid boundary. What 
is different from the free jet situation is the presence of the wall 
generating continuous vortices, whereas the influence of the 
vortices created by the surrounding fluid gradually decreases. 

The first point of merging of the counter-rotating vortices 
occurs in the potential core. As the flow progresses, the 
intensity of the vortices generated by the wall is much stronger 
than the ones created by the surrounding fluid, causing a 
clinging of the flow, also known as the Coanda effect. This 
pushing-down phenomenon restricts the growth of the jet 
vertically, hence creating a lower rate of spread than for the 
buoyant free jet. As the velocity further away from the jet 
exhaust decreases, the vortices created by the wall decrease and 
buoyancy takes over, with positive streamwise vortices lifting 
up the flow from the ground. 
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a) b)

Figure 5.  Vertical velocity profile (a) and velocity decay comparison between different jets (b) 

Double engine only simulation Complete aircraft simulation 

Raising the jet above the ground showed a combination of 
both free and wall jet velocity profiles. Near the engine 
exhaust, the velocity profile resembles that of the free jet 
whereas further downwind the characteristic self-similar profile 
of the wall jet can be found (Fig. 5a). The rate of decay of the 
maximum velocity of different jets is shown in Fig. 5b, with 
the above ground jet having the lowest rate. This is in line with 
the results reported by Davis and Winarto [22] and has a 
consequence in terms of penetration trough the control volume. 
The above ground jet configuration is expected to have a 
deeper penetration of the exhaust gases through the control 
volume. 

A further study within the ALAQS project aimed at 
characterizing the effects of engine geometry and acceleration 
in the source dynamics by incorporating the complete geometry 
of an engine (CFM56-3C-1) [23]. Two engine configurations 
(single and double engine) were simulated under two types of 
wind (a headwind of 2.5m/s and a crosswind of 4.5m/s at an 
angle of 40 degrees from the engine centre). The results 
highlighted the importance of several parameters on plume 
dispersion. 

The first parameter is the wind configuration; headwinds 
directly applied to the engine will increase the plume 

penetration downwind. Crosswinds, on the other hand, increase 
the lateral spread of the plume. The second parameter is related 
to the vortical structure configuration. After the jet regime, 
divergence of the jet core from its centre occurs when the 
plume starts to weaken. This is the result of counter-rotating 
vortices wrapping around the “self-induced” rotation of the jet. 
A sinusoidal instability pattern was reported due to the 
divergence from the centre, which increases in amplitude and 
period as the flow progresses through the control volume, 
leading to the breakup of the instability. 

In the case of a double engine, the wind configuration and 
vortical structures parameters still affect the plume dispersion 
process. In fact, it was found that the presence of two engines 
enhanced it because of the interaction between the two jets’ 
plumes favoring a “straining” mechanism, resulting in the 
development of the instabilities (increase in amplitude), thus 
facilitating the breakup. 

The final step was to include the full geometry of the 
airplane; a Boeing 737 was chosen because it uses the CFM56-
3C-1 engines and is the most popular at medium size airports 
such as Zurich. Presently, results are only available with a 
double engine on the runway with a headwind condition. The 
results show some differences when the body, the wings and 
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Wing tip vortices Horizontal stabilizer tip vortices 

Figure 7.  Wing and horizontal stabilizer tip vortices comparison 

Figure 8.  Iso-surface of 1ppm of NOx plotted with x-vorticity 

the empennage of an aircraft are added to the simulation. 

Fig. 6 represents an iso-surface of 1 ppm NOx 
concentration. The whole aircraft restricts the flow progress 
downwind through the control volume. The penetration length 
is about 1,860m behind the exhaust, whereas for the engines 
alone it is extended by 40m. Without any geometrical 
disturbances, the flow was allowed to travel deeper. 

On the other hand, some geometrical disturbances were 
found to enhance the vertical and lateral dispersion. These are 
due to the vortices created by the wing and the horizontal 
stabilizer. Fig. 7 shows a comparison of their tip vortices; the 
arrows represent the flow pattern in the Y-Z plane and the 
magnitude of the vortices is shown by the contour plot scale. 
The differences concern the rotation of the flow; the air stream 
over the wing creates a negative rotation at the tip around the 
X-direction, whereas the horizontal stabilizer’s tip shows a 
positive rotation. This is expected as the horizontal stabilizer is 
in fact an inverted wing, but what is least expected is the 
impact they have on the plume dispersion. 

Because the horizontal stabilizer is located just after the jet 
exhaust and almost on its way, it will be the first to affect the 

flow. Its disturbance is characterized by an enhancement of the 
vertical dispersion as can be seen in Fig 8. Part of the engine 
exhaust is attracted by the rotation of the fluid created by the 
horizontal stabilizer’s tip and spreads upward. 

The influence of the wing-tip can only be observed further 
away from the engines’ exhausts when the jet plume has spread 
sufficiently laterally to meet the wing-tip vortices core. Its 
disturbance of the flow pattern is characterized by an 
enhancement of the lateral dispersion. Fig. 8 clearly shows this; 
the concentration of NOx rolls around the negative x-vortices 
core and spreads laterally, at low distances from the ground. 

Other parameters of interest, such as velocity, temperature 
and turbulence, can be obtained from the CFD simulation. 
These are the major parameters to characterize the source 
dynamics in any problem. In addition, the simulation could 
serve several other purposes, e.g. related to air traffic 
operations. Results can shed light on the strength of the wake 
turbulence when different types of aircraft take-off and land. 
As a consequence, a proper time delay separation can be 
obtained for different classes of aircraft, thus increasing the 
airport traffic capacity. 

The need for a better characterization of source dynamics in 
an airport environment is important not only for moving 
aircraft during the take-off and landing phases, but also 
necessary when they are immobile and using their APU. In this 
study, a non-reactive pollutant was introduced to simplify the 
problem but chemistry models exist for CFD simulations that 
allow the prediction of chemical transformations associated 
with plume dispersion. 

VI. CONCLUSIONS

The work reported in the present paper is related to the 
need from airport dispersion modelers for better source 
dynamics characterization. Gaussian and Lagrangian 
techniques are well suited for complete airport dispersion 
calculations, but only include very simplified models to 
represent moving sources during take-off and landing. 
Unfortunately, these are not appropriate for adequate 
characterization of the near-field fluid dynamics. Conversely, 
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CFD techniques are presently not appropriate for the 
simulation of a full scale airport, but it can help to improve the 
understanding of some of the flow characteristics, including 
source dynamics.  

This paper summarizes our CFD work related to airport 
local air quality studies. The strategy adopted was to use a 
staged approach, starting from a single engine free in the 
atmosphere and increasing the simulation complexity step by 
step. This allowed an initial validation with known theoretical 
and experimental results. After investigating free jets in 
buoyant and non-buoyant conditions, a wall jet simulation was 
analyzed and validated before the jet was raised to a proper 
distance above the ground. Important results of the simulations 
include the influence of the maximum velocity decay in the 
plume penetration through the control volume, and the role of 
counter-rotating vortices in the dispersion process. 

The incorporation of the engine and the aircraft body, 
including the wings and empennage, revealed the effects of 
several other parameters such as the horizontal stabilizer’s and 
wing’s tip vortices. These were found to play an important role 
in the vertical and lateral dispersion, whereas the aircraft was 
found to slow down the plume penetration through the control 
volume. 

This paper has demonstrated the applicability of CFD 
methods to airport-related flow and dispersion problems, and 
their capability to characterize source dynamics. The results 
can help dispersion modelers with better source dynamics 
representation and benefit the air traffic management of aircraft 
time separation delays in the take-off and landing phases. 
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Abstract—This paper presents a strategy for designing noise
abatement procedures aimed at reducing the global annoyance
perceived for the population living around the airports. By
using fuzzy logic techniques it is shown how annoyance can be
modelled in function of the maximum perceived noise level at a
specific noise sensitive location and the time of the day when
the departure takes place. Thus, the annoyance is computed
for different kinds of sensibility areas, such as residential zones,
industrial zones, schools or hospitals and an annoyance figure is
obtained for each possible trajectory. Then, a non-linear multi-
objective optimal control problem is presented in order to obtain
the minimum annoyance trajectory for all sensitive locations.
Lexicographic optimisation is used to cope with the difficulties
that arise when several criteria appear in the optimisation
process. Finally, a practical example is given for an hypothetical
scenario where different optimal trajectories are obtained at
different day periods.

I. INTRODUCTION

The noise produced by aircrafts during take-off and landing
operations around airports is a very serious ecological and
social problem. Aircraft noise can be very annoying for people
living in the vicinity of the airports. Therefore, the design
of noise abatement procedures aimed at reducing the noise
exposure of the population around airports is one of the main
issues that airport authorities and national navigation services
providers have to address. Noise is generally defined as an
unwanted sound and its effects can be appreciated physiologi-
cally but also psychologically [1]. Annoyance is a concept that
is hard to quantify because there is no underlying physically
measurable scale. However, it is usually qualitatively assessed
with social surveys. It is clear that fuzzy techniques can
help to make more accurate predictions by incorporating the
vagueness and uncertainty into the modelling and reasoning
process. Recently, few research papers based on fuzzy logic
in noise pollution area have been reported [2], [3], [4]. In
[3], annoyance is considered as a function of noise level,
its duration of occurrence, and the socioeconomic status of
a person and the results were applicable to the urban areas of
India. In [4], a fuzzy model has been developed, on the basis
of field surveys conducted by various researchers and reports
of World Health Organisation, for predicting the effects of
sleep disturbance by noise on humans as a function of noise
level, age and duration of its occurrence. Fuzzy set theory is
a generalisation of traditional set theory and provides a means
for the representation of imprecision and vagueness. Zadeh [5]

further developed the corresponding fuzzy logic to manipulate
fuzzy sets.

The International Civil Aviation Organisation (ICAO) pub-
lishes two different Noise Abatement Departure Procedures
(NADP), defined in [6]. NADP are generic procedures and
are far from being the optimum ones regarding noise minimi-
sation. This is due to several factors, such as the impossibility
to define a general procedure satisfying the specific problems
that may affect each particular airport, air traffic management
and airport capacity constraints or even the the limitations of
nowadays on-board technology. Nevertheless, some research
in theoretical optimal trajectories minimising the noise impact
in departure or approaching procedures is also found in the
literature. For instance, in [7], [8] and [9] is presented a tool
combining a noise computation model, a Geographical Infor-
mation System (GIS) and a dynamic trajectory optimisation
algorithm, aimed at obtaining optimal noise procedures. A
similar methodology is proposed in [10], and an adaptative al-
gorithm for noise abatement can be found in [11]. On the other
hand, in [12] and [13] it can be found a dynamic programming
technique for minimising noise in runway-independent aircraft
operations. All the results and conclusions arisen from these
works are encouraging and will set the basis for new noise
abatement procedures, specially regarding the forthcoming
new navigation concepts, such as area navigation (RNAV) or
Performance Based Navigation (PBN). These concepts will
allow for air navigation procedures to be designed with a
higher level of flexibility than conventional radionavigation
ones [14].

This paper is organised as follows: in Section 2 the op-
timisation criteria are presented introducing how annoyance
can be modelled by using fuzzy logic. Section 3 is devoted to
the optimisation strategy that is proposed to solve this multi-
criteria objective problem. Finally, section 4 shows the results
obtained for a hypothetical airport scenario containing two
residential zones, a school, a hospital and an industrial zone.

II. OPTIMISATION CRITERIA

This section presents two kinds of optimisation criteria.
First one deals with the noise annoyance produced when the
trajectory is flown. Second criterion takes into account airliner
costs, such as time or fuel consumption.
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TABLE I
RULE BASE TABLE FOR THE ANNOYANCE IN FUNCTION OF THE PERCEIVED NOISE AND THE HOUR OF THE DAY

Residential zone School Hospital Industrial zone

Mor. Aft. Night Mor. Aft. Night Mor. Aft. Night Mor. Aft. Night

No noise NA NA NA NA NA NA NA NA NA NA NA NA

Very low noise NA NA SA SA SA NA SA SA MA NA NA NA

Low noise NA SA MA MA MA NA MA MA HA NA NA NA

Medium noise SA MA HA HA HA NA HA HA EA NA SA SA

High noise MA HA EA HA HA NA EA EA EA SA MA MA

Very high noise HA EA EA EA EA NA EA EA EA MA HA HA

A. Noise annoyance

The annoyance or perception of the acoustic noise describes
the relation between a given acoustic situation and a given
individual or set of persons affected by the noise and how
cognitively or emotionally they evaluate this situation. The
acoustic annoyance of the aircraft flights around an urban
airport depends logically of the acoustic behaviour produced
in the sensitive locations, using for example, the Lmax or
Sound Exposure Level (SEL) metrics, but it is not a sufficient
measurement to define completely the annoyance behaviour
of a noise. An additional list of non acoustic elements to take
into account to define the annoyance behaviour could be:

• Types of affected zones (rural zone, residential zone,
industrial zone, hospitals, schools, markets,...)

• Time interval during the noise event (day, evening, night)
• Period of time between two consecutive flights
• Personal elements (emotional, apprehension to the noise,

personal healthy, age,...)
• Cultural aspects (young or aged people habits, activities,

holiday,...)

In conclusion, the annoyance is a subjective and a complex
concept which can be studied as a qualitative form using fuzzy
logic sets, as previous similar works in this area have been
done (see for instance [2], [3], [4] and [15]). In this paper,
the annoyance generated by the aircraft trajectories will be
represented by fuzzy logic sets from the fuzzification of the
maximum sound level (Lmax) and from the hour of the day
where the trajectory is supposed to be flown regarding four
typical zones around an urban airport: a residential zone, a
hospital, a school and an industrial zone.

1) Noise model: The maximum perceived sound level at
location i is defined as:

Li(�z) = max
t

Noisei(�z(t)) (1)

where Noise(�z(t)) is the perceived noise level at location i
for a given trajectory �z(t) (being t the time variable).

In this work, the same methodology employed by the
Integrated Noise Model (INM) program [16] is implemented
when computing noise functions. INM is developed by the
Federal Aviation Administration1 (FAA) and has been adopted
as the standard package for noise studies and assessments

1http://www.faa.org

in many countries. INM deals with several noise metrics
and, in particular, noise levels are computed at a given point
by selecting and interpolating appropriate noise values from
a noise-thrust-distance (NTD) table, which is derived from
empirical measurements.

2) Annoyance model: In [17] the authors presented a basic
methodology for modelling aircraft noise annoyance by using
fuzzy logic. Essentially, two membership set functions are
defined. The first set introduces five linguistic terms to describe
the magnitude of the maximum sound level (Lmax):

• Very high noise
• High noise
• Medium noise
• Low noise
• Very low noise

A second set is related with the hour of the day introducing
the following linguistic terms:

• Morning
• Afternoon
• Night

Afterwards a rule base is established to represent the an-
noyance of an event defined by the two fuzzy logic sets for
each of the 4 zones considered. The annoyance concept has
been represented by the following linguistic terms:

• Extreme Annoyance (EA)
• High Annoyance (HA)
• Moderated Annoyance (MA)
• Small Annoyance (SA)
• Null Annoyance (NA)

Table I shows the rule base of the annoyance at all sensitive
locations. For each couple of sound level and time of day lin-
guistic terms a rule is established giving a specific annoyance
term. By using this kind of fuzzy rule base it would be easy,
for example, to model the output of a population survey, asking
for the annoyance produced by the airport.

Finally, the fuzzy set of the annoyance is defined as a
crisp set to obtain a normalised degree of annoyance. Extreme
annoyance corresponds to a normalised value of 1, high an-
noyance takes 0.75 value, medium annoyance takes 0.5, small
annoyance takes 0.25 and finally null annoyance corresponds
to 0. Figures 1, 2. 3 and 4 show in a plot this normalised
annoyance in function of the two input variables (Lmax and
the hour of the day) for each noise sensitive location.

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9422



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20
 30

 40
 50

 60
 70

 80
 90

 100
 0

 0.2

 0.4

 0.6

 0.8

 1

Hour of Day

Lmax (dBA)

Fig. 1. Normalised Annoyance. Hospital
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Fig. 2. Normalised Annoyance. School
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Fig. 3. Normalised Annoyance. Residential Zone
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Fig. 4. Normalised Annoyance. Industrial Zone

B. Airliner costs

Airliner cost and Air Traffic Management (ATM) efficiency
should also be taken into account when designing aircraft

trajectories. In this context, Fuel and/or Time spent during
the trajectory may be considered as optimisation objectives
too.

Being t0 and tf the initial and final time of a given
trajectory, fuel cost Cf associated to this trajectory can be
computed as:

Cf = πc · Fuel = πc

∫ tf

t0

FF (t) dt (2)

where πc is the fuel price and FF (t) is the total fuel flow,
which in turn can be expressed in function of the current thrust
setting.

On the other hand, time cost represents the different constant
rate costs associated with aircraft operations (insurances, traf-
fic control fees, crew salaries, etc). This can be easily written
as:

Ct = πt · Time = πt(tf − t0) (3)

where πt is the cost attached to one unit of time of delay.
Current Flight Management and Guidance Systems (FMGS)

equipping a wide number of aircraft deal with a compound cost
function which involves fuel and time consumption during the
flight. A cost index parameter (CI) relates the cost of time
delay to the price of the fuel and its value is carefully chosen
by the operator prior to each flight. Cost index (CI) is defined
as:

CI =
πt

πc
(4)

Fuel saving flights are associated with low values of the cost
index while more direct and faster flights are associated with
high values of this index. As mentioned above, this strategy is
currently used in civil aircraft operations giving optimal flight
levels and speed settings for all phases of flight.

In addition, for this study it would be incomplete to consider
only these magnitudes regardless of the altitude achieved
at the end of the procedure. Reaching a low final altitude
h(tf ) would lead to small time or fuel consumption figures
during the departure but the consumption would increase in
the following phase, when trying to gain the altitude required
to reach the optimal cruise flight level. Therefore, the final
altitude must be also taken into account as an optimisation
criterion to be maximised. Following the same philosophy,
an Height Index (HI) is proposed in this work. Finally, the
airliner cost compound function is defined as:

Ca = Fuel + CI · Time − HI · h(tf ) (5)

where, by definition, CI > 0 and HI > 0.

III. THE OPTIMISATION STRATEGY

In [18], the authors presented a framework to optimise de-
parting or approaching trajectories which can be summarised
in figure 5. The involved airport, with its surrounding cartogra-
phy, geography and meteorological data, will define a scenario
which will be used to compute a given noise nuisance in
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Fig. 5. Framework for the noise abatement optimisation strategy

function of the emitted aircraft noise along its trajectory. This
value, together with some airliner economic considerations,
will define one or several optimisation criteria. Then, an
optimisation algorithm will compute the best departing or
approaching trajectory minimising these criteria and satisfying
a set of trajectory constraints which, in turn, will depend on
the dynamics of the aircraft, navigation constraints and specific
airspace configurations.

A. Statement of the problem

This optimisation process can be formally written as a
constrained multi-objective optimal control problem in a given
time interval [t0, tf ]. In this case, the value of tf is let free
during the optimisation, meaning that this value is a decision
variable itself and will be fixed by the optimisation algorithm.
Let �x(t) ∈ R

nx be the state vector describing the trajectory
of the aircraft over the time t, �u(t) ∈ R

nu the control vector
that leads to a specific trajectory and �p ∈ R

np a set of control
parameters not dependent on t. The goal is to find the best
trajectory that minimises a given set of optimisation objectives
(or criteria) �J ∈ R

nj . Namely:

min
�z∈Z

�J(�z) = min
�z∈Z

[J1(�z), J2(�z), · · · , Jnj
(�z)] (6)

where Z ⊆ R
nx+nu+np+1, is the admissible set of decision

variables �z = [�x(t), �u(t), �p, tf ]
T , and Ji(�z) are scalar valued

functions representing each individual criterion or objective.
In order to guarantee a feasible and acceptable trajectory as

a result of the optimisation process presented above, several
constraints must be taken into account and are summarised as:

• dynamic constraints describing the trajectory of the air-
craft:

ẋ(t) = f(x(t),u(t)) (7)

• end point or event constraints fixing the initial and final
boundary conditions:

eL ≤ e(x(t0),x(tf ), t0, tf ) ≤ eU (8)

• mixed state-control path constraints allowing to restrict
the behaviour of some variables:

hL ≤ h(x(t),u(t), t) ≤ hU (9)

• box constraints on the state and control variables allow-
ing to bound them:

xL ≤ x(t) ≤ xU

uL ≤ u(t) ≤ uU
(10)

Function f is a non linear function that contains the dy-
namical model of the aircraft trajectory. Vectorial functions e

and h define the event and path constraints respectively and
vectors eL, eU , hL, hU , xL, xU , uL and uU are respectively
the Lower and Upper values which bound all constraints. For
a detailed description of theses functions and vectors, please
refer to [18].

B. Numerical solution of the optimisation problem

The optimal control problem described in section III, which
contains differential and algebraic constraints, is transformed
in two steps into a non linear programming (NLP) problem
with only algebraic constraints. First, differential equations (7)
are written in its equivalent integral form:

�x(t) = �x(t0) +

∫ t

t0

�f(�x(τ), �u(τ), �p) dτ (11)

Then, equation (11) is discretised using a sampling time
∆t = tn+1 − tn where tn+1 and tn are two consecutive
time instants using an explicit numerical integration rule to
approximate the above integral, as Euler or Runge-Kutta.
For example, in case of using the Euler rule, the following
equivalent discrete-time form is obtained:

�x(k + 1) = �x(k) + ∆t · �f(�x(k), �u(k), �p) (12)

Once the problem is formulated as a NLP, it can be
solved using a commercial optimisation software. In this paper,
the General Algebraic Modelling System (GAMS)2 is the
optimisation package used to code and solve the NLP problem.
The numerical optimisation method used to solve the problem
is a generalised reduced gradient search [19], implemented in
the NLP solver CONOPT3 available in the GAMS optimi-
sation package, which can cater for the nonlinearities of the
performance index and constraints.

The CONOPT optimisation algorithm starts by finding a
feasible solution; then, an iterative procedure follows, which
consists of:

• finding a search direction, through the use of the Jacobian
of the constraints, the selection of a set of basic variables
and the computation of the reduced gradient.

• performing a search in this direction, through a pseudo-
Newton process until a convergence criterion is met.

A detailed description of the CONOPT algorithm and its
implementation may be found in [20] and in the manuals
available at the GAMS web page.

2http://www.gams.com
3www.aimms.com/aimms/product/solvers/conopt.html
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C. Lexicographic algorithm

A solution �z∗ of the multi-objective optimisation problem,
presented in equation (6), is said to be Pareto optimal iff
there does not exist another �z ∈ Z such that Ji(�z) ≤ Ji(�z

∗)
for all i = 1, · · · , nj and Jj(�z) < Jj(�z

∗) for at least one
index j. In other words, a solution is Pareto optimal if and
only if an objective Ji(�z) can be reduced only at the expense
of increasing at least one the other objectives. In general,
there may be many Pareto optimal solutions to an optimisation
problem.

Lexicographic optimisation establishes a hierarchical order
among all the optimisation objectives. If such a priority exists,
a unique solution exist on the Pareto hyper-surface (see [21]
and the references therein).

Let the objective functions be arranged according to the
lexicographic order from the most important J1 to the least
important Jnj

. A given �z∗ ∈ Z is a lexicographic minimiser of
equation (6) iff there does not exist a �z ∈ Z and a j satisfying
Jj(�z) < Jj(�z

∗) and Ji(�z) = Ji(�z
∗) for all i = 1, · · · , j − 1.

An interpretation of this definition is that a solution is a
lexicographic minimum iff an objective Ji can be reduced
only at the expense of increasing at least one of the higher-
prioritised objectives {J1, ..., J(i−1)}. Hence, a lexicographic
solution is a special type of Pareto-optimal solution that takes
into account the order of the objectives. This hierarchy defines
an order on the objective function establishing that a more
important objective is infinitely more important that a less
important objective.

A standard method for finding a lexicographic solution is to
solve a sequential order of single objective constrained optimi-
sation problems. After ordering, the most important objective
function is minimised, subject to the original constraints. If this
problem has a unique solution, it is the solution of the whole
multi-objective optimisation problem. Otherwise, the second
most important objective function is minimised. Now, in
addition to the original constraints, a new constraint is added to
guarantee that the most important objective function preserves
its optimal value. If this problem has a unique solution, it
is the solution of the original problem. Otherwise, the process
goes on iteratively. More formally, the lexicographic minimum
of equation (6), lex min

�z∈Z

�J(�z), can be found by using the

following algorithm:

1: J∗

1 = min
�z∈Z

[J1(�z)]

2: for i = 2 to nj do
3: J∗

i = min
�z∈Z

[
Ji(�z)|Jj(�z) ≤ J∗

j , j = 1, ..., i − 1
]

4: end for
5: Determine the lexicographic minimiser set as:

�z∗ = arg(J∗

nj
)

Lexicographic optimisation permits to sort a priori the dif-
ferent optimisation criteria according to its relative importance.
This method has shown several benefits in front of the classical
weighting methodology [22], [23] and has been started to
be widely used in control engineering applications (see, for
instance [24], [21] and [25]).

TABLE II
HYPOTHETICAL SCENARIO DATA

Departing runway heading 70
o

Minimum climb gradient 3.3%

Initial point coordinates [0, 0] km

Final point coordinates [10, 20] km

Minimum height at final point 4000 ft

Maximum height at final point 10000 ft

Cost Index (CI) CI = 1

Height Index (HI) HI = 0.1

We can assume that the procedure designer in charge
of publishing such a departure trajectory (i.e. the decision
maker of this optimisation process) has a clear idea of what
prioritisations should give to each location, maybe influenced
by some political reasons. In that case, previous algorithm
leads to the best trajectory according to the desired hierarchy.
In the case where this prioritisation is not clear, or when a
more accurate scenario study is necessary, it is possible to run
all optimisations by using all possibilities in the prioritisation
order. The number of different prioritisations is nP = nj !,
where nj is the total number of noise sensitive locations. Then
a performance index is defined aimed at choosing the best
trajectory among all the possibilities.

Let J∗

i be the minimum annoyance that can be achieved at
sensitive location i (i.e. when location i is in the first priority).
Let JP

i be the annoyance at location i reached with the optimal
trajectory corresponding to priority P . For each priority P a
performance factor ∆P can be defined as:

∆P = max
i

(JP
i − J∗

i ) (13)

Then, the best trajectory, �z∗ corresponds to the priority
minimising this performance factor ∆P :

�z∗ = arg(min
P

(∆P )) (14)

IV. APPLICATION EXAMPLE

This section presents a practical example concerning an
hypothetical scenario where a departure route should be opti-
mised.

A. Scenario description

Table II summarises the different data that define this
scenario. In a departure trajectory it is enforced that speed
and altitude may not decrease during all the procedure. In
addition, being all trajectories below 10000 ft maximum air-
speed becomes vmax = 250 Kt [6]. The chosen aircraft model
corresponds to the Airbus A340-600 equipped with Trent
556 engines and operating at its Maximum Take-off Weight,
(m = 368000 kg). Take-off is supposed to be performed
with CONF3 flaps/slats configuration. The initial take-off
phase going from ground level to a height 400 ft will not
be considered in the optimisation process since the standard
operational regulations almost restrict all degrees of freedom
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TABLE III
NOISE SENSITIVE LOCATIONS

Sensitive location Acronym East coord. North coord.

School S 2000 m 1500 m

Industrial Zone I 6000 m 2500 m

Residential Zone 1 R1 4000 m 5000 m

Hospital H 7000 m 8000 m

Residential Zone 2 R2 6000 m 13000 m
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Fig. 6. Optimal trajectories at different hours of the day. Horizontal tracks

during this particular phase [6], [26]. In this initial phase the
aircraft follows a straight trajectory, following the departing
runway heading, at a constant speed (usually v2), which
depends on the aerodynamics and the actual weight of the
aircraft. For this problem, and for the sake of simplicity, initial
horizontal coordinates are set to zero at the point where the
aircraft reaches a height of 400 ft above the runway. Moreover,
during a normal take-off, the landing gear has been completely
retracted when passing 400 ft so it is not considered in the
simulations. Finally, five different noise sensitive locations
have been located in the vicinity of the departing runway (see
table III).

B. Optimal trajectories

Table IV contains the minimum annoyance values corre-
sponding to the trajectories that minimise only one noise
sensitive criterion in function of the hour of the day. In other
words, these values are the best annoyance figures that can
be achieved with independent single objective optimisations
at each sensitive location for this particular scenario. The
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Fig. 8. Optimal trajectories at different hours of the day. Speed profiles

corresponding Lmax values that produce such annoyance
values are also given in the table. As it was commented in
section III, in a multi-objective optimisation problem there
exist multiple Pareto-optimal solutions regarding all objec-
tives. Lexicographic optimisation presented in the same section
allows to obtain a solution of the Pareto front for a given
order in the optimisation objectives. Finally, by using equation
(14) the “best” Pareto-optimal solution is chosen, according to
the performance index stated in equation (13). Tables V and
VI show, for different hours of the day, the prioritisation P
giving the best performance index. These tables contain the
annoyance values at each noise sensitive location as well as
the corresponding Lmax values. Finally, it is shown the time
and fuel used in the optimal trajectory and the height reached
at the end of the procedure.

Figure 6 shows the corresponding 6 optimal trajectories
(flown at 04h, 07h, 10h, 13h, 17h and 19h). As it can be seen,
optimal night trajectories (04h) start with a straight segment
following runway heading and almost over-flying the school
location (S). However annoyance in this location is zero since
in night periods schools are not annoyed (see table V). This
initial path allows to keep a trade-off distance to residential
zone 1 (R1) and the industrial zone (I), producing a relatively
low value of annoyance (0.38 and 0.21, respectively). The
hospital (H) is passed following the east airspace restriction
(dotted line in figure 6) producing a relatively high amount
of annoyance (0.8) due to the high sensibility of this location
during night periods. Finally the annoyance produced in the
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TABLE IV
MINIMUM ANNOYANCE VALUES FOR EACH SINGLE OBJECTIVE TRAJECTORY. CORRESPONDING Lmax VALUES ARE GIVEN IN PARENTHESES

Hour of the day: 04h 07h 10h 13h 17h 19h

J∗

S
= min

�z∈Z

JS 0.00 (87.4 dB) 0.26 (61.1 dB) 0.53 (61.4 dB) 0.53 (61.4 dB) 0.52 (61.1 dB) 0.39 (61.1 dB)

J∗

I
= min

�z∈Z

JI 0.00 (42.6 dB) 0.00 (42.6 dB) 0.00 (42.6 dB) 0.00 (42.6 dB) 0.00 (42.6 dB) 0.00 (42.6 dB)

J∗

R1
= min

�z∈Z

JR1 0.13 (45.7 dB) 0.06 (45.7 dB) 0.00 (54.9 dB) 0.00 (48.6 dB) 0.00 (45.5 dB) 0.04 (45.6 dB)

J∗

H
= min

�z∈Z

JH 0.32 (47.1 dB) 0.24 (47.1 dB) 0.16 (47.1 dB) 0.16 (47.1 dB) 0.16 (47.1 dB) 0.20 (47.1 dB)

J∗

R2
= min

�z∈Z

JR2 0.02 (39.1 dB) 0.01 (39.1 dB) 0.00 (54.9 dB) 0.00 (48.6 dB) 0.00 (45.1 dB) 0.00 (41.5 dB)

TABLE V
OPTIMAL ANNOYANCE VALUES FOR THE BEST TRAJECTORY. CORRESPONDING Lmax VALUES ARE GIVEN IN PARENTHESES

Hour of the day: 04h 07h 10h

Best prioritisation P : JS , JR2, JH , JR1, JI , Ca JI , JH , JR2, JS , JR1, Ca JS , JH , JR1, JI , JR2, Ca

JS | lex min
�z∈Z

[ �JP
(�z)] 0.00 (81.7 dB) 0.42 (79.7 dB) 0.53 (61.4 dB)

JI | lex min
�z∈Z

[ �JP
(�z)] 0.21 (69.0 dB) 0.01 (41.8 dB) 0.03 (68.1 dB)

JR1| lex min
�z∈Z

[ �JP
(�z)] 0.38 (55.3 dB) 0.30 (60.9 dB) 0.16 (66.7 dB)

JH | lex min
�z∈Z

[ �JP
(�z)] 0.80 (60.9 dB) 0.24 (47.1 dB) 0.21 (49.1 dB)

JR2| lex min
�z∈Z

[ �JP
(�z)] 0.02 (38.9 dB) 0.28 (59.9 dB) 0.07 (61.4 dB)

t
f
| lex min

�z∈Z

[ �JP
(�z)] 230 s 237 s 241 s

h
f
| lex min

�z∈Z

[ �JP
(�z)] 4645 ft 4787 ft 6417 ft

Fuel| lex min
�z∈Z

[ �JP
(�z)] 1576 kg 1619 kg 1659 kg

TABLE VI
OPTIMAL ANNOYANCE VALUES FOR THE BEST TRAJECTORY. CORRESPONDING Lmax VALUES ARE GIVEN IN PARENTHESES

Hour of the day: 13h 17h 19h

Best prioritisation P : JI , JS , JR1, JH , JR2, Ca JI , JH , JR1, JS , JR2, Ca JI , JH , JR2, JS , JR2, Ca

JS | lex min
�z∈Z

[ �JP
(�z)] 0.55 (62.2 dB) 0.83 (79.6 dB) 0.62 (79.7 dB)

JI | lex min
�z∈Z

[ �JP
(�z)] 0.00 (53.8 dB) 0.00 (41.6 dB) 0.00 (41.7 dB)

JR1| lex min
�z∈Z

[ �JP
(�z)] 0.16 (62.8 dB) 0.24 (60.2 dB) 0.33 (61.0 dB)

J∗

H
| lex min

�z∈Z

[ �JP
(�z)] 0.18 (47.9 dB) 0.16 (47.1 dB) 0.20 (47.1 dB)

JR2| lex min
�z∈Z

[ �JP
(�z)] 0.10 (59.5 dB) 0.26 (61.0 dB) 0.30 (59.8 dB)

t
f
| lex min

�z∈Z

[ �JP
(�z)] 201 s 212 s 212 s

H
f
| lex min

�z∈Z

[ �JP
(�z)] 5791 ft 5370 ft 5481 ft

Fuel| lex min
�z∈Z

[ �JP
(�z)] 1402 kg 1459 kg 1458 kg

residential zone 2 (R2) is almost null (0.02) due to the high
distance kept from this location. In addition, in this trajectory,
the initial segment of the trajectory is also used to climb as
much as possible (see figures 7 and 8 where the vertical paths
and speed profiles are plotted in function of the time). This
climb allows to reduce the annoyance in R1, I and H.

Best trajectory for 07h is significantly different. At this time,
the school area starts to be annoyed by the over-flying aircraft

so the optimal trajectory for this hour of day starts with an
immediate left turn when the aircraft reaches 400 ft above
runway threshold. This left turn allows to keep the maximum
distance to the residential zone 1 and the hospital locations
as long as the west airspace restriction permits, producing a
medium amount of annoyance (0.30 for the residential zone
and 0.24 for the hospital). When the influence zone of the
hospital is passed the aircraft performs a right turn improving
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the annoyance at the second residential zone (0.28). At 10h
the annoyance produced when over-flying a residential zone
is relatively low, being just the opposite when over-flying the
school. Therefore, the optimal trajectory at 10h starts with
an initial right turn i order to avoid as much as possible the
school location (producing a value of 0.53 of annoyance).
Then, the aircraft turns left passing in between the industrial
zone, the residential zone 1, the hospital and the second
residential zone. It should be noted that the initial part of
this trajectory is used to accelerate instead of climbing. This
acceleration improves further climbing and maximises the
aircraft height when approaching all the remaining locations.
The best trajectory at 13h is very similar to the previous one
but, at this time, the aircraft passes in between the school and
the first residential zone because in the afternoon residential
zones start to be more annoyed. This influence is noticed
in optimal trajectories corresponding to 17 and 19. These
trajectories are essentially the same as the optimal trajectory
corresponding to 07h.

V. CONCLUSIONS

A technique for designing noise abatement departure pro-
cedures is presented in this paper. Noise annoyance produced
by over-flying aircraft is modelled by using fuzzy logic in
function of the received noise level during the trajectory, the
sensibility of the areas being over-flown and the time of the
day when the aircraft departure takes place. A non-linear
multi-objective optimal control problem is formally written
specifying the different objective functions considered. This
problem is transformed to a Non Linear Programing (NLP)
problem after a suitable discretisation and it is solved by
using a lexicographic multi-objective optimisation technique.
Finally, an application example is shown considering an hy-
pothetical scenario with an hospital, a school, two residential
zones and an industrial zone. Results show how this strategy is
valid for solving this kind of multi-criteria optimisation prob-
lem, obtaining optimal trajectories that minimise nuisances in
the population at different hours of the day. Work is underway
extending this study including different aircraft types and
different departures (different final points) corresponding to
a realistic scenario of an existing airport with its surrounding
features. In addition, further work will deal with the model of
actual residential or industrial areas, treating them as a surface
in the optimisation process and not only as a single point as
it is presented in this work.
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Abstract— Turbulence is a major aviation hazard for both 
commercial and private aircraft. Currently, the clear-air turbulence 
forecasting tool Graphical Turbulence Guidance (GTG) is used by 
airline meteorologists and dispatchers for flight planning, and in part 
to determine operational Airman’s Meteorological Information 
(AIRMET) turbulence advisories; however, GTG has much higher 
resolution and intensity discrimination than do AIRMETs, providing 
more pinpointed locations of moderate or greater turbulence. 
Because numerical weather prediction (NWP) models cannot 
explicitly predict aircraft-scale turbulence, we use artificial 
intelligence (AI) algorithms to capture the relationships between 
large-scale atmospheric conditions and turbulence. This paper 
provides an overview of GTG and details beginning work for 
development of the next release of GTG using in-situ turbulence 
observation data. We apply two AI techniques, support vector 
machines and logistic regression, to clear-air turbulence prediction. 
We show improved forecast accuracy over the current product 
performance, and begin specializing forecasts by geographic region 
and altitude. We show the algorithms’ feasibility as part of a real-
time operational turbulence forecasting system.  

I. INTRODUCTION

Pilots' ability to avoid turbulence during flight affects the 
safety of the millions of people who fly commercial airlines 
and other aircraft every year. Turbulence is a rare event in 
terms of percentage of the atmosphere that is turbulent at any 
given time [10], however, of all weather-related commercial 
aircraft incidents, 65% can be attributed to turbulence 
encounters, and major carriers estimate that they receive 
hundreds of injury claims and pay out “tens of millions” per 
year [26].Turbulence can occur in and around thunderstorms, 
over mountains, near the ground, in clouds, and even in clear 
air. At upper levels, clear-air turbulence, or CAT, is 
particularly hard to avoid because it is invisible to traditional 
remote sensing techniques. The dynamical scales in which 
CAT appears, however, are far finer than those of any current 
weather prediction model. And observations of the state of the 
system – reports of ‘light’ or ‘moderate/severe’ radioed in by 
pilots who encounter turbulence – are sparse and subjective.  

In 1998, the Federal Aviation Administration (FAA) 
Aviation Weather Research Program (AWRP) funded the 
National Center for Atmospheric Research Research 
Applications Lab (NCAR/RAL) to develop a graphical 
decision support tool, now called Graphical Turbulence 
Guidance (GTG), which provides clear-air turbulence (CAT) 

forecasts over the continental U.S. (CONUS). GTG became 
operational in 2003. Meteorologists and dispatchers at the 
major airlines have access to GTG forecasts through the 
National Weather Service (NWS) Aviation Weather Center’s 
(AWC) Aviation Digital Data Service (ADDS) website to use 
in planning and altering flight routes. AWC forecasters 
consider GTG forecasts when producing Airman’s 
Meteorological Information (AIRMET) turbulence advisories, 
also available on ADDS. Future development plans include 
merging CAT forecasting with other forecasting products and 
weather information in the Joint Product Development Office 
(JPDO) Next Generation Air Transportation System 
(NextGen), a comprehensive four-dimensional weather 
information source for  aviation decision support (information 
available online at http://jpdo.gov) 

The turbulence forecasting difficulty is due to two main 
factors: (1) turbulent eddies at the scales that affect aircraft 
(~100m) are a microscale phenomenon and operational 
numerical weather prediction (NWP) models cannot resolve 
that scale (NWP models that are run operationally by the 
National Weather Service, for instance, which produce hourly 
and daily weather predictions, only capture what’s happening 
every 10 to 20 km) and (2) lack of objective observational 
turbulence data. The prior factor has been addressed during the 
past 50 years, by assuming that most of the energy associated 
with turbulent eddies at aircraft scales cascades down from 
larger scales of atmospheric motion [9,20,28].The turbulence 
forecast problem then becomes one of linking large-scale 
features resolvable by NWP models to the formation of 
aircraft-scale eddies. Numerous ‘rules of thumb’ empirical 
linkages, termed turbulence diagnostics, were developed by the 
National Weather Service, airline meteorologists and academic 
researchers. The forecast skills of these diagnostics depend on 
the forecaster (for manual forecasts) and diminish with lead 
time. The diagnostics' skills reflect in part researchers' 
imperfect understanding of the atmospheric processes 
involved. 

The second problem is being addressed by a new, better 
source of turbulence observations, termed in-situ data. In-situ 
data are sensor data from aircraft: measures of atmospheric 
eddy dissipation rate (Cornman et al., 2004). While the study 
of CAT is necessarily limited to that directly experienced by 
aircraft since it cannot be seen, in-situ data is so much more 
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plentiful than PIREP observations that researchers now have 
enough data to explore additional AI techniques for 
forecasting. 

This paper details the atmospheric and observational data 
used in turbulence forecasting, the current operational 
algorithm, and how new AI approaches, used both over the 
entire domain and regionally, in combination with new, more 
plentiful in-situ turbulence observations to improve operational 
CAT forecasting. 

II. BACKGROUND

A. Turbulence Diagnostics 

Through the years when forecasts were done manually, 
forecasters developed “rules of thumb” about what atmospheric 
conditions typically indicated turbulence. These rules of thumb 
were an attempt to link the available large-scale meteorological 
information to the micro-scale CAT that was the subject of the 
forecast [13]. Forecasters later quantified these rules, creating 
CAT diagnostics. A CAT diagnostic is a simple turbulence 
model (equation) calculated from NWP model data. For 
instance, a major cause of CAT is the Kelvin-Helmholtz 
instability: when gravity waves become steep and unstable, 
they may break into a chaotic motion [9]. This typically 
happens in areas of strong vertical shear (the difference in 
velocity between horizontal layers) and low local Richardson 
number (Ri, the ratio of static stability and wind shear), so 
many CAT diagnostics involve shear and Ri. There are many 
different diagnostics, each linking a large-scale condition to 
small-scale turbulence. Their predictive powers vary, 
depending upon the large-scale condition that each represents 
and how directly it is linked to turbulence. A full explanation 
of the forty CAT diagnostic equations can be found in [26]. 

Forecasters use these diagnostics by mapping their values 
to different turbulence severity levels. As an example, low Ri 
indicates high turbulence. Early on, forecasters determined 
some unofficial thresholds to quantify the severity of 
turbulence that corresponded to a given diagnostic value--- “Ri 
< 0.25 = moderate or greater turbulence,'' for example [9]. In 
this way forecasters were able to transform their qualitative 
knowledge to a quantitative form (diagnostics) which could be 
used in automated systems. GTG developers used several 
years’ worth of PIREPs to develop threshold values for each 
diagnostic that map to different levels of PIREP turbulence 
severity. This allows the diagnostics to work neatly with the 
qualitative PIREP observations. Since there are many problems 
with PIREP accuracy, and optimal thresholds may change 
depending on the day or season, we hope to avoid this step in 
the next forecasting system. We expect that AI techniques will 
do this thresholding step within their algorithm and thus can 
either find the best thresholds themselves, and/or respond to the 
dynamic relationship between large-scale and small-scale 
atmospheric processes by adjusting these thresholds during 
training. 

Figure 1.  The PIREP and in-situ data used in this study, showing the 
geographic distribution of in-situ data. PIREP data are all but invisible under 
dense in-situ data along United flight paths; some can be seen as points in the 
southeast and surrounding the U.S. Color indicates frequency of observations.  

B. In-Situ Data 

In-situ turbulence measurements are sensor data that are 
recorded by special software on commercial aircraft every 
minute during flight. Detailed coverage of in-situ data methods 
can be found in [6] and [7]. Specifically, in-situ measurements 
are an estimate of atmospheric turbulence intensity called the 
eddy dissipation rate (EDR) around an aircraft. Eddies are 
irregular currents of air, and the rate at which eddies break 
down is recognized as a good measure of atmospheric 
turbulence intensity [23]. Compared to PIREPs, in-situ data are 
more objective, more accurate, more plentiful, and more 
representative of the actual distribution of turbulence in the 
atmosphere [8, 26]. At any one time, over 99% of the 
atmosphere is expected to be free of turbulence [10].   

Currently, in-situ measurements of EDR are being gathered 
from 197 United Airlines aircraft. Several other airlines will 
deploy the same system in the coming year. The in-situ data 
used in this study, from October-March 2006/7, is shown in 
Figure 1. Each in-situ data report is a location triple (latitude, 
longitude, altitude) and a median and peak (95th percentile) 
EDR reading from measurements taken over the corresponding 
minute. Each of the two EDR fields is binned and the two 
binned values are transmitted to the ground. The binning turns 
otherwise continuous quantitative observation data into a set of 
eight discrete values that are cognate to the eight PIREP 
intensity levels. Currently, we consider bin 4 to correspond to a 
‘moderate’ PIREP, although study to better qualitatively 
understand in-situ data is ongoing [2]. 

C. Performance Metrics 

It is not trivial to assess the accuracy of a forecast because 
we do not know the ‘truth’; we must use available observation 
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data, however flawed or irregular. We follow the verification 
practices of [27], which include the Receiver Operating 
Characteristic (ROC) curve and area under the ROC curve 
(AUC) [22], and True Skill Score (TSS). A ROC curve 
measures how well an algorithm discriminates between 
Moderate or Greater (MOG) and less than moderate (LTM) 
turbulence. To construct the curve, we vary the threshold that 
separates these two classes over a range of 0 to 1 and measure 
the discrimination accuracy at each threshold. Two numbers 
are used to capture this: PODY, “probability of detecting a yes” 
(forecast made a correct positive (MOG) prediction), and 
PODN, which corresponds to a correct negative (LTM) 
prediction. Higher the PODY/PODN combinations over the 
range of thresholds implies greater classification accuracy, so 
the area under the curve (AUC) is a useful single-number 
metric for forecast accuracy. The TSS considers PODY and 
PODN at one threshold: TSS = PODY + PODN – 1. As 
mentioned in subsection B, our threshold for this study is in-
situ bin 4 and ‘moderate’ PIREPs: bin 4 and above constitute 
the MOG category, and below bin 4 constitutes the LTM 
category.   

D. Graphical Turbulence Guidance System 

The GTG forecasting product produces a graphical display 
of turbulence severity for each flight level, FL100 to FL450, 
over the CONUS, for zero, six, nine and 12 hour forecasts, 
updated every hour. Displays of the operational product 
(GTG1) are available in real-time on the ADDS website, 
http://adds.aviationweather.noaa.gov. The newer version, 
GTG2, is available on the experimental ADDS website, 
http://weather.aero. An example is shown in Figure 2, with the 
AIRMET forecast for comparison of forecast specificity.   

Every hour, the algorithm calculates ten diagnostics from 
the National Center for Environmental Prediction’s (NCEP) 
Rapid Update Cycle (RUC) model at 20km resolution for that 
hour [3]. These diagnostics are paired with incoming PIREPs 
from a time window around the RUC time, usually 1.5 hours. 
A fuzzy logic technique scores each diagnostic based on its 
agreement with the observation data, deriving a set of weights 
such that the weighted sum of the diagnostic values is between 
zero and one. The scoring function, per diagnostic over the 
CONUS, incorporates TSS and percentage of the CONUS 
forecast as MOG turbulence (fMOG): 
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Figure 2. An example of a GTG2 forecast display (above)  which designates 
light, moderate, severe and extreme CAT per hour for each flight level, and 
AIRMET (below), in green, which show much larger polygon areas of 
moderate turbulence  for a corresponding 6-hour period over all flight levels. 
Both displays are from http://weather.aero. 
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The set of weights is applied to the RUC diagnostics 
calculated from the 6, 9 and 12 hour RUC forecast. This 
dynamic weighting allows GTG to respond to changing 
conditions every hour.  While the fuzzy logic handles sparse 
PIREP observation data well, the new, plentiful in-situ data 
allows for more choices in prediction algorithms. 

E. Artificial Intelligence Techniques 

Generally, a classifier is an algorithm that predicts a data 
classification given (presumably) relevant data features. The 
Support Vector Machine (SVM) is a popular machine learning 
technique for classification. The SVM produces a model that 
predicts the class label by setting parameter values of an 
optimization problem based on its input data [15]. Here, class 
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labels are MOG turbulence, and LTM turbulence (see 
subsection C). 

In order to learn the relationships (parameter values) 
between these data features and the class label, we first train a 
classifier by giving it many known feature/class pairs. Each 
pair in the training set is known as a data instance. A data 
instance k consists of a set of features ,i kx 1...i n= and a 
target class label y.

During training, each feature vector kX is mapped into a 
higher dimensional space. The SVM finds a linearly separating 
hyperplane with the maximal margin between class means in 
this higher dimensional space. To classify an example, the 
SVM calculates the distance of that example to each class 
mean through a series of dot products, and classifies it in 
whatever class has the closest mean [5]. This series of dot 
products is at the heart of the model and is a measure of vector 
similarity called a kernel function: 

                             ( , ) ( ) ( )T
i j i jK x x x xφ φ=                         (4)

 For implementation of the SVM, we use the LibSVM 
library [4]. LibSVM provides four basic kernels and an 
optional program, “grid.py”, which selects the model (i.e., does 
a parameter search). Previous studies [1,2] show good 
performance for the radial basis function kernel:

             2( , ) exp( || || ), 0i j i jK x x x xγ γ= − − >                (5) 

The radial basis function kernel only has two parameters: 
γ  and C, a penalty parameter for the SVM error term. A 
model can output probabilities for class membership, also. 

A logistic regression equation is solved iteratively over the 
training set, determining a prediction equation with a 
parameter, or weight, for each feature. The response variable, 
between zero and one, is the log odds that the class label is one. 
We can interpret the log odds as a probability, and decide that 
P(y) >=0.5 should be classified as MOG.  Background on 
logistic regression can be found in [14]. 

III. METHODOLOGY

Our initial application of AI techniques to operational 
turbulence prediction consisted of testing Support Vector 
Machine (SVM) and logistic regression algorithm performance 
over our entire prediction domain, the CONUS. For each 
algorithm, for both zero-hour and six-hour forecasts, we used a 
subset selection search to pick a subset of CAT diagnostics 
which together had the highest forecast accuracy. We then 
tested the performance of each model in a simulated 
operational real-time system using either a static model for 
each hour’s forecast or dynamic training of the model using the 
previously-chosen subset. We’ve taken the first steps to make 
specific forecasts, with specific sets of diagnostics, for different 
regions of the CONUS. The following subsections summarize 
our data and methods. 

A. Data 

Data used in the current development stage consist of 
weather model and observation data – both PIREPs and in-situ 
data – from October through March 2005/6 and 2006/7, shown 
in Figure 1. The weather model is the RUC NWP model at 
13km resolution, run operationally and disseminated every 
hour by the National Center for Environmental Prediction 
(NCEP) [3]. RUC model data was used to calculate forty CAT 
diagnostics for each RUC model grid point and observation 
data was matched by time and location to the forty diagnostics 
for a grid point. Since we are primarily interested in predicting 
CAT, an upper-level phenomenon, only matches above 20000ft 
were used.  

The distribution of the data used during the training process 
is a very important factor in the ability of a classifier to 
discriminate between the two classes [17]. The winter 2006/7 
data set, as an example, contained nearly nine million 
observation/diagnostics matches. Over 98% were LTM 
turbulence. SVMs, for instance, aim for the lowest overall error 
rate, and could simply classify everything as LTM and have a 
less than 2% error. This is well-supported in the literature [16, 
29, 30]. To work well, the training data set must have a large 
number of examples from each class; we rebalanced the 
training data such that 40% of the data were of MOG, and 60% 
were LTM. We did this by keeping all the MOG observations 
and choosing LTM observations randomly to be 60% of the 
set. This proportion of MOG/LTM resulted in the best SVM 
classification rate in an earlier study of SVMs with CAT 
diagnostics and in-situ data [1]. We found 20% MOG and 80% 
LTM to be a good distribution for logistic regression training 
data.  

Analysis of the data reveals that PIREPs dominate the 
MOG category (>92%) – partly due to inadequate special 
coverage of in-situ data at this time – and in-situ data 
dominates the LTM category (>98%).  Thus, PODY is 
effectively a measure of the algorithm’s ability to predict 
PIREPs and PODN is a measure of in-situ prediction 
capability. Since in-situ data is more objective, we know using 
only in-situ data to train the algorithm improves performance 
[2]. However, our forecasting product will be verified using 
PIREPs, at least in part, and they cover more geographical area 
than do in-situ data, thus we cannot abandon them yet.  

B. Subset Selection Search 

Turbulence forecasting, in its current state, is essentially the 
task of classifying atmospheric indicators of turbulence: the 
forecast reflects the number of diagnostics which indicate 
turbulence in an area. While it might seem obvious to simply 
use the individually best-performing diagnostics for 
forecasting, as was done with GTG, that approach allows one 
to possibly miss a different set of diagnostics that might 
perform better, as a group, than the set of the individually top-
ranked diagnostics [12, 19, 20]. Our search for the best subset 
of diagnostics is essentially the task of feature subset selection 
[12]. We are faced with the choice between 40 diagnostics, 
knowing that some may not improve our current forecasting 
accuracy. In addition, it is infeasible to calculate and use all 40 
in a real-time operational system. The wrapper method in 
feature subset selection executes a state space search for a good 
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feature subset, estimating prediction accuracy using an 
induction algorithm – here, we used SVMs or logistic 
regression [19], with TSS as a final scoring metric. We used a 
simple hillclimbing search. Each state is a subset of 
diagnostics, and the search operator is “add a diagnostic”. The 
search chooses the best addition to the current subset based on 
the classification performance of the induction algorithm using 
the current subset plus an additional diagnostic. This approach 
to the search is called forward selection. Thus, we start with an 
empty subset and added diagnostics stepwise; our stopping 
condition was no further classification performance 
improvement (measured by no change in TSS).  Searches were 
performed for SVM and logistic models for both zero and six-
hour forecasts using training, testing and holdout data sets from 
18Z over winter 2006/7.  

C. Simulated Real-Time System 

We have created a simulated real-time forecasting system 
capable of using either SVMs or logistic regression to create a 
turbulence forecast every hour for the CONUS (like GTG). The 
system is capable of training a model for every forecast hour or 
using a pre-trained model so that we may test performance 
differences between dynamic and static weighting, 
respectively. For both, we use the sets of diagnostics found in 
the searches explained in subsection B. Results are from trials 
over the fifteen day period of 2/1/2007 to 2/15/2007. Thus far, 
we have concentrated on zero-hour forecasts in this step.  

We had to take several steps to make the SVM algorithm 
feasible for a real-time system. Since LibSVM uses ASCII 
files, 13km-resolution gridded RUC data caused each forecast 
to take over an hour. To streamline processing, we built a 
NetCDF file format interface onto the library. We also replaced 
the exponential function with an approximation. Both changes 
cut the forecast time down to a more operationally-appropriate 
five minutes.  

D. Regionalization 

Thus far, we have conducted regionalization studies using 
SVMs only, on winter 2005-2006 data. We employed subset 
searches for each of these regions: west of 100W meridian, east 
of 100W, above and below 30000ft (20000 to 30000ft), and by 
both geography and altitude (e.g., east of 100W and below 
30000ft: low east). We plan to further refine and divide regions 

TABLE I. AREA UNDER THE CURVE, TRUE SKILL SCORE, AND SUBSET 
SIZE RESULTS FOR FEATURE SELECTION SEARCHES AND 0-HR 15-DAY REAL-
TIME SIMULATION RUNS. GTG SKILLS FOR THE SAME DATA ARE IN ITALICS.
HIGHER TSS AND AUC INDICATE GREATER SKILL.

 AUC TSS Subset size 
GTG 0hr fcsts 0.795 0.390 10 
Log search 0hr 0.801 0.478 13 
SVM search 0h 0.7825 0.471 8 
GTG 6hr fcsts 0.78 0.366 10 
Log search 6hr 0.79 0.467 6 
SVM search 6h 0.78 0.4643 12 
GTG 0-hr 15days 0.799 0.350 10 
Log static 0-hr 0.823 0.466 13 
SVM static 0-hr 0.796 0.459 8 
Log dyn. 0-hr 0.786 0.45 13 
SVM dyn. 0-hr 0.775 0.464 8 

TABLE II. INITIAL REGIONALIZATION RESULTS USING SVM FOR WINTER 
2005/6. THE GTG TSS FOR THIS PERIOD WAS 0.453; EVEN ARBITRARY 
REGIONALIZATION SHOWS IMPROVEMENT WITH SPECIALIZED SETS OF 
DIAGNOSTICS.

Region TSS Set of Diagnostics 
West 0.465 6 
East 0.562 4 
>=30000ft 0.447 5 
<30000ft 0.607 5 
High west 0.441 4 
High east 0.516 4 
Low west 0.614 5 
Low east 0.519 2 

Figure 3. Receiver operating characteristic (ROC) curves comparing 
performance for 15-day real-time simulation of 0-hr forecasts using static 
weighting. The solid line is the current GTG performance for the same 15-day 
period. Lines closer to top left corner indicate better forecasting performance. 
See Table 1 for areas under the curves.  

Figure 4. Like Figure 3, for dynamically-trained models. 

in the near future, but for this study, we have simply isolated 
the mountainous terrain in the west region from the non-
mountainous terrain in the east.  
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IV. RESULTS

Results of our forward selection subset searches and real-
time simulations are shown in Table 1. While we do not list the 
exact diagnostics chosen by each search for the sake of 
simplicity, we did find that there was significant — though not 
complete — overlap in the diagnostics chosen by each search, 
indicating high predictive capability for a core subset of four or 
five diagnostics. Logistic regression shows a small 
improvement in AUC over the overall performance of the 
current GTG algorithm for both 0 and 6-hr forecasts (about a 
0.01 difference), however, the true-skill scores (TSSs) for both 
algorithms are significantly improved over GTG (0.09 – 0.1 
improvement).  This is most likely due to the fact that our 
search used TSS as the heuristic to choose the sets of 
diagnostics.  

Figures 3 and 4 show the ROC curves for our static- (model 
trained in the search step is applied to data from each hour)    
and dynamic-weighting (new model is trained every hour) 15-
day real-time simulations. It should be noted that GTG has 
been tuned using years of PIREPs, thus its PODY scores are 
highest (since PIREPs dominate the PODY category). Logistic 
regression using pre-determined (static) weights improves 
significantly upon the current GTG product, increasing the 
AUC from 0.799 to 0.823 and the TSS from 0.350 to 0.466. 
While the static-weighting SVM and both dynamically-
weighted models had similar improvements in TSS over GTG, 
we saw no improvement in AUC (mainly due to reduced 
prediction skill for the MOG category).  TSS is discrimination 
skill at the MOG threshold, 0.375; AUC measures 
classification skill at many thresholds. Thus, we have improved 
forecasting performance at the operational MOG threshold, 
although the ROC curves show us that there is still need for 
improvement in the algorithms overall.  

Our initial regionalization results are shown in Table 2. For 
winter 2005/2006, the baseline TSS for the GTG algorithm was 
0.453; thus, most regions showed improvement in forecasting 
accuracy when using chosen subsets of diagnostics. In addition, 
the fact that different diagnostics were chosen in the different 
regions indicate that diagnostics can perform differently in 
different areas of the country, reflecting the geographic 
differences in the large-scale atmospheric processes they 
represent and good potential for the regionalization approach.   

V. CONCLUSIONS

Forecasting clear-air turbulence is critical to aviation safety. 
AI techniques can be very useful in meeting the challenges 
inherent in this process because they smoothly handle sparse, 
noisy data sets, significant levels of uncertainty, and gaps in the 
understanding of the underlying physical mechanisms, all of 
which are characteristics of the turbulence prediction domain.  

This paper has detailed the first steps in applying the 
artificial intelligence techniques of support vector machines 
and logistic regression to clear-air turbulence forecasting. 
While the current GTG product uses fuzzy logic, the 
algorithmic choices were limited by the sparse PIREP 
observation data; now, the more objective and plentiful in-situ 
data vastly widens the choices for prediction algorithms. 
We’ve shown not only improvement in forecasting 

performance both globally and regionally, but also the 
feasibility of implementing these AI algorithms in a real-time 
operational product setting. Future work includes continued 
study of these algorithms for regionally-specific forecasting 
and probabilistic forecasting.  
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Abstract— Air Traffic Managers increasingly need to consider

environmental impacts when planning future operations or

reviewing current procedures, particularly in relation to noise

and emissions. In response to this need an environmentally aware

Air Traffic Management (ATM) modelling tool has been

designed and implemented in the context of the Environmentally

Friendly Airport ATM Systems (EFAS) Project. This paper

focuses specifically on the support environment provided by the

ATM modelling tool and how it was used to inform the decision

making process in an example case study examining the impact of 

various amounts of stacking on the environmental efficiency of

Continuous Descent Approaches (CDAs). 

It is found in a pessimistic scenario, (where no delay is absorbed

‘up-stream’), traffic arriving at a medium sized UK airport

subjected to increasing traffic levels, (from 2004 out to 2030),

experience exponentially growing stacks. In a 2015 timetable

scenario, for example, stacks are found to generate

approximately 11% more CO2 and 5% more NOx than top of

descent CDAs alone. This finding underlines, from an

environmental perspective, the need for the use of advanced

ATM techniques such as Airborne Separation Assistance Systems

(ASAS), Arrival Management tools (AMAN) and Collaborative

Decision Making (CDM), to produce a set of efficient, de-

conflicted, flight movements. 

Keywords - Modelling, Stacking, Continous Descent

Approaches, Air Traffic Management, Environment, On demand

delay.

I. INTRODUCTION

A. Background

NATS, the UK’s Air Navigation Service Provider, (ANSP),
has forecasted that by 2015 its air traffic will have increased by
45%. Environmental impacts, if not addressed, will lead to
unsustainable growth and constrain the development of
airports. Consequently airport stakeholders need to make an
informed exploration of the procedural and technological ATM
options at their disposal to help the airport meet increasingly
stringent environmental targets [1].

B. The challenge of developing Environmentally Friendly

Airport ATM

It is the convergence of the air traffic network at its airports
where some of the most intricate logic in ATM comes into
play. This is true of how the traffic is managed and what
metrics are used to measure its performance (principally the
capacity it provides verses the emissions and noise it produces)
[2].

One can develop hypotheses for reducing environmental
impact but the testing and validation of these concepts is not
always practical due to the cost, time and equipage issues
involved. Therefore, when examining the impact of radical
operational changes at a system wide level, (both for present
and future scenarios), other methods are required to explore
and rationalise the trade-offs involved. Computational models,
(sometimes referred to as Synthetic Environments), are ideal
for testing such hypotheses as they can realise the
consequences of solutions without the cost of actual
implementation. This helps to evaluate the properties or
behavior of a potential solution, thereby allowing scenarios to
be optimised to the requirements of the project. This process
not only informs the planning and decision making process; it
can also help to evolve the solution space itself.

II. THE EFAS PROJECT

The Environmentally Friendly Airport ATM Systems
(EFAS) Project (see acknowledgments for details) identified a
number of candidate ATM technologies and systems that were
expected to reduce the environmental impact of the growth in
air traffic. To assess the proposed operational improvements of
these ‘solutions’ a modelling environment was developed.

The EFAS Model is a purpose built simulation environment
designed to capture the environmental impact of an operational
ATM system. It includes detailed information about aircraft
movements, the noise they generate and the chemical
emissions they produce. This environment is an integrated
implementation of a bespoke trajectory model that utilises
Eurocontrol’s BADA (Base of Aircraft Data) model 3.6 [3], the
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FAA’s INM (Integrated Noise Model) 6.0 [4] and the QinetiQ
Emission Model (the latter uses Boeing Fuel Flow
Methodology and was previously used in [5]).

Each ‘solution’ is assessed by modelling one or more
scenarios. Each scenario represents a day of operations at a
medium sized UK airport; it considers aircraft taxi, landing and
take off (LTO) operations up to 20,000ft (although emissions
calculations were capped at 10,000ft due to processing
constraints). A scenario is defined by a number of
configuration files, each describing an aspect of an ATM
system. One such file is the arrivals timetable; one was created
for each of the scenario years simulated (a busy day in 2004,
2010 and then out to 2030 in 5 year steps) by Cranfield
University (see Fig. 1). Future aircraft types are mapped to
existing types in BADA that had emissions and noise
characteristics judged to be nearest. Linear reductions are
applied to future aircraft type’s fuel burn and emissions to
account for future aircraft type efficiencies.

Figure 1. A number of scenario configuration files, with a preview of the
arrival timetable configuration file.

Due to the processing power required to model a large
number of scenarios, the EFAS Model is hosted at a QinetiQ
data processing facility. As the facility is a shared resource,
there were only a limited number of batch execution runs of the
Model available to the EFAS project. Prior to a batch
execution, each partner was invited to submit a collection of
zip files to QinetiQ, with each file describing a model
configuration designed to emulate a particular scenario.

Constructing scenarios is a complex and technical process,
prone to error as it requires a high level of planning and fore-
thought. As many of the configuration files are complex and
dense, syntactical and semantic errors can be easily made.
Without a tool to support the construction of scenarios any
errors in configuration files will only be identified when the
scenario is processed by the EFAS Model as they would result
in execution failure. As use of the model is limited, such an
execution failure is an undesirable waste of a limited resource.

Furthermore, as a large number of scenarios were planned
for each batch execution (up to 100) transferring scenario zips
between the EFAS consortium partners and the QinetiQ facility
presented a technological and logistical challenge. This was
further complicated due to the fact that once results were added
to scenario zips the files became too large to email.

Therefore to overcome the problems discussed a scenario
builder tool was developed to support the construction,
submission and subsequent analysis of scenarios.

A. The EFAS Scenario Builder Tool 

The Scenario Builder Tool enables the use of the EFAS
Model using an access anywhere web-based interface. As the
tool is web-based, it is platform independent, the user is not
required to install any software and it could be securely
accessed anywhere1.

1) Scenario Construction
The user can create an unlimited number of scenarios using

the tool. When first accessing the tool, the user is presented
with a list of all existing scenarios and their current state, such
as ‘Under construction’, ‘Ready for processing’ and ‘Results
available’ (see Fig. 2). 

Figure 2. Scenario list filtered for batch run 3. 

The tool allows a scenario to inherit all or part of its
configuration from other scenarios built using the tool,
encouraging reuse of configuration files between partners and
ensuring maximum comparability between different scenario
results. A number of default or ‘baseline’ scenarios were
provided for each modelled day. 

Configuration of a scenario is split into a number of
functional sections, such as Airspace Design, Timetable &
Aircraft, Airport & Weather, etc. For each individual
configuration file the user can upload a custom version of the
file, preview the file’s contents directly in the browser, use the
default version of the file or inherit a version of the file from an
existing scenario.

Figure 3. Configuring a scenario.

1 Access to the tool required a username and password and all
transmissions to and from the server were SSL encrypted.
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Automated error checking validates a modelling scenario’s
configuration for syntactic and semantic errors, ensuring that
errors are caught at the development stage - before the
modelling scenario is processed by the EFAS Model. Any
errors are provided to the user in an easy to understand in-
context manner, (see the red text in Fig. 3).

2) Job Submission
Once the construction of the scenario has been completed,

the user can set the modelling scenario as ‘Ready to process’.
The tool provides a facility to allow bulk download of all
scenarios marked as ‘Ready to process’.

3) Result Delivery
When modelling results are available for one or more

modelling scenarios, they can be uploaded to the Scenario
Builder Tool. Results are then accessible through each
modelling scenario’s ‘results’ tab (see the far right tab in Fig
3).

B. Scenario Assessment Lifecycle

The Scenario Assessment Lifecycle (Fig. 4) shows how the
Scenario Builder Tool is used to analyse, assess and iteratively
develop a solution in EFAS.

Figure 4. The Scenario Assessment Lifecycle.

1. The Web Based Scenario Builder Tool is used to
describe a scenario. When a scenario description is
complete, the user can change the scenario’s state
from ‘Under Construction’ to ‘Ready to Process’.

2. As use of the facility that hosts the EFAS Modelling
Environment is limited, scenarios are processed in
batches. On a number of fixed dates, all scenarios
with a state of ‘Ready to Process’ are downloaded
from the Scenario Builder Tool and processed by the
EFAS Modelling Environment. The results of the
modelling are then uploaded to the Scenario Builder
Tool.

3. The user can now access the modelling results for
each scenario using the same interface used to
describe the scenario.

4. Commercial off the shelf and bespoke external tools
can now be used to analyse the modelling results.

5. Using the findings from scenario analysis, a scenario
can be refined and re-processed.

An example case study examining the impact of holding on
Continuous Descent Approaches (CDA) that made full use of
the Scenario Builder Tool is now illustrated.

III. EXAMPLE CASE STUDY: THE IMPACT OF AIRBORNE

HOLDING ON CDA

A. The use of holding and path-stretching in ATM 

Efficient airport ATM operations rely on the timely
deployment of optimal aircraft operating principles during
approach, landing, taxi, take off and departure. An efficient
approach to landing is one that yields an effective loss of the
aircraft’s potential energy as it descends without needing
additional energy input, (e.g. to account for level segments or
holding periods). This is achieved by managing its momentum
from Top Of Descent (TOD), En-route or stack altitude such
that the vertical and lateral speed of the aircraft as it is accepted
onto the glide slope are optimised for the aircraft type to ensure
a safe and efficient landing. In advancing aircraft operations
towards this envisaged ‘optimal trajectory’ such concepts as
Low Power/Low Drag (LPLD) and Continuous Descent
Approaches have been conceived.

Application of LPLD principles seeks to minimise noise at
the aircraft source by specifying the maintenance of a low
thrust and low drag profile of the aircraft. The aircraft is
maintained in the most aerodynamically ‘clean’ configuration
for as long as operationally possible in the prevailing air traffic
and meteorological environment. Ideally the aircraft minimises
its air brake use and delays the deployment of both the flaps
and landing gear until they are absolutely necessary for the safe
energy management of the approach. By comparison a CDA
minimises the periods of level flight while maintaining as close
to thrust idle as possible. Unlike an LPLD approach a CDA
specifies the nature of the vertical approach profile to be flown.

Due to safety considerations it is generally accepted that the
aircraft must be established on the glide-slope in its final
configuration for landing by 2000 ft Above Ground Level
(AGL). After this point the aircraft is flown solely to capture
the correct speed at touch down. 

However, busy airports operating at close to maximum
capacity need to preserve flexibility in aircraft arrival times to
accommodate wake vortex safety considerations and the
permanently evolving nature of the Terminal Maneuvering
Area (TMA) (e.g. meteorology, traffic etc). As such aircraft are
not allowed to fly freely down their optimum descent path
because the controller has to repeatedly intervene to
appropriately space the traffic (e.g. by using ‘path-stretching’
techniques). Various projects around the world are attempting
to find the correct balance between these two conflicting needs
by utilising state-of-the-art technology [6][7][8].

The application of simple queuing theory to this problem
dictates the necessity for airborne holding (currently stacks are
used) from which the approach controller can select and vector
into land in the optimum sequence. This method ensures that
any slack in the system is immediately accounted for, however
its use leads to inefficiency and environmental damage
[9][10][11].
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This case study aims to determine the impact of stacking
upon the environmental efficiency of CDAs by exploring
current and future scenarios where stacking is used; (a) to
excess, (b) in moderation and (c) eliminated entirely in the
EFAS model.

B. Scenario Building and Analysis

The scenario builder tool provided access to all of the
parameters used as inputs into the simulation – as such it was
used to modify the BADA configuration files to emulate the
use of LPLD procedures as part of CDAs. Thus the scenario
builder enabled maximum flexibility when constructing
scenarios while still ensuring that the files submitted were fit
for processing and offered maximum comparability with each
other and their parent scenario.

Further, the scenario builder allowed the amount of delay
introduced into the scenario to be varied by allowing the user to 
specify the maximum duration of delay that could be applied to
any given flight. From this input the pre-processing feature of
the tool produced a timetable that was modified to include this
‘on-demand’ delay. The revised timetable could then be
reviewed online before submitting the scenario to the EFAS
model. Users effectively controlled the amount of stacking
within the scenarios by jointly manipulating this delay
parameter with another controlling the threshold that
determined when the delay held by a given aircraft required it
to stack. The traffic handling logic dictated that the time spent
by a given aircraft in the hold remained constant; the duration
for which an aircraft was held for was exponentially related to
the delay it possessed. In addition users effectively were able to
control the amount of path-stretching activity within a scenario
– it too being a function of the delay introduced.

Figure 5. Vertical appraoch profiles (black reference line indicates the angle
of a 3 degree approach).

1) Decision making
Initially the tool was used to build scenarios that compared

the noise and emissions associated with stacking, path-
stretching and TOD CDAs using LPLD settings (corresponding
vertical profiles are shown in Fig. 5). Pre-processor parameters
were manipulated firstly to reduce the total stacking duration in
the baseline scenario (generated using relatively large airborne
separation requirement assumptions) by approximately a half

(a 54% reduction in duration was actually achieved) and
secondly to eliminate it entirely.

2) Results
Reducing the amount of airborne delay in the EFAS model

meant fewer aircraft flew the longer path-stretch routes on final
approach - thereby concentrating the arrival noise contours
over a smaller area, as shown in Fig. 6. If these path-stretch
routes are to be used in combination with CDAs Standard
Terminal Arrival Routes (STARs) with dynamic TOD points
will need to be defined and used as part of routine operational
procedures. The suitability of this mitigation technique will
depend upon the geographical distribution of noise sensitive
areas surrounding a given airport.

Figure 6. The final approach 57 Leaq noise contour in the 2030 scenario
year. Blue contour is that generated with delay included in the model, red 

without. Screenshot taken from the ‘Route Builder’ visualistion tool built by
David Atkins to support step 4 of the scenario assessment lifecycle.

As traffic levels increase in future years the time spent in
the stack will grow exponentially (see Fig. 7). In reality it is
unlikely that the two runway EFAS airport would operate with
a total stacking duration longer than that used at major airports
[12] as capacity is likely to have become saturated by this
point. Consequentially 2.0x105 seconds could be reasonably
assumed as a maximum total stacking duration. Therefore the
scenarios where the approach traffic stacks for a longer
duration than this (i.e. 2025 & 2030 of the 100% stacking
scenario and 2030 of the 54% stacking scenario, as shown in
Fig. 7) represent a hypothetical case where;

• no delay is propagated upstream (e.g. through
Eurocontrol Central Flow Management Unit imposed
ground delays); and;

• traffic demand continues to grow as forecast beyond
the capacity of the airport (in reality excessive stacking
would reduce demand for slots at the airport).

Because random perturbations are not simulated in the
EFAS model it is thought that we currently underestimate the
amount of stacking likely to be already occurring in the earlier
scenario years.
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Figure 7. The relationship between total CO2 approach emissions, stacking
duration and scenario year (blue shows 100% stacking, green shows 54% 

reduction in stacking duration and red shows the approach emissions produced
by no stacking at all).

Further, these results show that the amount of carbon
dioxide generated during the approach is directly proportional
to;

• the scenario year – reflecting the trade-off between
increased traffic levels and the ‘cleaner’ aircraft types
of future years (the rate of CO2 emission production in
the stack decreases by 91% from 54800 kg s-1 in 2004
to 4460 kg s-1 in 2030); 

• the stacking duration (i.e. the length of time in mode);
and;

• the number of aircraft entering the stack (i.e. the
number of power-ups required to support level flight).

TABLE I. INCREASE IN EMISSIONS DUE TO STACKING.

Year Full Stacking
54% reduction in

stacking duration
No Stacking

% Increase in Carbon Dioxide Emissions

2004 4.3 2.7 0.0

2015 11.1 7.2 0.0

2030 30.9 20.9 0.0

% Increase in Nitrous Oxide Emissions

2004 2.2 1.4 0.0

2015 5.6 3.7 0.0

2030 20.6 14.5 0.0

Figures indicate the increase in emissions as a % of those generated solely by TOD CDAs. 

Increased traffic levels will generate more emissions in the
stack, (Ref. Table 1), without the introduction of new
technologies and procedures. These will need to be capable of
reducing excessive traffic demand at a particular airport (i.e. by
managing peaks in traffic through flow management and
strategic timetabling) and improving the logic used to handle
the approaching traffic.

3) Implications for the ATM System 
The results describe the need for an “environmentally

friendly” ATM system to implement TOD CDA techniques at
a system wide level. To meet this requirement advanced ATM
is called for at both the strategic and tactical levels to create a
set of efficient, de-conflicted, flight movements. Various ATM
techniques that may be involved in the creation of such a set of
movements are discussed in this section, primarily in the
context of the airport and TMA environments. Further detailed
investigation, modelling and validation of these concepts are
required to establish their environmental performance.

A suite of tactical control tools will help to provide more
certainty in the Required Time of Arrival (RTA) for the aircraft
on approach, relative to each other. This could be deduced in a
high traffic environment by the approach Air Traffic Control
Officer (ATCO) utilising an Arrivals Manager (AMAN)
software toolset. AMAN attempts to optimise the sequence of
arrivals primarily by grouping aircraft of a similar weight
together to minimise wake vortex separations. The longer the
range of AMAN the more optimised the sequence becomes –
principally through better planning and a more effective
tailoring of the upper airspace arrival time. The end result of
using the AMAN tool is the creation of a sequence (i.e. the
attachment of a number to each inbound aircraft depending on
their position in the queue to land). Once sequenced the
controller then issues a set of clearances based on this
information.

Secondly the short term assurance of adequate spacing
between arriving aircraft can be maintained by tactical
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Airborne Separation Assistance Systems (ASAS). This
capability enables aircraft to maintain a relative spacing
between each other in order to safely reduce the distances
between arriving flights. It works by providing airborne
surveillance assistance to the flight crew (thereby helping them
to maintain the separation of their aircraft from others) and
improving the situational awareness of the ATCO during the
approach. This reduces the workloads of both Pilot and
Controller while possibly allowing overall runway capacity to
be improved. It is worth noting that various categories of
ASAS application exist with varying degrees of responsibility
placed on the flight crew (rather than the controller) to provide
adequate spacing between their aircraft and the surrounding
traffic. These concepts range from straightforward surveillance
to operating high-density airspace without ground controllers.
Most applications of airborne spacing in the descent are based
on maintaining a fixed relative spacing in time, rather than in
distance. Since the groundspeed reduces on the approach a
fixed time spacing means that aircraft close up in distance as
they descend.

ASAS is sufficiently flexible to allow its users to fly
preferred pre-defined routes - such as those STARs that could
facilitate CDAs or LPLD approaches. This particular
functionality has been proven in the design of the CDA into
UPS’s Hub in Louisville, Kentucky [13]. This places a
requirement upon the aircraft’s ability to navigate along the
STAR to within given navigational accuracies - such as those
specified by Precision Radio Navigation (P-RNAV)2. A P-
RNAV route is pre-programmed into and controlled by, the
Flight Management System (FMS) – the flight crew select the
route upon receiving an appropriate clearance from Air Traffic
Control. Strategic AMAN and tactical ASAS, underpinned by
P-RNAV, provide different facets for the planning and
accommodation of the arrivals sequence – their joint use
provides optimal performance. The flexibility in the system is
derived from the dynamic nature of the ASAS and AMAN
systems which continually respond to the developing TMA
situation in real time.

From a more strategic point of view stacking is essentially a 
manifestation of the inefficiency associated with the runway
capacity bottleneck in the airport system. Effective ATM to
overcome this challenge can be realised through flow
management, ideally that made in a Collaborative Decision
Making (CDM) – Network Operations Planning (NOP)
environment supported by a System Wide Information
Management (SWIM) infrastructure (as envisaged by the
SESAR Concept of Operations [2]). Such a situation would
allow detailed planning of flight operations both when drawing
up timetables and imposing strategic control tactics, such as
ground or En-route delays.

2 The ‘P-RNAV’ standard gives a lateral track keeping
performance to within 1 NM (Nautical Mile) for 95% of the 
time. The Vertical Navigation ‘VNAV’ capability is optional

for P-RNAV - the vertical profile may be flown either by 
pilots or automatic systems (the latter using approach specific

information held in an on-board navigation database).

IV. CONCLUSIONS

This paper has shown how a web-based modelling support
tool has supported the EFAS Project, reducing the risk of
potential delays and ensuring that project partners utilise the
EFAS ATM modelling tool to its maximum potential. In
particular a case study has outlined how the tool was used to
introduce different amounts of delay into scenarios exploring
the impact of Stacking on TOD CDAs. The result of this
modelling effort is the illustration of a function that describes
how total stacking duration will grow exponentially with the
increasing traffic levels of future years. The amount of CO2

generated in the stack is directly proportional to the stacking
duration, the number of aircraft entering the stack and the
scenario year. These findings highlight, from an environmental
perspective, the importance of the technologies and procedures
that will assist in minimising the amount of stacking in the air
transport system of the future.
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Abstract—Stringent federal and state programs along with 
technology innovation have resulted in declining emissions from 
static sources (e.g. power plants) and are projected to meet 
national quality standards by 2025. The same cannot be said for 
mobile sources of emissions from flight operations at airports. In 
the absence changes in airport operations, the forecast rates of 
growth in flight operations will jeopardize State’s abilities to 
lower emissions to meet Federal standards. 

Recent studies indicate that 96% of flights in the U.S. accrue 
their delays at the airports and directly impact local non-
attainment through emissions. This paper examines the 
sensitivity of emission factors (number of engines, engine 
efficiency and fleet mix, taxi-out time) through a case-study of 
departure operations at Orlando (MCO) and New York-
LaGuardia. Under the assumptions of a representative fleet mix, 
departure schedule, runway assignment, and taxi flows, “feasible 
single engine” taxi-out procedures reduced emissions 
(CO/NOx/SOx/HC) by 27% at MCO and 45% at LGA. To 
achieve the same level of emissions reduction requires a 25% 
decrease in taxi-out time at MCO, and 44% decrease at LGA. 
The implications of these results on optimization of surface 
operations to minimize emissions are discussed.  

Keywords-component; emissions, noise, surface 
optimization,single engine, taxi, fuel, pollution, environment. 

I. INTRODUCTION

Flight operations result in the emission of a host of air 
pollutants that adversely affect public health and the 
environment. Nitrogen Oxides (NOx) and Hydrocarbons (HC) 
are precursor emissions of ground-level ozone, which causes 
lung irritation and aggravates diseases such as asthma, chronic 
bronchitis, and emphysema. Particulates have adverse 
cardiopulmonary effects and contribute to regional 
environmental problems such as haze and acid rain. Toxics 
such as benzene and formaldehyde are known or probable 
human carcinogens.  

Stringent Federal and State regulatory programs, along with 
innovations in technology, have resulted in significant 
reductions in projected emissions from static sources (e.g. 
power plants) by 2025 to meet Federal standards (Cooper et al, 
2003, page I-6). Despite improvements in aircraft engine 
technologies, the forecast growth in flight operations will yield 
large increases in airport emissions. These emissions are 

projected to jeopardize the ability of States in non-attainment 
of criteria pollutant National Ambient Air Quality Standards 
(NAAQS) from meeting Federal ambient levels of these 
pollutants.  

Recent studies indicate that 96% of flights in the U.S. 
accrue delays at the airports as opposed to airborne delays (Xu, 
2007; Chappell, 2004). These delays are the result of carrier 
delays (i.e. gate push-back), delays that are the result of 
departures scheduled in excess of the departure capacity of the 
airport (i.e. departure congestion), delays that are the result of 
predicted airborne delay (e.g. Miles-In-Trail, Airspace Flow 
Program), and destination airport delays (Ground Delay 
Program).  

These delays, contribute to local emissions in excess of the 
ambient emissions from non-delayed operations at the airport. 
This paper examines the sensitivity of emission factors 
(number of engines, engine efficiency and fleet mix, and taxi-
out time) through a case-study of departure operations at 
Orlando (MCO) and New York-LaGuardia. Under the 
assumptions of representative fleet mix, departure schedule, 
runway assignment, and taxi flows, the following results were 
identified: 

• “Single Engine” taxi-out procedures have the 
potential to reduce emissions (CO/NOx/SOx/HC) by 
27% at MCO. 

• “Single Engine” taxi-out procedures have the 
potential to reduce emissions (CO/NOx/SOx/HC) by 
45% at LGA 

• To achieve the same level of CO/NOx/SOx/HC 
reductions as “single engine” operations, would 
require an average of 27% (27, 26, 22, 24)% decrease 
in taxi-out time at MCO  

• To achieve the same level of CO/NOx/SOx/HC 
reductions as “single engine” operations, would 
require an average of 44% (46, 45, 43, 44)% decrease 
in taxi-out time at LGA.  

The paper is organized as follows: Section 2 provides an 
overview of aircraft emissions. Section 3 describes the method 
of analysis. Section 4 describes the results of the analysis. 
Section 5 the implications of these results on optimization of 

This Research has been funded by NASA Ames under project MEFISTO 
(Modeling Environment Factors in Surface Traffic Optimization) 
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surface operations to minimize emissions and on the design of 
an Airport Environmental Dashboard are discussed. 

II. AIRCRAFT EMISSIONS AND MITIGATION
STRATEGIES

The total emissions burden associated with airport operations is 
the result of emissions from aircraft, Ground Support 
Equipment (GSE), Ground Access Vehicles (GAV), stationary 
sources, and private vehicles (Cooper, Ulbrich 2003). Figure 1 
illustrates the contribution of each of these sources to NOx 
emissions at Logan airport in 1999. 

A. Chemistry of Emissions: 

Oxidation of fuel can be represented by the following 
chemical reaction 

++++→+++ 222222 ONOHCOONSCnHm
   |-------------|        |---------|      |-------------------------------------|                                               
Fuel                     Air           Products of Ideal Combustion     

                                UHCSootSOxCONOx ++++
   |-----------------------------------------| 

Products of Non-ideal Combustion 

Aircraft fuel is a mixture of hydrocarbons (essentially 
kerosene) and sulphur. Its combustion in the presence of 
oxygen and atmospheric nitrogen (inert), produces several 
products. Some of the products, i.e. carbon dioxide, water, left 
over nitrogen and oxygen are products of ideal combustion and 
non-harmful to the environment. However, not all of the fuel 
undergoes ideal combustion, resulting in harmful by-products 
like nitrous oxides, sulphur oxides, carbon monoxide, and 
unburned hydrocarbons. 

B. Permissible safe level of the pollutants 

The Environmental Protection Agency (EPA), under the 
influence of Clean Air Act, has set National Ambient Air 
Quality Standards for pollutants considered harmful for public 
health and the environment. National Ambient Air Quality 
Standards for six principal pollutants, known as ‘criteria’ 
pollutants, are listed in Table 1. The units of measure for the 
standards are parts per million (ppm) by volume, milligrams 
per cubic meter of air (mg/m3), and micrograms per cubic 
meter of air (µg/m3).

Although most US airports are well within the National 
Ambient Air Quality Standards (NAAQS) set by EPA 
(Environmental Protection Agency), some of the airports fall 
in the non-attainment zone for ozone for non-compliance with 
NAAQS: For example, the state of Texas has four areas that 
are out of compliance with the NAAQS for ozone, two of 
which -- Houston-Galveston-Brazoria and Dallas/Forth Worth 
-- are also home to major airport facilities. The Houston-
Galveston-Brazoria non-attainment area alone hosts three 
major commercial airports: (1) George Bush Intercontinental, 
(2) William P. Hobby, and (3) Ellington Field. The Dallas/Fort 
Worth non-attainment area is also host to four commercial 
airports: (1)Dallas/Fort Worth International (2) Fort Worth 
Alliance; (3) Meacham; and (4) Dallas Love Field. Several 
airports, including Sacramento International Airport (SMF), 
are located in the Sacramento area of California, which is 
classified as being in severe non-attainment of the ozone 
NAAQS. (see Cooper, Ulbrich 2003, pg IV -16 for details) 

C. Mitigating Aircraft Emissions 

There are two approaches to mitigating aircraft emissions 
for airport operations (Figure 2). The first approach involves 
improvements in the technology (aircraft engines, fuel, and 
aircraft design). The second approach is related to modifying 
airport operations. The following discussion focuses on airport 
operations. 

Emission mitigation strategies that do not involve changes 
to current engine technology or aircraft design include: (1) 
Decreasing Taxi-out time (TOT), (2)  Lower Emission per 
passenger through Load Factor and Upguage, (3) Reducing 
Power Output during Taxi (see Cooper, Ulbrich 2003, pg III 7-
10 for details) 

(1) Decreasing Taxi-out time (TOT): Aircraft emissions of HC 
and CO tend to be particularly high during taxiing operations. 
Operational changes that reduce aircraft idling and taxi time 

NOX Emissions (% of Total)

Aircraft Sources
85%

GSE
5%

Motor Vehicle
7%

Other sources
3%

Figure 1 – Contribution of sources of emissions to total NOx emissions 
at Logan International in 1999. 

Table 1- NAAQS  Source- http://www.epa.gov/air/criteria.html 
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directly reduce pollutant emissions. A possible option is 

“dispatch towing”. High-speed tugs can be used to move 
aircrafts between the terminal gate and runway more efficiently 
and with fewer frequent stops than with standard practices. 
Such tugs have already been tested successfully by Virgin 
Atlantic at LAX and SFO. Taxi-times can also by reduced by 
planning the airport more efficiently. For example, using a 
decentralized gate designs wherein passengers are brought to 
and from the aircraft by other transport vehicles. Also, if better 
dynamic real time estimates of the taxi-out time were available 
to the airline and the ground controller, one could possibly hold 
the aircrafts at the gate (if possible) or ask the pilot to operate 
on fewer engines. There has been some promising work in this 
area recently.(Ganesan, Poornima 2008). 

(2) Fleet: Airlines can improve their operational efficiency by 
maximizing the number of passengers on each flight, thereby 
minimizing emission per passenger. Airlines already have 
enough profit incentive to increase their “load factors”. 
Upguaging is another approach: A single flight serving more 
passengers on a larger plane may reduce emissions – and 
airline costs – compared to multiple flights using smaller 
airplanes to serve the same route. However, other 
considerations often apply, such as the desire to provide the 
customers with more frequent flight options. Also, depending 
on how landing fees may be structured it might be more 
expensive to land one large airplane (weight based landing) 
compared to two smaller airplanes.  

(3) Reducing Power Output during Taxi: Another way of 
reducing aircraft emission is more judicious use of aircraft 
engines in taxi mode. Most of the modern day aircraft are 
equipped with two to four engines, one or more of which can 
be shut down during taxiing. This not only reduces emissions, 
but allows other engines to operate more efficiently (i.e. at 
higher RPMs) resulting in lower consumption of fuel and less 
HC and CO emissions per pound of fuel consumed. Heathrow 
airport in the United Kingdom already encourages this practice. 
It should be noted that execution of “single engine ops” is at 

pilot discretion, as engines have their own warm up and cool 
down time when they achieve thermal stability. 

III. METHOD FOR COMPUTATION OF
ENVIRONMENTAL FACTORS FOR DEPARTURE

Estimates of emissions from aircraft can be computed using 
models developed by ICAO or FAA. The FAA model is known 
as the Emission and Dispersion Modeling System (EDMS) 
EDMS was developed by the FAA in cooperation with the U.S. 
Air Force in the mid 1980’s as a complex source 
microcomputer model to assess the air quality impact of 
proposed airport development projects. EDMS is designed to 
include the contribution of airport emission sources, 
particularly aviation sources, which consists of aircrafts, 
auxiliary power units (APUs) and ground support equipments.  

Emission is calculated using the following formula:

*)/(*)()( kggramsEITOTgramsEmissions =

                  EnginesOfkgFlowFuel .min)*#./(.

Each aircraft engine type has its own emission 
characteristic. Depending on the engine type levels of CO, 
NOx, SOx and HC (Hydro Carbon) emissions may vary. This 
information is comprehensively captured in what is called an 
Emission Index (EI). The Emission Index is a function of 
engine type, phase of flight (only taxi mode for our study) and 
pollutant (hence there is an EI corresponding to each category 
of pollutants NOX, SOX etc.). The emission indices are based 
on information provided by the engine manufacturers and 
documented by the FAA and ICAO (EPA, 1985) (Lang and 
Chin, 1998).  

Row # 8 labeled NOX_EI_G_KG means that for every 
kilogram (1kg = 2.2 lbs) of fuel that B767 consumes, each of 
its 2 engine emits about 3.4 grams of NOx into the atmosphere. 
Other rows can be interpreted similarly. 

Note: We used EDMS as a source of the aircraft Emission 
Indices. Even though EDMS is a FAA progeny and is widely 
accepted in the industry, there are some issues which are dealt 
better in an alternate model called NESCAUM (Northeast 
States for Coordinated Air Use Management). EDMS 
simplifies the air fleet mix. Only one (the most common) 
engine is assigned to each aircraft. However we know that each 
aircraft can be outfit with more than one engine types. For 
example: Boeing 757-200 can be fitted with 4 different types of 
engine. NESCAUM improves on EDMS by taking a weighted 
average of the different engine types used on each airline’s 
fleet of aircraft. The same weighted average methodology is 
followed while calculating the emission indices for the APUs. 
Hence NESCAUM provides a finer and more accurate detail 
level than EDMS (Cooper, Ulbrich 2003). 

IV. CASE STUDIES: LGA AND MCO 

Case studies of Orlando (MCO) and New York –LaGuardia 
(LGA) were conducted to understand the factors that contribute 
to emissions. Analysis was done for the month of July 2007 for 
our case study.  

Figure 2: Mitigating Aircraft Emissions 
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Taxi-out times and ETMS equipment number were 
extracted from the ASPM database (Aviation Safety 

Performance Metrics database maintained by the FAA) for 
individual take-off operations. This study only considered 
departure operations for our study.  

The ETMS equipment number extracted from the ASPM 
database was then mapped to its corresponding Emission 
Index (EI) number in the EDMS (Emission and Dispersion 
Modeling System) database. 

Some assumptions: (1) the study considered only ground 
operations. Future work will take into account the full 
Landing Take-off Cycle (LTO). (2) only considered aircraft 
pollution not Ground Service Vehicles etc. See Figure 1. (3) 
All aircrafts with the ETMS Equipment number were 
assumed to have the same engine type. This is the underlying 
principle behind ETMS emission estimating methodology. 

A. Daily Emissions Profile 

Emissions were estimated using the equations described in 
Section 3. Figure 3 shows the daily profile of emissions for 
MCO and LGA. The X axis is the time of day in 15 minute 
epochs. The Y axis is the pollutant emissions (i.e. CO, HC, 
NOx, SOx) weight in grams. The dotted line in each curve 
represents the cumulative emissions over the course of the 
day. Peak periods result in a steeper rise in the cumulative 
curve.  

B. Monthly Emissions Profile 

Figure 4 summarizes the monthly emission profile at MCO for 
July 2007. The histograms indicate the number of days with 
varying levels of cumulative emissions. The bars on the right 
indicate the days for which the emission level of a particular 
pollutant was higher than the rest. The ‘bad’ days are a result 
of higher taxi out times on those particular days (since the 
fleet mix operating at MCO is pretty much constant 
throughout).  

C.  Comparison between MCO and LGA 

Figure 5 provides the total emissions per day over the 
course of the month for each pollutant. The LGA emissions 
are greater than the MCO emissions except on Saturdays. 
Comparison between LGA and MCO- Operational and Fleet 
mix interplay  

Figure 6 shows a comparison of the rate of emissions for 
each of the pollutants between MCO and LGA. The rate of 
emissions was derived from only weekday fleet mix and 
schedule for July 2007. The X-axis is the total taxi-out time. 

Figure 3(a)– Emissions on a typical day at MCO (July 14th,
2007)

Figure 3(b) – A typical day at LGA (July 9th, 2007)

ETMS_Name B767 

ETMS_Descr Boeing Company B767/CF6-80A 

Num_Engine 2 

Fuel_Flow 0.150000006 

Taxi_Fuel 0.150000006 

CO_EI_G_KG 28.20000076 

HC_EI_G_KG 6.28000021 

NOX_EI_G_K 3.400000095 

SOX_EI_G_K 1 

Table 2 A sample row of EDMS/ICAO database showing Emission 
Index of B767s  
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The Y-axis is the total pollutant level. The slope of the graph 
gives the rate of pollution metric tonnes/minute of taxi out 
time. A higher slope represents a higher polluting fleet 
independent of taxi time. The slope is a product of number of 
engines, fuel flow and emission index (for the particular 
category of pollutant). 

The MCO fleet exhibits slightly higher average emissions for 
the three of the four pollutants than the LGA fleet. The total 

daily emissions can be determined by reading up from the X-
axis total daily taxi-out time to the rate-line and then reading 
across to the Y-axis to the total emissions. 

D. Single Engine Taxi Operations 

Taxi on reduced engines, such as a single engine for double 
engine aircraft, has the potential to reduce emissions by half. 
This practice is performed at some airports where emissions 
are a concern (e.g. London Heathrow Airport (LHR)). In 
practice, due to engine start-up and shut-down procedures, the 
single engine operations can only be used when taxi delays are 
anticipated to be in excess of 15 minutes. 
Figure 7 illustrates the impact of single-engine taxi for taxi-out 
delays in excess of 15 minutes at MCO and LGA. Since taxi-
out times are shorter at MCO, single-engine taxi-out resulted 
in an average reduction in emissions of 27%.  
CO/NOx/SOx/HC reductions of 27%, 26%, 22%, and 24% 

respectively.  

Single-engine taxi for taxi-out delays in excess of 15 minutes at 
LGA achieved an average reduction of 44%. CO/NOx/SOx/HC 
reductions of 46%, 45%, 43%, 44% respectively.  

One of the main roadblocks with implementing a single engine 
taxi policy more stringently is the fact that engines typically 
require about 4-5 minutes of warm up time prior to take off to 
achieve thermal stability. It is counter productive to taxi on 
single engine and then wait at the runway trying to warm up 
the engines. In order to avoid such a situation one could use 
taxi out time prediction in issuing ‘single engine taxi’ 
advisories. A robust algorithm for Taxi out time prediction, 
which incorporates and captures the dynamic, stochastic 
nature of airport surface operations could help the Air traffic 

Figure 5 – Comparison of emissions at MCO and LGA for July 2007 

Figure 4(a) – Histogram for MCO showing CO, NOX, SOX and HC level for the 
month of July 2007. 

Figure 4(b) – Histogram for LGA showing CO, NOX, SOX and HC level for the 
month of July 2007.
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control and the airlines to make better decisions about whether 
or not they should issue a ‘single engine taxi’ advisory to the 
pilots. For example, if the Taxi out time is greater than certain 
threshold (say 15 min), one could advise the pilot to taxi out 
on a single engine for the first 8-10 minutes(depending on the 
confidence of prediction in Taxi Out time), and thus save on 
fuel and emissions. 

V. CONCLUSIONS & FUTURE WORK 

The paper examined the sensitivity of the factors contributing 
to emissions in taxi-out operations. The results indicate that 
under the constraint of a fixed-fleet, schedule, runway 
assignment procedures, and taxi-out operations, single-engine 
taxi provides the potential to reduce emissions up to 
approximately 44%. Under the constraints of a practical 
single-engine taxi procedure, that requires a minimum of 15 
minutes taxi, the procedure provides the biggest advantage at 
airports with periods of delays in excess of 15 minutes. 
Future Work: 

(1) The ICAO/EDMS database that we referenced for 
obtaining engine emission characteristic is 
conservative in a sense that it assumes that all 
aircrafts with a given ETMS equipment number are 
fitted with the same engine type (the most common 
type). However it is not uncommon to have more 
than one engine types fit on the same aircraft type. 
NESCAUM improves on EDMS by taking a 
weighted average of different engine types used on 
each airline’s fleet. Using this model in the future has 
a potential benefit of improving the accuracy of our 
emission computation 

(2) Understanding and modeling the change in fuel flow 
while shifting to single engine taxi for different 
aircraft engine types would be helpful in estimating 
the benefits of a single engine taxi more accurately. 

This model could then be used to obtain dollars 
gained (as a result of lesser fuel burnt) to incentivize 
the airlines.  

(3) It is also required to understand the 
physical/operational constraints that prevent 
airlines/controller from adopting single engine taxi. 
For example: 
• Engine warm up time to achieve thermal stability 

( 3-5 minutes) 
• No tight turns allowed on a single engine 
• Abnormal weather conditions, i.e. Snow/ice 
• Uneven ground surface at the airport.  

ACKNOWLEDGMENT 

This Research has been funded by NASA Ames under 
project MEFISTO (Modeling Environment Factors in Surface 
Traffic Optimization) and thanks are due to Gilena Monroe, 
Sandy Lozito, Len Tobias, John-Paul Clarke and Ed 
Knoesel(NYNJPA). 

REFERENCES

[1] Coralie Cooper, Dave Park, Ingrid Ulbrich et al, “Controlling Airport-
Related Air Pollution”, June 2003 

[2] Emission estimates from “1999 Environmental Status and Planning 
Report,” Massport 2002.. 

[3] Emissions and Dispersion Modeling System Policy for Airport Air 
Quality Analysis; Interim Guidance to FAA Orders 1050.1D and 
5050.4A 

[4] Lang and Chin, CNS/ATM Enhancements to Reduce Aircraft 
Emissions, 1998  

[5] Voluntary Airport Low Emission Program. Technical Report, Version 4. 
Office of Airports, Airport Planning and Programming. September 2007. 

[6] David Daggett, Robert C Hendricks, Rainer Walther, Edwin Corporan, 
“Alternative Fuels for use in Commercial Aircraft”.

[7] Rajesh Ganesan, Poornima Balakrishna, “Taxi-out time prediction using 
approximate dynamic programming”, 2007 

[8] Bruno Miller, Kenneth Minogue, John-Paul Clarke, “Constraints in 
aviation infrastructure and surface aircraft emissions”, 2001 

Figure 6 – Comparison of rate of emissions at MCO and LGA for July 2007 
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Abstract — The future of aviation is the subject of considerable 
debate and policy discussion. There is also increasing emphasis 
on the inclusion of public consultation and participation within 
the planning and decision making system. Yet, presenting the 
findings of complex, multi-dimensional research in a style that is 
accessible by a potentially lay audience is no simple challenge. 
This is especially true for subjects whose findings are 
controversial, such as airport expansion plans and possible health 
implications of activities. 

Text heavy documents laden with equations, graphs and tables 
will in most cases act only to alienate a non-expert. However, a 
method that has found favor in presenting to the non-expert is 
the use of visualizations, particularly visualizations that allow for 
a degree of interactivity. This paper investigates a number of the 
barriers that exist between science and policy making, and then 
proposes  the virtualization application Google Earth as ideally 
suited for presentation of aviation-related subjects. The paper 
includes examples of Google Earth models which make use of the 
3D capabilities of the tool combined with streamed geographical 
content to provide stakeholders with a novel, intuitive and 
interactive presentation that requires no expert understanding to 
convey its findings. 

Keywords-Environmental policy, aviation, visualization, 
science-policy divide, lay audience, Google Earth 

I. INTRODUCTION

While the emissions of most industries are anticipated to 
decrease over the coming decade, air passenger traffic and 
consequently the impact of aviation on the environment is 
projected to rise [1]. This has generated a significant increase 
in media and public attention on the growing needs to establish 
policy that better mitigates aviation’s environmental impact. 
Subsequently, environmental controls have been highlighted as 
a threat to future capacity [2,3]. However, the creation of 
mitigation strategies is no easy task. 

In order for science to contribute to policy making 
decisions, research findings must be communicated to 
stakeholders. Engel-Cox [4] summarized that scientific data 
intended for use in the creation of policy needs to meet 5 
essential criteria if it is to be useful: relevance, timeliness, 
integrity, clarity, and visualization. While relevance and 

timeliness are tied into the project definition, integrity, clarity 
and visualizations are the responsibility of the researcher. 
Furthermore, increased awareness has placed a greater 
motivation to include public consultation in the decision-
making process. This increases the number of potential lay 
recipients of scientific data and means the ability to present 
scientific conclusions in a manner that is accessible to non-
experts is even more important. Still, the utilization of 
visualization techniques is often ignored and it remains the 
norm for researchers to publish their findings in long technical 
documents or journal papers that are difficult to understand by 
all but a few specialists. This is specifically true of the multi-
dimensional data generated by complex mathematical 
simulations. This generates an understandable divide between 
the scientific and lay communities which hampers the 
exchange of information from one camp to another.  

There is an increasing body of literature that seeks to 
expose the underlying causes of this barrier between science 
and successful policy making. This includes growing support 
for the implementation of information transfer models that 
better support the general public as a stakeholder. Here, we 
seek to present an overview of this barrier between science and 
policy and how it applies to the transfer of aviation research 
into information that proves useful in the policy making 
process. We then look at the ways in which visualizations are 
being used to contribute to the policy making process. The 
paper concludes with the presentation of a novel method of 
displaying complex 4D aviation data to non-experts using the 
well known and intuitive geographical visualization tool, 
Google Earth. 

II. RESEARCH CULTURE

Political opinions that lack a credible supporting argument 
will not influence policy. Likewise, environmental forecasts 
based solely on scientific objectives have little chance of 
contributing to the formation of new regulation [5]. Therefore, 
there must exist an inextricable link between science and 
policy; with governmental agencies relying heavily on 
scientific findings to guide decision making, and research 
institutes increasingly dependent on government funding. 
However, there exists a historical divide between scientists and 
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policy making communities that hampers the free flow of 
information from one side to another. 

Alcamo [6] pointed out that scientists and decision makers 
“speak different languages”. Price [7] hypothesized that the 
problem stems from differences in the motivations of the 
parties involved. On one side of the divide are scientists, 
motivated by the pursuit of knowledge through thorough 
investigation. On the other side we find politicians, motivated 
by electoral support and whose decisions are based on debate, 
compromise and response to shifts in public opinions. This 
disparity generates an inevitable conflict. These opinions are 
echoed by Lee [8], who notes in addition that the differences in 
cultures, standards and practices of science and politics can 
lead to distrust. Fischer [9] highlights the “politicization of 
science”, whereby politicians have in the past misinterpreted or 
misused scientific data to support their own agendas. Because 
the general public will often take publicized information at face 
value, this can be interpreted as if the scientists are for or 
against a particular argument and subsequently affect the 
reputation and credibility of those involved. 

Furthermore, science has historically adhered to the 
paradigm that research is objective and value free. However, 
this is rarely the case in reality. Subjective decisions to define a 
research problem, establish methodologies, choose which 
models to use, which assumptions to apply, and how results are 
presented are made at all stages of the research process. Cullen 
[10] argued that this means science is unable to deliver non-
arguable conclusions because personal interpretations are made 
by scientists all the time. Sundqvist [11] stated that the barrier 
is perhaps not between science and policy, but established by 
social constraints where all parties “act strategically by 
drawing boundaries which suit their own interest”. Engel-Cox 
[4] echoed this thought, stating that the key to using scientific 
data in policy is the relationship between the scientists and the 
policy makers who are directly involved in the exchange of 
information. 

Norse [12] notes that the process of policy development 
itself can create a barrier between scientists and policy makers. 
He observed that policy development is rarely linear or logical, 

can take an extremely long time and the end result is not 
guaranteed to have any scientific rigor. Engel-Cox [4] explains 
that regardless of the clarity of the presentation, science is 
never able to overrule political and social considerations. A 
recent example is the introduction of international agreements 
on emissions caps. Despite worldwide agreement from the 
scientific community that human activity is a “very likely”
cause of accelerated climate change [13], the United States and 
China continue to oppose the introduction of emissions caps. 
Such is the frequency of these occurrences, the acronym 
‘NIMTO’ (not in my term of office) has come to being solely 
to describe policy decisions that go against the grain of logic 
and/or science in favor of increased electoral support. This 
additional bureaucracy combined with the risk of negative 
exposure often represents too great a danger of negative 
repercussions and prevents active scientific engagement. 

Despite this, the need for interdisciplinary collaboration has 
never been greater. Sustainability and the pursuit of sustainable 
development are touted with ever-increasing regularity and 
achieving a sustainable future requires a balance between 
social, economic and environmental factors (figure 1). If 
research is to adapt to better transition science-policy divide, it 
is necessary to understand the needs of each party and how 
data evolves as it moves through the decision making system.  

Norse [12] explained that information that is useful by 
policy makers will represent a considerable reduction in both 
size and complexity from the original scientific data. This 
reduction in volume has the potential to greatly increase 
subjectivity and increase the likelihood of misinterpretation. 
This is equally true of the transfer of information to the general 
public because there will inevitably be components of the 
original data that are beyond their technical understanding.  

A solution would be to ensure that scientific guidance is 
present throughout the transfer process. Anderson [14] 
highlights the importance of including a ‘broker’ to ensure the 
smooth translation of scientific findings into policy. However, 
performing such a role requires the ability to understand both 
the science and the policy making process. Individuals who are 
both capable and prepared to perform such a role at the highest 
level are few. Lee [8] refers to them as ‘philosopher kings’; a 
term lifted from Plato’s writings on philosophy and political 
theory where it is stated that, in an ideal society, those in 
positions of control must have a firm understanding of 
philosophy; the science of the time. "…philosophers [must] 
become kings…or those now called kings [must]…genuinely 
and adequately philosophize" [15]. Fischer [9] applied the less 
elaborate term “movement scientists” to describe those capable 
of generating meaningful policy from scientific findings. 

Environmental research often results in controversial 
recommendations that invite strong challenges. Bickerstaff [16] 
speaks of a ‘halo effect’ whereby the general public refuses to 
acknowledge the influence of their own activities as they 
perceive them to be insignificant. They instead place blame on 
factors they feel they have no control over. Environmental 
research relating to aviation is particularly susceptible to 
challenge because it is known that its environmental impact is 
projected to increase. Aviation is therefore subject to contest 
from Governments, NGOs, local councils, local residents, the 

Figure 1. The concept of sustainable development requires a 
balance between social, economic and environmental factors 
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general public as well as a host of other industries looking to 
divert attention. 

The problem with providing scientific guidance at all stages 
therefore stems not from the scarcity of “movement scientists”, 
but that it is not feasible to provide continual expert guidance 
in most scenarios, especially those that include the public as a 
stakeholder. Consequently, there is the need for methods of 
presentation that anticipate the effects of the policy process and 
are capable of bridging this divide between experts and the lay 
audience without expert intervention.  

There is an increasing number of advocates for the benefits 
of a “civic science” for environmental research [17,18,19,20]. 
Civic science is the use of science for policy making through 
the involvement and understanding of society as a whole. 
Shannon [20] summarized: “civic science involves scientists as 
citizens and citizens as lay scientists in a process in which 
knowledge production is integrated with and therefore cannot 
be separated from […] the moral effects of political 
deliberation and choice”. Social issues are not treated as 
separate issues but encapsulated in the research at conception. 
This holistic approach complements the concept of 
sustainability but means that it becomes essential that 
information is presented in a format that supports the lay 
participant. 

III. USING VISUALIZATIONS IN POLICY

Visualization techniques are already used in a number of 
scientific fields to convey complicated data to the non-expert. 
The best format in which to present research findings will 
depend entirely on the anticipated audience. Engel-Cox [4] lists 
five basic formats of visualization: graphical, symbolic, 
metaphorical, photographic and quantitative. 

Graphical visualization refers to the basic graphics one 
would find in standard reporting. These are obviously essential 
in a technical context but large, multidimensional data sets 
pose a number of problems, and their visualizations (in the 
form of charts, tables, graphs etc...) can end up complex, 
confusing, and difficult to read. 

Symbolic visualizations refer to those that carry particular 
meanings. This could be as simple as a slogan or logo (e.g. the 
Fair Trade logo) or even an event (e.g. the 2005 Live 8 event 
intended as a visual spectacle to encourage support for the 
Make Poverty History campaign). 

Metaphorical visualizations are those that explain one 
concept in terms of another. This is commonly used by news 
channels to quantify something a viewer would not normally 
understand in terms of something that they can relate to (e.g. 
explaining the number of calculations a computer performs in 
one second in terms of the number of man hours required to 
achieve the same result). Metaphorical visualizations also 
encompass virtualization tools like Google Earth. This tool 
allows many ‘layers’ of separate information (satellite images, 
terrain maps, street and road networks etc...) to be combined 
into a cohesion that represents the world we live in. 

Photographic visualization is the use of real world images 
and has been used to great effect in cases where the audience 
may not know anything about a subject or feel that they have 

no reason to associate with it. Some of the most striking 
examples of how photographic visualizations have been used to 
try and influence policy decisions come from NGOs, who 
commonly use images or short films to make the lay public 
aware of the importance and severity of their causes which in 
turn generates public support. If successful, this increasing 
support creates a motivation for decision makers to take action. 

Quantitative visualization describes images that have 
additional characteristics that represent numerical data, such as 
contour maps for local air quality or a world map in which the 
area of a country is linked to oil consumption. Quantitative 
visualizations allow potentially complicated numerical data to 
be displayed in context in a format that requires very little 
understanding of the underlying science. 

Perhaps the most obvious field in which visualization has 
been exploited for several decades is meteorology, where 
computer graphics have now been routinely used to display 
weather forecasts for several decades. In this time, graphics 
intended for a diverse audience have evolved from simple 2D 
quantitative maps displaying isobars and cloud patterns into 
complex 3D and animated virtual earth models which combine 
all 5 forms of visualization into a single, easily understood 
presentation of a complex, 4D dataset [21]. 

Environmental fields are also increasingly turning to 
augmented visualizations to present their findings. One recent 
application has been in attempting to present the anticipated 
impacts of global warming. Because the effects of climate 
change materialize so slowly, most people are unaware that 
they are happening around them. Furthermore, most are aware 
that the dramatic effects of climate change will not occur 
during their lifetime. This can make it difficult to inspire 
people into taking action. Dockerty [22] proposed a method 
influencing agricultural policy by presenting photorealistic 
images of the local landscape that have been modified to show 
the likely future effects of climate change (e.g. change in 
vegetation and land use) for various policy scenarios. 
Visualizations of this type are intended to illustrate the 
potential implications of different policy decisions on the local 
environment in an attempt to motivate stakeholders into 
making decisions that better consider the wider environmental 
implications. Sheppard [23] commented that there were 
perhaps several scenarios that warranted the use of 
visualizations that were specifically extreme enough so as to 
sway stakeholders into taking action. 

However, Lowe [24] has highlighted the potential negative 
consequences of the exaggeration of negative effects. He found 
that films like “The Day After Tomorrow”, which take 
scientific theory and exaggerate the consequences for dramatic 
effect, have the effect of reducing people’s belief that such 
extreme consequences are possible results of climate change. It 
is therefore essential to ensure that, however simplified 
visualizations maybe, they retain a firm scientific grounding.  

IV. INTERACTIVE VISUALIZATION

So far, we have touched only on methods of presenting 
findings directly to an audience. Yet, dramatic increases in the 
graphical capabilities of personal computers have resulted in 
the increasing use of tools that allow interactive data 
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presentation.  Haase [21] noted that complex data can be 
understood much faster if the recipient has control of all spatial 
dimensions during visualization.  There is now a vast range of 
software packages devoted to the display of 3D and 4D data. 
They are particularly useful in cases where the data to be 
visualized is simulated and therefore already stored 
electronically. A problem does exist though, in that there are 
many simulation tools and subsequently a large number of 
bespoke data formats. This means that a lot of data sets can 
only be visualized using bespoke applications or are tied to 
expensive, third party package (e.g. ArcGIS). In such cases, the 
costs associated with acquiring licenses for these packages and 
the time required to learning how to use them can be 
significant. This means interactive visualization of such data 
sets is often limited to experts. 

Furthermore, if visualizations are tied to third party 
applications, the project is bound to the vendor’s development 
schedule. This could introduce unexpected compatibility 
problems at any time. Similarly, research projects who design 
and maintain their own 3D and 4D virtualization applications 
must deploy significant time and specialization. It is therefore 
not surprising that a number of bespoke applications often lack 
the functionality of third party alternatives or are simply so 
constrained by the availability of resources that they fail to 
keep up with changes in technology. 

A possible solution is to integrate software that is either 
Open Source or freeware. Open Source tools, such as graphics 
engines, are community maintained and free to use (according 
to one of several general public licenses). The benefits of using 
an open source graphics engine is that they offer the developer 
immediate access to the latest graphical techniques with no 
personal development required, leaving them the flexibility to 
focus on integration of the features they need for their own 
applications. Examples of popular open source graphics 
engines include ORGE 3D, Genisis3D and jmonkeyengine to 
name but a few. 

Freeware refers to applications that are developed and 
distributed free of charge. Although using freeware still means 
a developer has limited control over future functionality, the 
fact that they are free means that a data set can be viewed by 
anyone with a sufficiently capable computer. 

Which freeware application is appropriate could be a factor 
of license, application, functionality, support and ease of use; 
and there are many to choose from. Some of these are 
developed and maintained by some of the largest organisations 
in their field. For example, for visualizing data on a global, 
regional or local scale, one could choose from World Wind 
(developed and maintained by NASA), ArcGIS Explorer 
(developed and maintained by ESRI), Virtual Earth (designed 
and maintained by Microsoft) and Google Earth (developed 
and maintained by Google), which represent a tiny sample of 
those available. 

Many applications make use of the fact that most people are 
now web enabled. The internet has long been seen as an ideal 
environment to publish data where interested parties are able to 
view data interactively and at their leisure [25]. Many of these 
visualization applications run within a web browser (e.g. 
Google Maps and FlashEarth) while large numbers of other  

Figure 4. Additional information can be embedded into the visualisation. 
Here, a point marking the location of an air quality sensor contains 

additional information when clicked 

Figure 3. Image overlays can be viewed alongside streamed content. This 
example shows high NOx concentrations that align with roadways 

Figure 2. Airport terminal buildings can be rendered in 3 dimensions and 
color coded according to function 
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applications establish network links to stream the content being 
displayed directly from remote servers. There are many 
benefits from streaming content to a viewer. Initially, the 
dataset remains under the control of its creator. That is to say, 
when the dataset is updated on the server, all viewers will 
immediately able stream the most up-to-date information. A 
second benefit comes from the fact that streaming content 
means that the viewing applications themselves can be made 
into extremely small downloads. This makes the application 
more accessible as only the most enthusiastic are prepared to 
wait for a very large application to download. 

V. A VISUALIZATION EXAMPLE USING GOOGLE EARTH

Among the many virtualization tools currently available, 
we consider Google Earth to be particularly suitable for the 
visualization of aviation data. Presented below is an illustration 
of how Google Earth could be used to present complex, 4D, 
aviation research data to a lay audience.  The reason for 
choosing this application over its rivals is that the application is 
already familiar to millions of users and is used by several 
prominent media companies (including the BBC and CNN) to 
display geographical information to a non-expert audience. 
Google Earth is also being used in many other fields to 
simplify the visualization process. 

A. 4D Content 

One of the fundamental problems with presenting paper or 
electronic reports is that display is constrained to a static 2D 
presentation. This can make it extremely difficult to present 
findings that are three-dimensional (e.g. aircraft flight paths) or 
that are time evolving (e.g. local air quality or noise contours). 
Virtualization models do not suffer from this limitation. 

Google Earth allows user-generated content to be displayed 
within the virtual environment alongside the huge amount of 
continuously improving geographical information it streams 
directly from the Google servers (e.g. satellite imagery, road 
maps, place names, landmarks). User- generated content is 
written in a very simple, plain text XML format. Features such 
as points, lines, areas, volumes, image overlays, pop ups and 
dynamic, streamed content (e.g. embedded web pages, videos 
or real time data) are all supported. 

A viewer is given full control over the height, direction, 
viewing angle and perhaps most importantly the time they 
spend viewing each piece of data. This allows the viewer to 
move through and around the data set at a speed at which they 
are comfortable. By adding point markers, lines, areas and 
volumes to the virtualization, features like sensor locations, 
roadways, runways, flight paths, buildings, areas of interest 
etc… can all be added to the data set to achieve a much higher 
level of understanding of their spatial relevance. 

Figure 2 shows a mock-up with a number of main terminal 
buildings and hangers of Zurich Airport. In this instance, the 
buildings have been colored so as to differentiate between 
functions (yellow for terminal buildings, blue for aircraft 
hangers). The viewer is able to toggle all user-generated feature 
on and off if they care to reduce the number of obstructions 
from the view.  

Figure 6. Zooming in and tilting the viewing access allows the profiles to 
be viewed with altitude and great circle path clearly displayed 

Figure 7. Content can be streamed into the virtual environment from any 
external server using basic HTML of Network Links. This image shows a 
viewer calling on additional background information on Zurich Airport 

from the popular free encyclopaedia ‘Wikipedia’ 

Figure 5. Files can be made to show data on local, regional and global 
scales. Here we see an example of trans-Atlantic flight paths from 

Brussels to Toronto 
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Figure 3 shows how image overlays can be integrated into 
the view. In this case, a quantitative map indicating simulated 
NOx concentrations is presented above Zurich Airport. This is 
supported by a graphic that is fixed relative to the viewing 
window which provides a scale for interpretation. 

The Google Earth environment is also able to streaming 
and displaying complex terrain information from the internet. 
At present, this data is not accessible for use outside of the 
application (e.g. as shape files for use in emission dispersion 
models), however it does add an additional component to the 
model that enhances the user’s ability to relate the data 
presented with the real world. 

B. Augmented Visualizations 

When presenting data in a paper report, there is only so 
much information that can be presented within a single graph, 
image or table before clarity will be lost. In cases where there 
is a large amount of data to present, this may require several 
pages to explain a single scenario in sufficient detail. 

Using an interactive visualization tool like Google Earth, 
the same effect can be achieved by augmenting a single basic 
data set with additional information. The viewer can recall if 
and when they choose to view this additional information. 
Figure 4 shows how additional information can be added to the 
basic, user defined, and geometric additions - in this case a 
point marker indicating the location of an air quality sensor. 
Clicking on the marker brings up additional information about 
the type of receptor, including pictures of the sight and links to 
published concentration values. Having this information 
available but displayed only on request allows the 
virtualization to retain clarity. 

Figures 5 and 6 show a number of trans-Atlantic flight 
paths from Brussels to Toronto. In a paper report, one would be 
able to do little better than the 2D image shown in figure5. 
However, the virtualization allows these flight paths to be 
viewed on a tilted axis, exposing the additional component of 
height. Furthermore, each flight path can be extended to 
ground, showing the grand circle path of each route. 

Google Earth allows all basic markers to be augmented 
with formatted text, images, external web links and even 
embedded videos, either from within the 3D environment or 
via links added to the side bar. Subsequently, a great deal of 
information can be contained within a single file that a viewer 
can explore intuitively in an uncluttered fashion. 

C. Network Links 

A feature that is of great use in virtual environments (like 
Google Earth) is the ability to stream content dynamically from 
remote servers. This allows data to be published and 
maintained from a single central location, and have that newest 
data sets automatically feature within the viewers virtual world. 

An area where a centralized dataset could provide an 
immediate contemporary benefit would be in storing airport 
layouts. Currently, defining the locations of runways, taxiways, 
gates, service roads and buildings must be done for every new 
simulation or model. A centralized dataset that is continually 
improved and/or extended by the community would mean that 
everyone would have access to the latest airport definitions in 

XML format. These definitions could also be parsed and used 
by other applications, such as flight path data. 

Perhaps of more interest for many aviation applications is 
the ability to present information in real time (4D data). Google 
Earth already offers support for GPS tracking information to be 
integrated in real time within the virtual environment, and a 
number of commercial services are already offering support for 
real time aircraft tracking (e.g. fboweb.com and aeroseek.com). 
If real time data is not available, users can link their data sets to 
a timeline that features on the viewers’ machine. Using video-
like start, stop and pause commands or a slide bar, data sets and 
the corresponding visualizations are streamed from your 
remote server, presenting a 4D viewing environment.

A final example of how using the internet connectivity of 
virtualization tools can be used to improve visualizations is 
shown in figure 7. The Google Earth environment already 
provides links to a wide range of additional data sources that 
will automatically provide the viewer with a host of 
supplementary data, supporting and background reading, 
images, 3D buildings and videos. Presenting your data 
alongside other information sources means that the viewer has 
the option to support his or her understanding without the bias 
one would associate with a presentation authored by a single 
person or organisation. This adds an additional degree of 
integrity to the findings. The example shows the viewer pulling 
additional information on Zurich Airport from the popular 
community encyclopedia ‘Wikipedia’, although the application 
itself has an inbuilt web browser allowing access to any online 
site. 

VI. CONCLUSION

This paper has investigated a number of problems that exist 
in generating and presenting research data capable of providing 
information that can be useful during the policy generation 
process. It has been found that there remains a number of 
barriers between the science and policy communities, and that 
the complexity of these barriers is continually changing as the 
general public are increasingly encouraged to participate in the 
decision-making process. 

Having noted some of the causes of these barriers and the 
effects this can have on interactions between stakeholders, we 
summarised a few of the problems that face the researcher 
when presenting complex, multi-dimensional data to non-
expert audiences. With an appreciation of how data can change 
as it moves from one party to another, we further explored the 
nature of visualizations and how they can be used to present 
complex data in an intuitive manner to non-experts. It is seen 
that no single method suits all audiences. However, recent 
developments in virtualization software allow for several 
formats to be combined into a single, interactive environment. 

Although many virtualization tools exist, Google Earth has 
been shown to be particularly suitable for the visualization of 
aviation data because of the simplicity of the data format 
required, its simple and intuitive interface, its ability to display 
all data formats (including video), because data can be viewed 
from local, regional and global scales and the fact that data can 
be streamed to the viewer from any remote server. 
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Although Google Earth is not a replacement for scientific 
reporting, the paper has presented a number of scenarios within 
the Google Earth environment that would be extremely 
difficult and/or time consuming to present with sufficient 
understanding in a standard document.  

In closing, we conclude that changes in the policy-making 
process facilitate a need for simplified data presentation and 
that all but the biggest research projects, who can afford to 
develop bespoke viewing software, would be unwise to 
overlook the potential of using visualization tools like Google 
Earth for presenting to a lay audience. 
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Abstract—This research investigates the impact of global oil 
production peak transmitted via soaring fuel prices on future air 
traffic. The paper analyzes the short-term impact of higher fuel 
prices on airline operating costs, passenger fares and demand for 
short-haul and long-haul services. Results indicate that the rate 
of air traffic growth constrained by scarcity of kerosene is much 
lower - and may even be negative - than unconstrained air traffic 
growth. Services offered by low-cost carriers and long-haul 
services are most adversely affected. It is also contended that a 
strong increase in fuel prices outweighs the potential impact of 
proposed emission trading systems for the aviation industry. 
Looking beyond the peak in oil production the paper provides a 
brief discussion of potential substitutes for petroleum kerosene as 
jet fuel.  

Keywords-environment; peak oil; airline operating costs; air 
fares; traffic growth 

I. INTRODUCTION 

The aviation industry is probably the economic sector most 
depending on fossil fuels besides the petrochemical industry 
itself. Today, commercial aviation is characterized by growing 
passenger numbers and cargo volumes as well as expanding 
airport and airline capacities. According to a recent Airports 
Council International (ACI) forecast the current number of 4.5 
billion passengers worldwide is expected to reach 9 billion by 
2025[1]. Similar forecasts of air traffic growth are issued by 
manufacturers of commercial jetliners like Airbus and Boeing 
and proliferated by other sources including public agencies and 
academia. Based on these forecasts of air traffic growth the 
demand for kerosene is bound to grow. 

The prospering world economy leads to a soaring demand 
for crude oil aside from aviation. OPEC projects a growth of 
oil demand from 84 million barrels per day (mb/d) in 2005 to 
118 mb/d in 2030 [2]. In 2007 crude oil prices have been 
boosted by growing worldwide demand. By the time peak oil is 
reached and half of the global oil resources are exploited, costs 
for oil extraction will rise and keeping up the production level 
will become increasingly difficult. The depletion of the world's 
oil reserves results in an upward price trend for crude oil and 
also for its refinery products such as kerosene. To our 
knowledge the potential impact of peak oil on commercial 
aviation has only recently been addressed [3]. This paper 
investigates the short-term economic impact of higher crude oil 
prices on fuel costs, air fares and air passenger demand. The 
analysis uses the methodology developed for quantifying the 
impact of emission trading on aircraft operators [4]. With 
regard to the relationship between kerosene prices and airlines’ 

fuel costs different fuel hedging scenarios are considered. The 
paper indicates that the rate of air traffic growth constrained by 
scarcity of kerosene is much lower - and may even be negative 
- than unconstrained air traffic growth, especially leading to a 
strong reduction of demand for leisure traffic and long-haul 
services. 

The paper is structured as follows: Section 2 contains 
considerations on peak oil including an overview of predictions 
on the time of global oil production peak and forecasts for the 
future price of crude oil. Section 3 examines the short-term 
economic impact, i.e. assuming one-year horizon, of higher 
fuel prices on airline costs, ticket prices and passenger demand 
for short-haul and long-haul services. Short-haul is further 
differentiated into routes operated by full service network 
carriers (FSNCs) and low-cost carriers (LCCs). In the long run 
the aviation industry has to look beyond the fuel-efficient ‘3 
liter aircraft’ and search for new groundbreaking ways to 
become less dependent on fossil fuels. Hence, Section 4 gives 
an overview of current research directions in the fields of 
future aircraft technology and evaluates potential alternative 
fuels to kerosene. The closing Section 5 summarizes the 
paper’s results and concludes that peak oil has the potential to 
stop and even reverse long-term air traffic growth.

II. PEAK OIL AND FUTURE FUEL PRICES

End of Oct. 2007 the spot price of Brent-Europe crude oil 
reached for the first time $90 a barrel. This reflects that world 
oil demand has continued to grow much faster than oil supply 
but also ongoing geopolitical risks, OECD inventory tightness, 
worldwide refining bottlenecks and speculative trading. $90 a 
barrel is about 50 percent more than Oct. 2006. In real terms, 
adjusted for inflation, oil is at its highest price since the early 
1980s when it hit its peak following the Iranian Revolution and 
the beginning of the Iran-Iraq war (Fig. 1). 

Figure 1. Real and nominal crude oil prices, 1974-2007 (real prices in 2007 
dollars). 
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Figure 2. Kerosene-type jet fuel prices in Rotterdam, 2000-2007 (2000-
2006: annual average price, 2007: spot price in Oct.). 

Kerosene is produced by distilling crude oil. Hence, the 
product price of kerosene is closely linked to crude oil prices. 
End of Oct. 2007 the spot price for kerosene-type jet fuel in 
Rotterdam was about 260 cents per gallon (Fig. 2). This 
translates into close to $110 per barrel. This spread of approx. 
$20 on the spot price of Brent-Europe crude oil reflects the 
gross refining margin. According to the International Air 
Transport Association (IATA) fuel outranked labor as largest 
single cost item in the global airline industry in 2006 [5]. Fuel 
accounted for 25.5% of total operating costs in 2006 compared 
to 13.6% in 2001. The rise in fuel costs reflects a sharp 
increase in the price of crude oil but also a widening in the 
refining margin. 

Counteracting soaring fuel costs airlines intensified their 
efforts to improve fuel efficiency and to obtain cost savings in 
non-fuel cost items. In particular, labor productivity has 
improved resulting in a falling labor share of airline operating 
costs to 23.3% in 2006. The 25.5% fuel share of total operating 
costs calculated by IATA rests upon an average price of jet fuel 
of approx. $82 per barrel. With a kerosene price of $110 per 
barrel at the end of Oct. 2007 the share of fuel costs further 
increases in the airline industry even if fuel hedging contracts 
lock a percentage of the fuel purchases at lower prices. Airlines 
react by increasing average prices for passenger tickets and 
rates for air cargo. For example, European airlines like Air 
France-KLM (AF-KLM) or Lufthansa raised their fuel 
surcharges for passenger tickets several times in 2007 (see 
Section 3). 

Crude oil prices react to the balance of demand and supply. 
Hence, the current spiking of fuel prices creates concerns about 
a global shortage of future oil supplies. If actors in the oil 
market expect a shortage of oil supplies, oil prices increase 
before a shortage actually occurs. This is reflected in contracts 
for future deliveries of crude oil, called futures. In Oct. 2007 
the prices of crude oil futures soared to all-time highs after 
Energy Information Administration (EIA) indicated a drop in 
commercial US crude inventories to the lowest level in two 
years. EIA providing the official energy statistics from the US 

government publishes an International Energy Outlook [6]. In 
the so-called reference case of its most recent outlook, EIA 
projects a growth of world consumption of petroleum products 
by more than 40% from 84 mb/d in 2005 to 118 mb/d in 2030, 
an average annual growth rate of 1.4%. The demand of China 
grows much stronger with a forecasted rate of 3.5%. Strong 
growth is also projected for the other non-OECD economies 
with the exception of Russia. In addition to the reference case 
EIA also analyzes high and low oil price cases. Despite 
considerable differences between oil prices the demand 
projections for 2030 do not vary substantially indicating that 
long-term demand is relatively inelastic to oil price changes. It 
is a question whether the suggested lack of demand elasticity 
remains a valid proposition once production of crude oil falls 
short of demand due to finite oil reserves. If global crude oil 
production cannot be increased even with mounting oil prices 
there has to be a demand adjustment. 

The US Government Accountability Office (GAO) 
examined more than twenty studies on the timing of the peak in 
oil production conducted by government authorities, oil 
companies and oil experts (Fig. 3) [7]. According to this meta-
analysis most studies estimate peak oil sometime between now 
and 2040. The range of estimates on the timing of peak oil is 
wide due to multiple and uncertain factors including (1) the 
amount of oil still in the ground, (2) technological, cost and 
environmental challenges to produce that oil, (3) political and 
investment conditions in countries where oil is located and (4) 
the future global demand for oil. Some of the studies cited by 
GAO consider only the peak in conventional oil, while other 
studies include non-conventional sources of oil – oil sands, 
heavy and extra-heavy oil deposits and oil shale. The 
production process of oil from non-conventional sources is 
more costly, uses larger amounts of energy and presents 
environmental challenges.   

According to the recently published energy outlook by the 
International Energy Agency (IEA) the oil production in most 
countries outside the Middle East has already peaked or will do 
in the near future. Approximately 70% of the estimated 
remaining global oil reserves are located in politically insecure 
regions respectively are kept under OPEC control [8]. OPEC 
statements concerning strategic oil reserves may be questioned. 
Oil production represents a major sector of economy in OPEC 
countries, and the admission of declining oil reserves harms 
their financial standing and political importance. The number 
of discovered oil fields decreases year by year. About 42,000 
oil fields have been discovered until today, the 400 largest 
represent about 75% of global oil reserves. The annual 
worldwide crude oil consumption exceeds the amount of 
discovered reserves since 1981. The predominant part of 
extracted crude oil nowadays derives from oil fields discovered 
in the 1970s [9]. 
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Figure 3. Estimates of the timing of peak oil (Source: GAO [7]) 

Finite oil resources and global economic growth lead to an 
upward trend for crude oil prices. However, due to multiple 
and uncertain factors concerning near-term and long-term oil 
production and the future development of global oil demand it 
is not surprising that forecasts on future prices show a wide 
range. EIA differentiates three world oil price cases [6]. In the 
high world oil price case, world oil prices climb from 
$43/barrel to $100/barrel in 2030 (all values in 2005 real 
dollars). In the low price case, oil prices moderate fairly 
quickly to $49/barrel in 2010 and then further to $34/barrel in 
2015 and remain at that level through 2030. The reference case 
oil prices rise steadily after 2015 to $59/barrel in 2030.  

For the purpose of this paper the 50% increase of world oil 
prices in the one-year period Oct. 2006 – Oct. 2007 from 
around $60/barrel to $90/barrel is simply prolonged for another 
year. This results in $135/barrel in Oct. 2008. This figure is not 
to be considered as another oil price forecast but only as 
starting point for the analysis of the possible short-term impact 
of higher kerosene prices on commercial aviation. $135/barrel 
is beyond the oil price ranges of most recently published short-
term forecasts. In November 2007, EIA expects the average 
West Texas Intermediate (WTI) crude oil price in 2008 at 
nearly $80/barrel [10]. However, most short-term oil price 
forecasts published in recent years underestimated the actual 
oil price development. For example, in January 2007 EIA also 
projected a WTI crude oil spot price of $65 for the 3rd and 4th 
quarter of 2007.  

III. ECONOMIC IMPACT OF SOARING KEROSENE PRICES

This section considers the short-term response of passenger 
demand for air travel resulting from the cause-and-effect chain 
depicted in Fig. 4. This cause-and-effect chain is referred to as 
direct impact of higher fuel prices. In addition, there are 
potential indirect impacts of soaring fuel prices, for example, a 
reduction in air travel demand resulting from lower disposable 
income of households or an increase in airlines’ operating costs 
for other cost items than fuel due to inflation. 

Figure 4. Direct economic impact of higher fuel prices 

The paper assumes no disruptions in normal economic 
activity and that the overall political and economic setting for 
commercial aviation remains intact. The time horizon is only 
one year allowing to differentiate a scenario with high level of 
airline fuel hedging and a scenario with no fuel hedging a year 
ahead. This short-term approach justifies not to account for fuel 
efficiency measures and also to use current operational and cost 
data.  

The volatility of kerosene prices is an important issue for 
the airline industry. In 2006, the fuel consumption of Lufthansa 
(LH) amounted to 6,940,587 tons equivalent to 54,564,363 
barrels (1 barrel = 159 liter, 1 liter kerosene = 0.8 kg) [9]. 
Without fuel hedging a fuel price rise by $1 a barrel increases 
LH’s operating costs by more than $50 millions. Fuel hedging 
is often touted as the solution to this problem. 

Fuel hedging means stabilizing fuel costs by locking in the 
costs of future fuel purchases to protect against sudden cost 
increases from rising fuel prices. However, fuel hedging also 
prevents savings from decreasing fuel prices and might even 
lack a theoretical justification [11]. In practice, fuel hedging 
strategies vary significantly between airlines, some opting to 
hedge their entire fuel needs, while others leave themselves 
exposed to fluctuations in fuel costs. The lack of fuel hedging 
might not be strategy-driven but simply the result of 
insufficient cash or credit. According to Morrell and Swan, 
most airlines typically hedge between one- and two-thirds of 
fuel costs and look forward six months in their hedging, with 
few hedges more than a year ahead. Hence, the fuel hedging 
policy of AF-KLM with regard to the time period covered 
seems to be rather exceptional (Table I). 

TABLE I. AF-KLM FUEL HEDGING POLICY 

Year 2007-08 2008-09 2009-10 2010-11 
Forecasted spot price 
(Brent, $/barrel) 

79 83 79 78 

Hedged consumption 
(%) 

77 67 51 31 

Average hedged price 
(Brent, $/barrel) 

62 61 68 69 

Final average price 
(Brent, $/barrel) 

66 68 73 75 

Source: www.airfranceklm-finance.com, visited 26th October 2007. 
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AF-KLM forecasts a spot price of $79/barrel in 2007-08. 
The average fuel price for AF-KLM is locked with fuel-
hedging contracts that secure 77% of the airline's fuel 
requirements in 2007-08. Even for 2010-11 31% of the fuel 
needs are hedged. The average hedged price in 2007-08 with 
$62/barrel is only two thirds the spot price of crude oil at end 
of October 2007 of more than $90/barrel. By using the futures 
markets AF-KLM managed to soften the affect of higher fuel 
prices but still increased its fuel surcharges on air fares several 
times in 2007.  

From the information publicly available, AF-KLM hedges 
only the crude oil price. This leaves the price difference 
between crude oil and kerosene uncovered. The kerosene price 
is driven by crude oil price developments but is also influenced 
by other specifics, especially refinery capacities and price 
switches between diverse oil products. End of October, the spot 
price for kerosene-type jet fuel in Rotterdam was about 
$110/barrel, i.e. approx. $20 higher than the spot price of 
Brent-Europe crude oil.  

For the purpose of this paper the 50% increase of world oil 
prices in the one-year period Oct. 2006 – Oct. 2007 from a 
level of $60/barrel to $90/barrel is simply prolonged for 
another year. This results in $135/barrel in Oct. 2008. As 
already stated in Section 2 this figure is not another oil price 
forecast but only serves as starting point for the analysis of the 
short-term impact of higher kerosene prices on commercial 
aviation. Additionally, a constant refining margin of $20/barrel 
is assumed. Hence, all further calculations are based on a spot 
price for kerosene-type jet fuel of $155/barrel.  

All airlines are confronted with volatility of fuel prices. 
Besides the structure of fleet and network different fuel 
hedging policies lead to a varying effect on fuel costs among 
airlines. In Europe, network carriers like AF-KLM and LH 
pass along higher fuel costs to passengers through higher ticket 
prices with changing fuel surcharges added to air fares. Ryanair 
(FR) and other European LCCs do not add fuel surcharges but 
increase the average fare level. The following calculations 
estimate the increase in ticket prices and the resulting changes 
in passenger demand due to rising fuel prices. As reference 
value to measure fuel price increases the final average price of 
$68/barrel forecasted by AF-KLM for 2008-09 by end of Oct. 
2007 is used (Table I). This fuel price is further on referred to 
as AF-KLM base. As no similar information about spot price 
forecasts, hedged and average fuel prices for LH and FR has 
been available to the authors, it is assume that the AF-KLM 
base is also valid for LH and FR. 

The airline’s fuel costs ($/liter kerosene) at a given future 
time (e.g. Oct. 2008) based on the future spot crude oil price, 
the airline’s hedged consumption, the average hedged price and 
the refiner margin can be calculated as follows: 

 159/)])1([( rsh cppC +⋅−+⋅= αα  (1) 

with  

C Future fuel costs ($/liter kerosene),  

α Share of fuel consumption hedged (%), 

ph Average hedged crude oil price ($/barrel), 

ps Future spot crude oil price ($/barrel),

cr Gross refining margin ($/barrel).  

Assuming a spot price ph= $135 for crude oil in Oct. 2008, 
the AF-KLM fuel hedging policy (α=0.67; ph=$61) and a 
refiner margin cr=$20, the fuels costs ($/liter kerosene) for AF-
KLM in Oct. 2008 resulting from (1) amount to C= 0.66. In 
comparison, the AF-KLM forecast of a spot price ph= $83 for 
crude oil in Oct. 2008 (see Table I) leads to C=0.56 other 
things being equal. Hence, with a high level of fuel hedging 
fuel costs would be 18% higher than forecasted. In a scenario 
with fuel hedging contracts running out or no airline fuel 
hedging a year ahead (α =0) future fuel costs even rise to 
C=0,97. To account for soaring fuel costs, airlines like AF-
KLM increase fuel surcharges on passenger tickets. 

The economic impact of higher fuel costs passed on to 
passengers via higher ticket prices is investigated for 
exemplary routes (Table II). Based on the operational data 
provided by [12] following routes are analyzed: 

• Frankfurt (FRA) – London-Heathrow (LHR) served by 
LH.  

• Hahn (HHN) – London-Stansted (STN) served by FR.  

• LH-operated intercontinental route FRA – Singapore 
(SIN).  

For each route the analysis differentiates the impact of fuel 
price increases with fuel hedging (α=0.67) and without fuel 
hedging (α=0). Results are compared with AF-KLM base of 
$68/barrel. Lacking airline-specific information it is assumed 
that any increase in fuel costs in excess of the AF-KLM base is 
fully passed on to passengers via higher ticket prices, i.e. fuel 
cost increase equals ticket price increase. FR has a no fuel 
surcharge policy and accommodates higher fuel prices by 
increasing average ticket prices. LH increases its fuel surcharge 
on air fares. In Oct. 2007 LH’s fuel surcharge on long-haul 
tickets amounted to 67 per sector and for short-haul tickets 

14 per sector [13]. This fuel surcharge has been increased 
several times by LH and other European carriers in 2007. Table 
II shows fuel consumption and average passenger number per 
flight for the three selected exemplary routes. Based on this 
data, the route-specific future fuel costs per passenger can be 
calculated for AF-KLM base as reference value (C=0.56) and 
two fuel hedging scenarios (C=0.66 and C=0.97) as follows: 

 
n

k
Ccpax ⋅=  (2) 

with  

cpax Future fuel costs per passenger ($/PAX),  

C Future fuel costs ($/liter kerosene), 

k Fuel consumption per flight (liter kerosene), 

n Average passenger number per flight (PAX). 
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TABLE II. INCREASES IN FUEL COSTS AND TICKET PRICES DUE TO 
HIGHER KEROSENE PRICES 

Route (carrier) HHN-STN 
(FR) 

FRA-LHR 
(LH) 

FRA-SIN 
(LH) 

Distance flown 572 695 10,603 

Aircraft type B 737-800 A 321-100 A 340-300 

No. of seats 189 182 247 

Avg. seat load 
factor 

76.1% 66.9% 80.5% 

Avg. no. of 
passengers 

144 122 199 

Operational 
data 

Fuel 
consumption 

(liter kerosene) 
3,250 4,125 107,500 

AF-KLM base 12.6 18.9 302.6 
α = 0.67 14.9 22.3 356.5 

Fuel costs 
(cpax)

α = 0 21.9 32.8 524.0 
AF-KLM base 8.7 13.0 208.7 

α = 0.67 10.3 15.4 245.9 
Fuel costs 
( /PAX) 

α = 0 15.1 22.6 361.4 
Avg. ticket price                

(per sector, /PAX) 
44 136 602 

α = 0.67 1.6 2.4 37.2 Abs. price 
increase 
( /PAX) α = 0 6.4 9.6 152.7 

α = 0.67 3.6% 1.8% 6.2% Rel. price 
increase α = 0 14.5% 7.1% 25.4% 

As FR and LH denominate their ticket prices in Euro, fuel 
costs need to be converted into Euro as well. Table II uses the 
Dollar/Euro exchange rate 1 = $1.45 valid end of Oct. 2007. 

The short-term impact of soaring kerosene prices on fuel 
costs and ticket prices depicted in Table II remains relatively 
moderate as long as fuel hedging by airlines mitigates fuel 
price increases. In absolute terms the price increase for the two 
short-haul routes is 1.6 (HHN-STN) and 2.4 (FRA-LHR) 
corresponding to a relative price increase per passenger and 
sector of 3.6% and 1.8% respectively. The higher price 
increase in per cent for FR results from its significantly lower 
average ticket price per sector and passenger compared to LH 
which cannot be compensated by FR’s shorter flight distance 
and the higher average number of passengers per flight. For the 
long-haul route FRA-SIN the impact is already more 
pronounced, with an absolute price increase of 37.2 
corresponding to 6.2% in relative terms. It should be noted that 
even in a scenario with fuel hedging (α=0.67) the impact of 
increasing fuel prices is higher than the financial burden due to 
the introduction of the emission trading scheme as proposed by 
the European Commission [12]. 

For the scenario with fuel hedging contracts running out or 
no airline fuel hedging (α=0) the impact is much stronger. In 
relative terms, LH’s short-haul operation is less affected than 
the operation of FR. The average ticket price sold by LH on 
FRA-LHR rises by 7.1% ( 9.6) and FR’s price on HHN-STN 
by 14.5% ( 6.4). The impact on surcharges on long-haul traffic 
largely exceeds the impact on short-haul traffic. For FRA-SIN 
operated by LH an additional fuel surcharge of 152.7 would 
occur. Based on an average fare per passenger and sector of 

602, the additional fuel surcharge represents a relative fare 
increase of 25.4%. 

152.7 is the additional fuel surcharge calculated for LH 
resulting from assuming spot prices for crude oil to rise by 
50% compared to current 90$/barrel and no softening of spot 
prices by fuel hedging. In principle, this paper equates short-
term with a one-year horizon. In its hedging practice, LH 
hedges up to 90% of its planned fuel requirement on a 
revolving basis over a period of 24 months. In April 2007 even 
70% is hedged one year ahead [13]. LH reduces its hedging 
ratio from this share each month by 5% leading to a growing 
exposure to fluctuations in fuel prices after one year. Hence, 
our results seem to overestimate the short-term impact of rising 
fuel costs on LH’s fuel surcharge. However, FR has recently 
complained to EU over abusive increases in fuel surcharges 
based on spot prices on the global crude oil markets rather than 
hedged prices. According to FR, carriers like LH do not only 
increase ticket prices for passengers in lockstep with their 
higher fuel costs but even beyond their additional fuel costs.   

As a result of shifting costs to passengers via higher ticket 
prices, demand for flights is expected to decrease. Table III 
shows how passenger demand reacts to higher ticket prices. 
The average price elasticity for short-haul leisure and business 
demand as well as for long-haul leisure and business demand is 
taken from a synoptic study [14], the shares of business 
travelers are adopted from [12] and the relative increases in 
ticket prices from Table II.   

In the fuel hedging scenario (α=0.67), the estimated change 
in passenger demand for HHN-STN - a typical short-haul flight 
operated by FR - is -4.7%, while for LH’s short-haul FRA-
LHR and long-haul FRA-SIN it amounts to -2.0% and -4.0% 
respectively. Passenger demand for LCCs like FR will be more 
negatively affected by soaring fuel prices than demand for full 
service network carriers like LH. The higher demand reduction 
for FR results from a higher relative fare increase compared to 
LH as well as a higher share of more price-sensitive leisure 
travelers. Compared to short-haul routes like FRA-LHR 
demand for long-haul routes such as FRA-SIN will be more 
affected due to the relative strong increase in ticket prices and 
despite lower price elasticities for long-haul travel.  

Without fuel hedging (α=0), the short-term impact on 
passenger demand is even stronger. The estimated change in 
passenger demand due to higher ticket prices for HHN-STN is 
-19,1%, -7.9% for FRA-LHR and -16,6 % for FRA-SIN. 

TABLE III. DEMAND REDUCTION DUE TO HIGHER TICKET PRICES

Route (carrier) HHN-STN 
(FR) 

FRA-LHR 
(LH) 

FRA-SIN 
(LH) 

Business -0.7 -0.7 -0.265 Avg. price 
elasticity  Leisure -1.52 -1.52 -1.04 

Share of business 
travelers 

25% 50% 50% 

α = 0.67 3.6% 1.8% 6.2% Rel.price 
increase  

α = 0 14.5% 7.1% 25.4% 

α = 0.67 -4.7% -2.0% -4.0% Change  
in demand  

α = 0 -19.1% -7.9% -16.6% 
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Table III does not differentiate the relative price increases 
with regard to leisure and business market segments. As the 
average ticket price per passenger is higher for business 
travelers compared to leisure travelers, the reduction in leisure 
demand is even stronger and the reduction in business demand 
lower than shown in Table III.  

This section only estimated the isolated effect of soaring 
fuel prices transmitted via higher ticket prices on passenger 
demand. This cause-and-effect chain corresponds to the direct 
impact of higher fuel prices. There will be indirect impacts of 
soaring fuel prices, for example, a reduction in air travel 
demand resulting from lower disposable incomes. Looking at 
the calculated short-term reduction in passenger demand of 
more than 15% for typical short-haul services operated by LCC 
as well as for long-haul services in the no fuel hedging 
scenario, higher ticket prices due to soaring fuel prices strongly 
influence commercial aviation. However, this direct impact 
may be compensated by other factors influencing travel 
demand. Fuel surcharges levied by airlines in recent years did 
not keep aviation from growing more than 5% annually [12]. In 
addition, the estimated changes in passenger demand for 
services offered by FR and LH have to be set in due proportion 
to the future growth trend in commercial aviation, especially 
the currently expected growth rates for European LCCs that go 
well beyond 5% p.a. The reduction in air travel demand caused 
by soaring fuel prices may only confine the overall demand 
increase. 

IV. ALTERNATIVES TO KEROSENE AS JET FUEL

The previous results show that the rate of air traffic growth 
constrained by scarcity of kerosene will be much lower - and 
may even be negative - than unconstrained air traffic growth, 
especially leading to a strong reduction of demand for leisure 
traffic and long-haul services. Hence, the entire aviation 
industry has to look beyond the fuel-efficient ‘3 liter aircraft’ 
and search for new groundbreaking ways to become less 
dependent on fossil fuels. This section provides a brief 
overview how to save fuel or even replace kerosene as jet fuel. 

At present, aircraft and engine manufacturers improve 
aircraft design (e.g. blended wing aircraft) and fuel-efficiency 
of engines in order to reduce fuel consumption. Fuel saving 
strategies by airlines include shorter air routes, carrying less 
minimum fuel, increased fuel blending, shorter sector lengths, 
modern fleet, increased load factors and more efficient ground 
operations (e.g. reduction of ground delays). All these efforts 
contribute to fuel conservation by commercial aviation but do 
not provide a substitute to conventional petroleum kerosene. 

Kerosene is considered the ideal jet fuel. First reason is its 
high energy content. The energy content of fuel is measured as 
specific energy which is the energy content per unit mass 
(joules/kg) and as energy density which is the energy per 
volume (joules/liter). The high energy content of kerosene 
positively affects the total size and weight of the aircraft. 
Operationally, the heavier the aircraft is at takeoff, the more 
fuel is required to lift it into the air. With regard to safety 
criteria, the Jet A-1 kerosene used in commercial aviation has a 
high flash point of not lower than 40° Celsius reducing 
explosion hazards and a low freezing point Kerosene also does 

not contain or absorb water which means that in cold 
temperatures no ice crystals form that block fuel filters and 
ultimately lead to fuel starvation. These safety over a wide 
temperature range is an important selection criterion for jet 
fuels.   

Below alternative fuels (synthetic kerosene, bio-fuels and 
liquid hydrogen) and a new aircraft propulsion technology (fuel 
cells) are presented and briefly evaluated with reference to 
[15], [16], [17] and [19] along following criteria: high energy 
content, safety, environmental impact, availability and price. 
Ethanol and methanol are not considered because of their 
unfavorable properties at jet fuel. 

A.  Synthetic kerosene 

This is a carbon-based fuel synthesized by using a Fischer-
Tropsch conversion process. According to the raw material 
used three types of synthetic kerosene are differentiated:  

• Biomass to liquid (BTL). 

• Gas to liquid (GTL). 

• Coal to liquid (CTL). 

Today, synthetic kerosene is only approved in commercial 
aviation as a blend with petroleum kerosene despite of having 
basically the same energy content and safety qualities. Semi-
synthetic fuels (50 percent normal fuel and 50 percent synthetic  
fuel) for the aviation industry have been produced in South 
Africa since 1999 [16].  

BTL is more environmentally clean than GTL and CTL as 
the combustion process of BTL releases carbon dioxide (CO2)
in the same quantity as the plants have absorbed from the 
atmosphere during their growth process. However, the CO2

benefits of BTL must be assessed by life cycle analyses 
considering emissions generated by cultivation, processing and 
transport. BTL can be produced from almost any type of plants 
and offers new perspectives for farmers but implies the risk of 
competition with food production.  

B. Bio-fuels 

Bio-fuels refer to fuels derived from feedstock such as 
rapeseed, soybeans or algae without a Fischer-Tropsch 
synthesis as in the case of BTL. Bio-fuels have a somewhat 
lower energy content than kerosene [16]. The primary concern 
with the use of bio-fuels are their low temperature properties 
with freezing points near 0° Celsius, much higher than the 
maximum freezing point of petroleum kerosene (-40° Celsius). 
With additives the low temperature operability at cruising 
altitudes of bio-fuels can be improved. There are doubts that 
bio-fuels can be mass-produced affordably because of limited 
farmland [17]. For these reasons, bio-fuels are currently not 
considered as alternative jet fuels on their own but more 
suitable for blending with kerosene.  

C.  Hydrogen  

Liquid hydrogen is the liquid state of the element hydrogen. 
It is probably the most commonly discussed long-term 
alternative to kerosene. Hydrogen provides 2.5 times the 
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energy per kg than kerosene but is also about four times more 
voluminous. Liquid hydrogen is non-corrosive. A major 
potential advantage of hydrogen compared to kerosene is the 
significant reduction of harmful emissions. The primary 
combustion product of hydrogen is water. A negative 
byproduct of its combustion is water vapor as greenhouse gas. 
Depending on how hydrogen is produced there are significant 
CO2 emissions generated during its life cycle. 

Today, hydrogen is expensive to produce and difficult to 
store. Due to the large volume and the requirement to cool 
down hydrogen to the liquid state (-253° Celsius), the 
cryogenic storage of hydrogen constitutes a major challenge for 
aircraft manufacturers. A hydrogen powered aircraft will look 
very different from today’s kerosene aircraft. Hydrogen will 
not be stored in conventional wings because of pressurization 
and insulation requirements. The positioning of fuel tanks in 
the fuselage results in an enlarged fuselage or less passenger 
capacity. Ensuring explosion safety of cryogenic aircraft is a 
challenge. Hydrogen will also require a radical change in 
engine design. Yet the Russian aircraft manufacturer Tupolev 
managed these technical challenges with the cryogenic fuel 
aircraft TU-155 performing its maiden flight already in 1988 
[18]. 

Hydrogen aircraft also pose a major challenge for airport 
infrastructure which at present is only designed for kerosene 
aircraft. A prerequisite for a change from kerosene to hydrogen 
already in the transition stage is the global availability of two 
parallel fueling systems at airports. Hence, a transition to 
hydrogen-powered aviation may take decades, especially 
considering the long life-span of aircrafts currently in 
operation.  

D. Fuel cells 

Fuel cells have been used in spacecrafts since the 1960’s to 
power auxiliary engines. Experimental aircraft powered only 
by a fuel cell supported by lightweight batteries during takeoff 
and climb is on its way. A fuel cell is an electrochemical 
device that converts hydrogen directly into electricity and heat 
without combustion. Fuel cells are emission-free and quieter 
than hydrocarbon fuel-powered engines. The main challenge 
is to develop compact and lightweight electric propulsion 
systems with more power. Today, using fuel cell technology 
as primary power for a passenger airplane leads to a 
propulsion system several times heavier than conventional 
aircraft engines and still far from their efficiency. However, 
chilled superconducting magnets carrying electricity without 
resistance have been proposed that may allow for lightweight 
and powerful electric jet engines in the long run [19].  

Table IV summarizes the pros and cons of jet fuel 
alternatives relative to petroleum kerosene along selected 
criteria. “+’’ indicates that the potential substitute performs 
better with regard to the respective criterion, “o” suggests 
equal and “-“ worse properties compared to conventional 
kerosene.  

TABLE IV. ASSESSMENT OF ALTERNATIVE JET FUELS AND FUEL CELLS 
RELATIVE TO PETROLEUM KEROSENE 

Criterion Energy 
Content 

Safety 
Environ-
mental 
impact 

Avail-
ability  

and price 

BTL o o + - 

CTL o o - - 

Sy
nt

he
tic

 
ke

ro
se

ne

GTL o o - - 

Bio-fuels  - - +  ? 

Hydrogen + ? + - 

Fuel Cells - ? + - 

The assessment does not account for ground-breaking 
technology developments and, hence, has to be regarded as 
preliminary. Evaluating alternatives to petroleum kerosene in 
the near future, synthetic kerosene holds the greatest promise 
as it basically can be used in existing aircraft either alone or 
blended with petroleum kerosene. The main problem for 
synthetic kerosene with the exception of BTL is the large 
amount of CO2 generated during production. In the long run, 
hydrogen seems to be a promising candidate to replace 
kerosene if safety standards of civil aviation can be secured but 
asks for a fundamental change in aircraft design and new 
ground infrastructure at airports. 

V. CONCLUSIONS

Conventional wisdom in commercial aviation is that global 
air traffic will continue to grow in the coming decades. This 
implicitly assumes no constraint in traffic growth due to finite 
oil resources. This is in stark contrast to studies that estimate 
peak oil sometime between now and 2040. 

This paper analyzed the short-term economic impact of 
soaring fuel prices on commercial aviation. The time horizon 
was only one year from now allowing fuel hedging by airlines 
to balance increasing spot prices. The analysis was restricted 
to the direct effect of higher kerosene prices on operating 
costs, fare levels and passenger demand. Indirect effects on 
passenger demand resulting from a reduction of purchasing 
power, an increase in unemployment and higher costs for 
other input factors besides kerosene were not considered. The 
analysis also ignored possible political crisis and economic 
shocks for oil importing countries forced to spend 
significantly more on their energy purchases. Hence, the scope 
of this paper has been somehow limited. 

However, the limited approach already shows that the rate 
of air traffic growth constrained by scarcity of kerosene will 
be much lower - and may even be negative - than 
unconstrained air traffic growth, especially with regard to 
price-sensitive leisure demand. Services offered by low-cost 
carriers and long-haul services will be most adversely affected 
by higher fuel prices. Further, the impact of soaring fuel prices 
largely exceeds the impact of the proposed EU emission 
trading system (ETS) for the aviation industry. This leads to 
the question whether ETS is actually needed in view of finite 
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supplies of fossil fuels that may restrict or even terminate air 
traffic growth. In addition, high fuel prices are a strong 
incentive to use more fuel-efficient engines, to optimize 
minimum fuel policies, to improve air routes and ground 
operations, etc., in the same direction as intended by ETS. 

The fuel price development will also influence the typical 
air service pattern, for example, there may be a renaissance of 
technical stops for re-fueling on intercontinental routes or 
more point-to-point traffic in order to avoid fuel burning 
detours via hubs. To avoid high fuel costs, regional carriers 
have already replaced regional jets on some routes by 
turboprops. The in-depth analysis of the relative economic 
benefit of competing services patterns and the use of 
turboprops instead of regional jets in times of high fuel prices 
is an interesting issue for further research. 

Peak oil will happen, the open question is when. It is a 
problem that may soon replace the global warming debate in 
commercial aviation as jets are not as fuel-flexible as ground 
vehicles. Aviation industry and politicians better face the long-
term implications of finite oil resources. Airline and airport 
managers should no longer exculpate themselves by referring 
to future air frame designs to be developed by aircraft 
manufacturers or increased blending of other fuels with 
kerosene by the petrochemical industry. More research than 
today should be devoted to the economic evaluation of 
kerosene substitutes in combination with the associated future 
requirements for airline fleets and airport infrastructure. 
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Abstract—The New York metroplex airports (JFK, LGA, EWR) 
provide air transportation service to this critical international 
economic hub. In the summer of 2007 the flights servicing the 
NYC metroplex airports experienced excessive delays and 
cancellations that added significant costs to doing business in 
New York. These delays can be attributed to changes in daily 
airport capacity (due to weather) and to airline practices, in 
accordance with regulations, of scheduling in excess of airport 
capacity. Previous research has demonstrated that maintaining 
airline seat capacity by increasing aircraft size and reducing 
frequency is an economically efficient and feasible solution. This 
paper analyzes the characteristics of the air transportation 
service to the New York metroplex airports. The metroplex has 
service to 104 domestic airports. 36.5% of airports serve all three 
New York airports, while 35.6% serve two of the airports. For all 
the routes to NYC, the average number of flights per day is 6 
with a maximum of 32. These routes have an average aircraft 
seat size ranging from 19 to 238 with an average of 94 seats per 
flight. These routes had passenger load factors ranging from 0.26 
to 0.95 with an average of 0.78. This yields an average of 281 
unused seats per day on these routes. Additional statistics and 
discussion of these results on the implications for consolidation of 
service with larger aircraft and reduced frequency is discussed. 

Keywords- JFK; LGA; EWR; metroplex; air transportation  

I. INTRODUCTION

In 2007, domestic U.S. airline travelers experienced the 
lowest on-time performance on record. Approximately 30 
percent of all flights were either cancelled or delayed more 
than 15 minutes [1]. 

Airline service to the international economic hub of New 
York City (NYC) was particularly hard hit. The on-time 
percentage for the three New York airports (EWR, LGA, and 
JFK) was 71.5% departures, 62% arrivals, and 3.46% 
cancellations [2]. The national average was 76.5%, 73.4% and 
2.16% respectively [1]. Also, airline service experienced the 
worst cancellation rate in the nation. Since approximately a 
third of the nation's air traffic passes through NY airports, 
delays in NYC ripple through the system causing delays at 
other airports [3].  

Analysis of these delays identified that two functional 
causes of delays; (i) changes in daily airport capacity (due to 
weather) as high as 20% reductions from good weather 

capacity, and (ii) airline practices, in accordance with 
regulations, of scheduling in excess of airport capacity.  

Previous research [4] demonstrated that maintaining airline 
seat capacity by increasing aircraft size and reducing frequency 
is an economically efficient and feasible solution. Airlines 
flying larger aircraft, with higher load factors increase revenue.  
Air Traffic Control has reduced operations leading to marginal 
delays. The airport increases passenger throughput and 
provides reliable service to its customers. 

This paper describes the results of an analysis of the air 
transportation characteristics of the NYC metroplex airports: 

• The metroplex has service to 104 domestic airports.

• 36.5% of airports serve all three New York airports, while 
35.6% serve two of the airports.  

• For all the routes to NYC, the average number of flights 
per day is 6 with a maximum of 32. 

• These routes have an average aircraft seat size ranging 
from 19 to 238 with an average of 94 seats per flight. 

• These routes had passenger load factors ranging from 0.26 
to 0.95 with an average of 0.78. 

• This yields an average of 26,197 unused seats over 119, 
004  provided seats on all the routes each day. 

Additional statistics are also provided: number of airports 
served, redundant service at NYC airports, flight number per 
day of  NYC airports, mumber of competing airlines of NYC 
airports, load factor of NYC airports, aircraft seat size of NYC 
airports, seat size vs. load factor for NYC Airports, unite 
revenue ($/mile) vs. load factor for NYC Airports, flight 
frequency vs. seat size classified by load factor for NYC 
Airports, and flight frequency vs. seat size classified by unit 
revenue for NYC Airports. 

The paper is organized as follows: Section 2 provides an 
overview of the scheduled/actual flights and available capacity 
at NYC airports. Section 3 describes the methodology and 
algorithms for analysis the air transportation data. Section 4 
describes the results of the analysis. The conclusions and future 
work are discussed in Section 5. 
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II. BACKGROUND: DEMAND VS. CAPACITY 

Competition coupled with high demand force the airlines to 
schedule multiple flights during peak hours. To cut costs, 
flights are served by smaller planes thereby allowing each 
airline to provide frequency during the most popular times 
while maintaining reasonable costs. The result for the airport, is 
that more flights are scheduled than the runway can handle. 
Figure 1 through 3 show that 2007 summer (06/01-08/30) 
departure capacity of mean ADR (Airport Departure Rate), 
average number of scheduled departures, and wheels-off delays 
in 15 minutes bin from 6:00 am to 12:00 am for NYC 
metroplex three airports. Obviously, during peak hours of 
8:00am-9:00 am and 4:00pm-6:00pm, the airports are over-
scheduling. Figure 1 to 3 also illustrate how over-scheduling in 
one period without sufficient under-scheduling to allow the 
queues to dissipate, forces delays to become longer as the day 
progresses. Examining Figure 3, one sees that although there is 
only a small amount of over-scheduling in any given period, 
the delays continues to get larger and larger as the day 
progresses.  In addition, JFK has the worst wheels-off delays 
from volume standpoint. Table 1 summarized the over-
scheduling time percentage from 6:00am-10:00pm in 2007 
summer for scheduled and actual demands respectively. Table 
1 shows that departures are more over-scheduled than arrivals. 
From time standpoint, LGA is the most over-scheduled airport.  

In addition, the study also shows the airport capacity is not 
fully, efficiently, and properly used. Figure 4 and 5 show the 
actual and scheduled demands distribution for 2007 summer 
respectively for JFK. In each cell, the probability of demands is 
calculated, and then colors are used to distinguish them. Figure 
4 shows some quarterly scheduled demands are exceeding the 
airport capacity very much. For example, (23, 7) cell shows a 
period of time where there are 23 scheduled arrival demand 
when the airport is capable of handling only 14. At the same 
time, Figure 5 also shows that system is under used at most of 
the time in that high probability of demands is distributed far 
away from the capacity line. 

Therefore, to reduce the delays at NYC metroplex airports, 
first the transportation characteristics should be achieved. 
Based on that, then the possible improvement space can be 
identified.  In the next part, algorithms to processing data for 
achieving air transportation characteristics are in detail 
presented. 

Table 1: NYC airports quarterly overscheduled percentage 
(6:00am-10:00pm) 

Airport Actual 
Arr.(%) 

Actual 
Dep.(%) 

Scheduled 
Arr. (%) 

Scheduled 
Dept. (%) 

EWR ��21� 	�21� 
��1� 
�
1�
JFK ��41� 2�41� ��	1� ���21�
LGA ���1� ����1� 4��1� ����1�

Figure 1. 2007 summer EWR mean capacity, departures and 
wheels-off delays per 15 min 

Figure 2. 2007 summer JFK mean capacity, departures and 
wheels-off delays per 15 min 

Figure 3. 2007 summer LGA mean capacity, departures and 
wheels-off delays per 15 min 
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Figure 4. 2007 summer JFK scheduled demands distribution 

Figure 5. 2007 summer JFK actual demands distribution 

III. METHODOLOGY

To get NYC metroplex airports aviation transportation 
characteristics, a number of aviation databases from Bureau of 
Transportation Statistics (BTS) [5] and Federal Aviation 
Association (FAA) Aviation System Performance Metrics 
(ASPM) [6] databases are used for the study. This section 
mainly describes the data processing needed to perform our 
analysis.  Figure 6 shows the data processing flow chart. Next, 
the details of data processing algorithms will be discussed.  

A. Data Processing Algorithms 

1) Determining seat size, load factor, frequency using T-
100 Domestic Segment (U.S. Carriers) Dataset 

T-100 Domestic Segment (U.S. Carriers) database contains 
domestic non-stop segment data reported by U.S. air carriers, 
including carrier, origin, destination, aircraft type and service 
class for transported passengers, freight and mail, available 
capacity, scheduled departures, departures performed, aircraft 
hours, and load factor when both origin and destination airports 
are located within the boundaries of the United States and its 
territories.  

Therefore, from the T100 database, we can extract market 
information for each airport such as the number of carriers, 
average plane seat size, load factor, and average flight number 
per day.  Average airplane seat size can be calculated in Eq. 
(1). The calculation of load factor and average flight number 
per day is expressed in Eq. (2) and (3) respectively. 

Seat Size= total # of seats / total # of departures (1) 
Load factor= total # of passengers / total # of seats (2) 
Flight number= total # of departures / total # of days (3) 

Figure 6. Data processing flow chart 

2) Calculations of segment prices using DB1B Market 
Dataset 

DB1B market data table contains directional market 
characteristics of each domestic itinerary of the Origin and 
Destination Survey, such as the reporting carrier, origin and 
destination airport, prorated market fare, number of market 
coupons, market miles flown, and carrier change indicators. 
Therefore, DB1B can be used to extract ticket price for market 
A to B. 

The ticket prices in DB1B market table are for itinerary 
tickets. To get ticket price from airport A to airport B, two 
situations should be considered. In the first situation, A is 
origin and B is destination. Therefore, A to B ticket price can 
be fetched directly from DB1B. In the second situation, A is 
origin; however B is a transfer airport for flying A to C. Under 
this situation, the ticket price from A to B cannot be directly 
got from DB1B. Segment fares are traditionally prorated from 
itinerary fares. However, there is a fixed cost in any flight leg. 
This port of fixed cost is large in flight legs of short distance, 
and decreases in legs of longer distance. We compute segment 
fares proportionally to the squared root of distances of 
segments in the itinerary [4].  Therefore, Eq. (4) will be used to 
get segment fare from A to B. 

BCAB

AB

ACAB
dd

d
TT

+
×=

(4)

Where ABT  is the ticket price form A to B, and ABd  is the 

distance form A to B. 

Specifically, if a flight has two legs of 100(=102) miles and 
225(=152) miles, and has the one-way ticket price of $100, then 
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leg one is allocated $40 (=
225100

100
100

+
× ) and leg 

two 60$ (=100-40). 

3) Extracting airport capacity from ASPM Airport Dataset 
ASPM airport database can provide detail information by 

quarter hour or hour on the airport, which includes AAR, ADR, 
wind speed, visibility, runway configuration, scheduled 
departures, scheduled arrivals, efficiency of departures, and 
ETMS departures etc.  

Therefore, from this database, we can directly fetch airport 
capacity of AAR and ADR. 

4) Determing demands and delays data from from ASPM 
Individual Dataset 

ASPM individual database can provide detail schedule  
information on a flight including carrier, origin, destination, 
aircraft type, departure date, arrival date, scheduled in time, 
actual in time, scheduled out time, actual out time, scheduled 
taxi-out time, actual taxi-out time, scheduled taxi-in time, 
actual taxi-in time, delays, and block time etc.  

Hence, from ASPM individual database, schedule 
information such as departure and arrival demands, delays in 
each quarter or hourly can be extracted. Eq. (5) calculates the 
demands per quarter. ASPM individual database can also 
provide information scheduled block time. Eq. (6) shows how 
to calculate delays per quarter.  

)/()( 0∑∑ >=
idii Idd (5)

Where 
⎩
⎨
⎧ >

=> othwerwise

dif
I i

di 0

01
0

i
j

iji dLL /∑= (6)

Where id is the demands in the quarter i , 0>idI  is to 

determine whether the there is demand in quarter i or not, and 

ijL is the delays of flight j at quarter i.

IV. DATA ANALYSIS RESULTS

This part will discuss the data analysis results for 2007 
summer at NYC airports. The data from major airlines are only 
counted in T100.  A major airline is defined as the airline 
which has more than 60 arrival flights to the studied airport in 
2007 (Jun 01-Aug 30). Next, we will discuss the detail 
statistics results such as number of airports NYC served, 
average flight number per day, number of competing airlines, 
airfares, the load factor, and the average aircraft seat size for 
the identified airports etc. 

A. Number of Airports to NYC 

After processing the data, we got that the NYC severs 104 
domestic airports in 2007 summer (Figure 7).  And EWR 
serves 81 of them, JFK severs 62, and LGA serves 68 (Table 
2).  

Figure 7.  NYC metroplex served airports route map 

Table 2. Number of airports served by NYC three airports  
Airport Code # of Airports Served 

EWR 81 
JFK 62 
LGA 68 

Table 3 also lists the details about how NYC airports sever 
the 104 airports. 38 (36.5%) of the identified 104 airports are 
served by all 3 airports; 37 (35.6%) are served by two of three 
airports; and only 29 (27.9%) are served by only one of three 
airports 

Table 3. Redundancy of service in NYC airports 
# of NYC serving airports 1 2 3 

# of airports served 29 37 38 

% of airports served 27.9% 35.6% 36.5% 

Figure 8. NYC metroplex arrival flight number/day histogram 

B. Flight Number per day for NYC Airports 

Figure 8 shows the average flight number per day 
histogram for NYC metroplex airports. Figure 8 shows that the 
average flight number per day per market are 5 to EWR, 6 to 
JFK, and 7 to LGA. And the medians are 4 to EWR, 5 to JFK 
and LGA.  Therefore, approximate (5x81+6x62+7x68)=1253 
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flights each day are flying to/from NYC metroplex airports. In 
addition, most of airports have less than 15 flights per day. 
Table 4 also lists the top 20 airports to NYC, and 53% of 
flights are from these top 20 airports. 

Table 4. Top 20 airports to NYC airports 
# of arrival flights/day Airport Code 

EWR JFK LGA NYC 

Boston Logan MA BOS 10 21 32 63 

Chicago O'Hare IL ORD 20 11 30 61 

Atlanta Hartsfield 
GA 

ATL 22 5 28 55 

Ronal Reagan 
National DC 

DCA 7 8 31 46 

Raleigh Durham NC RDU 11 13 16 40 

Fort Lauderdale FL FLL 12 13 14 39 

Charlotte NC CLT 14 7 17 38 

Orlando FL MCO 14 14 9 37 

Detroit MI DTW 10 22   32 

Los Angeles CA LAX 11 5 16 32 

Dallas Ft. Worth TX DFW 10 20   30 

San Francisco CA SFO 11 5 14 30 

Dulles VA IAD 10 12 6 28 

Buffalo NY BUF 5 14 7 26 

Pittsburg PA PIT 8 6 11 25 

Miami FL MIA 11 4 9 24 

Houston Bush Int. 
TX

IAH 8 8 8 24 

Port Columbus OH CMH 5 7 11 23 

Cincinnati OH CVG 8 4 10 22 

Cleveland[Hopkins 
Intl] OH 

CLE 6 4 11 21 

Figure 9. NYC metroplex airports number of  airlines 
histogram 

C. Number of Airlines for NYC Airports 

The airline number is got from T100, and only the major 
airline is counted. Figure 9 shows the number of airlines 
histogram for the NYC metroplex airports where each route are 
served by 2 airlines in average.  Route CMH-LGA, BOS-JFK, 
SFO-JFK are most competitive routes, with 5 airlines severing 
on these three routes. 

D. Airfares  for NYC Airports 

Table 5 also lists the segment prices to top 20 airports. 
This table illustrates that the price can vary substantially 
among the three NYC airports.  For example, BOS to EWR 
has an average segment fare of $200, for BOS to JFK, the 
average segment fare is $86, and for LGA is $148. Therefore, 
BOS-EWR is most expensive way to NYC. This can be 
explained by airline competition which drives the price down. 
From BOS to EWR, only one airline flies on this route, 
however five airlines fly from BOS to JFK, and 3 airlines are 
flying from BOS to LGA. In addition, Figure 10 is the airfare 
histogram for NYC metroplex airports. The average segment 
airfare to EWR is $175, to JFK is $149, and to LGA is $151.   
In addition, virtually all airports have segment airfares below 
$250.  

Table 5. Airfares of  top 20 airports to NYC airports 
Airfares($) Airport Code 

EWR JFK LGA NYC 

Boston Logan MA BOS 200 86 148 140 

Chicago O'Hare IL ORD 164 128 157 156 

Atlanta Hartsfield 
GA 

ATL 152 161 147 150 

Ronal Reagan 
National DC 

DCA 192 102 142 143 

Raleigh Durham 
NC 

RDU 134 112 127 125 

Fort Lauderdale 
FL 

FLL 131 132 133 132 

Charlotte NC CLT 127 117 127 125 

Orlando FL MCO 134 135 142 136 

Detroit MI DTW 290 361   335 

Los Angeles CA LAX 193 127 136 146 

Dallas Ft. Worth 
TX

DFW 309 326   320 

San Francisco CA SFO 249 189 239 237 

Dulles VA IAD 81 90 106 93 

Buffalo NY BUF 105 95 97 97 

Pittsburg PA PIT 152 137 146 146 

Miami FL MIA 264 188 212 228 

Houston Bush Int. 
TX

IAH 122 88 125 111 

Port Columbus OH CMH 146 95 115 115 

Cincinnati OH CVG 173 141 181 174 

Cleveland[Hopkins 
Intl] OH 

CLE 198 137 150 168 
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Figure 10. NYC metroplex airports airfares histogram 

E. Aircraft  Seat Size  for NYC Airports 

Figure 11 shows the mean aircraft size histogram for the 
NYC metroplex airports. The average aircraft seat size to LGA 
is the smallest (75) of the three airports, while JFK is the 
largest (113). In addition, at EWR and LGA, over one third of 
the airports are serving with aircrafts having 50 seats or less. 

Figure 11. NYC metroplex airports aircraft seat size histogram 

F. Load Factor for NYC Airports 

Figure 12 presents a load factor histogram for NYC 
metroplex airports. The graph illustrates that EWR and LGA 
has better load factors than LGA. LGA-LWB (Lewisburg, 
West Virginia) has the smallest load factor (0.26). At EWR and 
JFK, over 90% of airports have load factors greater than 0.6, 
assuring the profitability of most flights during the summer of 
2007.  

G. Seat Size vs. Load Factor for NYC Metroplex 

Figure 13 shows the relationship between aircraft size and 
load factor for NYC metroplex. For most airports, aircraft size 
and load factor are positively correlated. However, for high 
frequent airports such as DCA, BOS, CLE, the load factors are 

not so high (less than or equal to 0.7). Thus, for these highly-
competitive airports, if each of the airlines serving these 
regions wishes to maintain frequency, they must choose 
smaller aircrafts to maintain profitability. Alternatively, 
passengers could be equally well-served with larger aircraft but 
fewer airlines serving these airports.  It is on these high-
demand routes where upguaging would help rationalize aircraft 
and runway capacity. 

Figure 12. NYC metroplex airports load factor histogram 

Figure 13. NYC metroplex seat size vs. load factor classified 
by flight frequency 

H. Unit Revenue  vs. Load Factor  for NYC Metroplex 

Figure 14 presents the relationship between unit revenue 
(=airfare/distance) and load factor. It shows that there are 
negative correlations between the unite revenue and load 
factor.  MVY (Martha’s Vineyard Airport, MA) to NYC has 
the largest unite revenue (0.83$/mile), however, TUS (Tucson, 
AZ) to NYC has the smallest unite revenue (0.08$/mile). 

I. Flight Frequency  vs. Seat Size  for NYC Metroplex 

Figure 15 shows the relationship between frequency (# of 
arrival flights per day) and seat size, and it is classified by load 
factor. It shows that most low load-factor aircraft are small and 
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providing service infrequently. Not surprisingly, flights to 
Hawaii (HNL) are serviced by large airplanes and have very 
high load factors. 

Moreover, Figure 16 shows the relationship between 
frequency (# of arrival flights per day) and seat size, and it is 
classified by unit revenue. It shows that long distance routes 
usually have lower unit revenue than some short, low load 
factor routes.  

Figure 14. NYC metroplex unit reveune vs. load factor 

Figure 15. NYC airports frequency vs. seat size and classified 
by load factor 

V. CONCLUSION 

The paper is the first in a series of papers that studies the 
NYC Metroplex of airports. This paper took a first look at the 
status of NYC airports in terms of the airports served, seat 
capacity, airfares, load factors etc. The results identify the 
NYC metroplex serving 104 domestic airports (EWR:81, 
JFK:62, LGA:68). The results also indicate that NYC 
metroplex exhibits redundant service. 38 (36.5%) of the 
identified 104 airports are served by all 3 NYC airports; 37 
(35.6%) are served by two; and only 29 (27.9%) are served by 

one. Demands such as the number of arrival flights per day per 
market (EWR: mean=5  and median=4; JFK: mean=6  and 
median=5; LGA: mean=7  and median=5) and load factors 
(EWR: mean=0.82  and  median=0.83; JFK: mean=0.81  and 
median=0.83; LGA: mean=0.71  and median=0.76) imply the 
heavy passenger demands to NYC airports. The number of 
airlines serving a market (EWR: mean=2 and median=1; JFK: 
mean=2 and median=2; LGA: mean=2 and median=2) 
presents that NYC airports are competitive, which also forces 
the airfares (EWR: mean=$175 and median=$165; JFK: 
mean=$149 and median=$136; LGA: mean=$151 and 
median=$146) down. The average aircraft sizes (EWR: 
mean=94 and median=74; JFK: mean=113 and median=120; 
LGA: mean=75 and median=50) presents us the opportunity 
of upguaging in order to reduce congestion for the crowded 
NYC airports. The relationship between seat size and load 
factor discloses a possible way to help reduce congestion by 
proper upguaging small airplanes to big ones. The data will 
also be used in our future research that will examine the 
impacts of both regulation and cost on these airports with the 
goal of determining how best to allocate the scare runway 
capacity that exists within this region. 
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Abstract — the purpose of this study was analysis of low-cost 
airline demand in Australia. As part of this project, an 
econometric method was applied to develop a regression model 
for forecasting demand. The research hypothesis being that low-
cost airline demand in Australia is based on the following 
variables: domestic airfares, price of other transport modes, 
population, disposable income and tourist numbers. It was found 
that demand for low-cost airlines is primarily a function of 
domestic airfare and population while tourist numbers and price 
of other transport modes did not have a significant influence.  

Keywords-low cost airlines; demand modelling 

I. INTRODUCTION 

The low-cost airline concept has been very 
successful in North America and Europe. 
Emergence of low-cost airlines has significantly 
stimulated demand for air travel. In Australia, after 
deregulation in 1990, several low-cost airlines were 
established but most were unsustainable. In 2000 
Virgin Blue entered the market and is the first low-
cost airline in Australia to be both successful and 
profitable (Forsyth, 2003). Virgin Blue’s success has 
attracted other low-cost airlines such as Jetstar to 
enter the market. The study aims to develop a 
demand model for low cost airlines in Australia and 
identify variables affecting the demand model 
significantly. As demand for air travel is related to 
and affected by one or more economic, social or 
supply factors, this study used an econometric 
method to develop a demand model. Econometric 
models attempt to measure causal relationships 
allowing forecasting of the impact of change 
implementation on any variable and consequent 
prediction of demand level impact (Doganis, 2002). 
Knowing demand for low-cost airlines helps 
government and business sectors arrange adequate 
air service infrastructure to meet future demand and 
provides more accurate information on which to 
base strategic plans and decisions. The hypothesis of 
this research is that the total number of low-cost 
airline passengers depends on the following 

independent variables: domestic airfares, price of 
other transport modes, population, disposable 
income and tourist numbers. A multiple linear 
regression analysis was used to test this hypothesis. 
This paper starts with a general background of the 
Australian airline industry, followed by a review of 
previous research studies. The methodology is then 
introduced and finally results are presented followed 
by conclusions. 

II. LITERATURE REVIEW

Studies of air travel demand have used a variety 
of methodologies and variables. Battersby and 
Oczkowski (2001) analyzed a demand model for 
domestic air travel in Australia using the regression 
method. Four independent variables: airfares, 
income, substitute prices and seasonality were 
considered. Both price and income elasticity were 
found to be lower than in previous studies. Savage 
and Dykstra (1995) studied demand elasticity for air 
travel to and from Australia. The model was 
separated into two parts: leisure travel and business 
travel. The study found variables determining leisure 
travel were airfares, income and relative prices while 
income and relative prices were found to be the most 
important determinants for business air travel. 
Ghobrial and Kanafani (1995) estimated air 
passenger demand between various city pairs in the 
United States by using regression analysis. 
Population and per capita income were selected to 
represent the socioeconomic variables while the 
supply variables included airfare, travel time, city 
specific variables and level of service parameters 
including aircraft size and number of flights. 
Although the model explained only 50% of the 
variation in data, results suggested that air passenger 
demand was highly dependent on the frequency of 
flights, travel time and airfare. Tretheway and Oum 
(1992) identified variables which possible affect 
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demand for air travel, price income price and other 
modes of transport, frequency of service, timing of 
service, day of the week, season of the year, safety 
and company goodwill, demographics, distance, in-
flight amenities, customer loyalty and travel time.
The results showed that the most significant of these 
determinants of demand for air travel are price and 
income.       

III. METHODOLOGY

Previous studies focused on demand elasticity for 
full-service air travel in Australia. However demand 
for low cost airlines has not yet been studied in 
detail. This study therefore will focus on developing 
a demand model for low cost airlines in Australia by 
using secondary data sources from the Australian 
Bureau of Statistics (ABS) Bureau of Transport and 
Regional Economics (BTRE) and low cost airlines’ 
annual reports. In air travel demand, analysis many 
explanatory variables influence passenger numbers. 
The procedure for developing regression models and 
forecasting air passenger traffic can be illustrated by 
the flowchart shown in figure 1. The major objective 
of regression analysis is to study the relationship 
between selected variables by measuring the 
response of one variable by a set of variables then 
use the regression model to estimate the dependent 
variable by given independent variables. The first 
step in demand model development is reviewing 
past travel trends. To identify patterns in the 
relationship between these variables a scatter 
diagram is plotted. The next step is to identify 
factors influencing travel in the past and those which 
may affect it in future. This step mainly relies on 
previous research studies. A literature review can 
assist variable selection by highlighting general 
characteristics influencing demand for travel. 
Variable selection also depends on availability of 
empirical data and operational costs. Next the 
function form of the demand model is established 
from the list of variables selected. Plotting a scatter 
diagram can assist to identify variable relationships 
whether linear or non-linear forms. The model is 
then used to fit historical data using the ordinary 
least squares (OLS) method to estimate coefficients. 
The next step in model development is to evaluate 
model accuracy. Statistics such as the coefficient of 
determination (R2) and analysis of variance 
(ANOVA) are used to evaluate the model. The 
coefficient of determination (R2) is a measure of the 

adequacy of the regression equation. In other words, 
this statistic shows how well the model fits the data. 
If the R2 value is near 0 it implies a relationship does 
not exist between dependent and independent 
variables. Conversely, if the R2 value is near 1 it 
implies there is a strong relationship between 
dependent and independent variables. Analysis of 
variance (ANOVA) is often presented in connection 
with the regression model. This is the breakdown of 
the total sum of squares into the explained sum of 
squares and the residual sum of squares. The 
purpose of presenting the table is to test the 
coefficient significance (Muddala, 2001). The next 
step is to estimate air travel demand. Demand 
forecast is produced by using this verified demand 
model and the trend projection. With this method the 
independent variables will be projected and the 
dependent variable can be estimated. 

IV. VARIABLE SELECTION

The dependent variable used is the total number 
of passengers who traveled on Virgin Blue Airways 
and Jetstar, the two low cost carriers in Australia, in 
a particular year. Since Virgin Blue has operated 
since 2002 and Jetstar has flown since 2004 
historical data on low cost airlines passengers was 

Review past Travel Trends

Identify Factors 

Model Development 
- Specification 
- Data Collection 
- Calibration 
- Evaluation 

Calibrated Demand Model 

Traffic Forecast 

Final Forecast 

Forecast Evaluation 

Figure1: Regression Model Development (Taneja,1978)
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only available from 2002. In this study the series of 
total number of passengers are represented per 
quarter. Based on previous research, most air 
passenger demand studies selected socioeconomic 
factors and transport supply factors to analyse the 
relationship between variables. In this study, the 
following variables are selected as socioeconomic 
variables: population, disposable income and tourist 
numbers while airfares and price of other transport 
modes are chosen as transport supply factors. 
Tourist numbers were not selected by previous 
demand model development, however this variable 
might impact a demand model for low cost airlines 
as low fares may attract tourists who would 
otherwise travel by other transport modes. The total 
population of Australia is collected from the 
Australian Bureau of Statistics covering the second 
quarter of 2002 and extending to the final quarter of 
2004. Disposable income is the net income from 
which taxes have been deducted to represent 
purchasing power. This is an important airline 
industry variable because it give a sense of the 
amount of money people can spend on air tickets 
(Ellsworth, 2000). To adjust for inflation, disposable 
income is divided by the consumer price index (CPI) 
taken from the Australian Bureau of Statistics with 
1990 as the baseline. Tourists are people whose 
main purpose for the trip is holiday include those 
who not only travel by air but also by other transport 
modes. Domestic full-service airline fare is an 
important factor in passenger decisions which 
influence low cost airline demand. This study uses 
the domestic airfares price index for economy class 
for full-service airlines taken from the Bureau of 
Transport and Regional Economics (BTRE) to 
calibrate the demand model. The airfares price index 
for economy class uses July 2003 as the baseline and 
is adjusted for the CPI using the Australian Bureau 
of Statistics Consumer Price Index. The price index 
of other transport modes is selected to analyse the 
relationship between numbers of low cost airlines 
passengers and price of alternative travel options. 
Like previous variables, the price index of other 
modes of transport is adjusted for inflation and has 
1990 as the baseline.  

V. DEMAND MODEL

The demand model is developed to estimate the 
total number of low cost airline passengers. The 
statistical software, SPSS, is used to determine the 

final forecast model. From the scatter diagram of 
these variables, the relationship between dependent 
and independent variables in this model is 
determined to be a linear relationship. 

The general form of the regression model is: 

Yt = b0 + b1Pt + b2It + b3Tt + b4At + b5Ot

 Where Y is the dependent variable, total 
number of low cost airlines passengers, P is the 
population of Australia, I is the disposable income, 
T is the total number of tourists, A is the domestic 
airfare index and O is the fare of other modes of 
transport index. The SPSS is used to perform the 
regression analysis. The ordinary least-square 
method (OLS) is used to determine the parameters 
bi in the regression model and the STEPWISE 
method is used to select the variables. Stepwise 
regression begins by entering variables into the 
model one at a time. The first variable to be selected 
is the parameter which shows the strongest 
correlation with the dependent variable. Each time a 
new parameter is considered for entry into the 
model, the program simultaneously tests the 
variables in the model for removal. The t statistic is 
used to test the hypothesis that the coefficient of the 
variable is 0. If the significance of adding a variable 
to the equation is less than or equal to 0.05, in other 
words the confident interval is less or equal to 95%, 
then the variable is included in the model. However, 
a parameter will be removed if its significance level 
exceeds 0.10. The stepping procedure ends when the 
significance of the dependent variable does not 
improve (Ellsworth, 2000). 

VI. RESULTS

A stepwise multiple regression analysis was 
executed with five exogenous variables. The 
adjusted coefficient of determination, Adjusted R2,
is a measure of model adequacy or how well the 
model fits data corrected for bias. Statistical results 
indicated the model explained 98% of variation in 
the endogenous variable “total number of low cost 
airlines passengers”. The model is tested for overall 
significant by using F-test. The F-test is a formal 
hypotheses test that is designed to deal with a null 
hypothesis that contains multiple hypotheses or a 
single hypothesis about a group of coefficient. 
Alternatively, there is a measure called the p-value 
or marginal significant value which is used to test 
the hypothesis of regression. If p-value is less than 
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critical value the null hypothesis will be rejected. T-
test is the test usually used to test a hypothesis about 
the individual regression slope coefficient. If p-value 
is less than critical value the null hypothesis will be 
rejected. Overall the model is statistically significant 
(p-value < 0.000). It can be implied that there is at 
least one independent variable which relates to the 
total number of low-cost airlines passengers. To 
determine which independent variables have a 
relationship to the dependent variable, T-statistics 
were used as a criterion. If p-value of each variable 
is less than or equal to 0.01, the variable will be 
included in the model. We find two variables, 
population (P) and domestic airfares index (A) are 
statistically significant (p-value < 0.01). The signs of 
the regression coefficients of these variables are 
positive which is in line with expectations. If fares 
of full-service airlines increase, passengers are more 
likely to fly with low cost carriers. However, three 
other variables, disposable income (I), total number 
of tourists (T) and price index of the other transport 
modes (O) did not prove to be significant at a 0.1 
probability level and were removed from the model. 
The resulting simple demand model for low cost 
airlines is: 

Yt = -80,923,650.611 + 3.125Pt + 11,146.106At , 

The coefficient of the population variable is 
positive (b = 3.125) and statistically significant (p-
value < 0.01). This indicates the higher the greater 
the Australian population, the more likely demand 
will be for low cost airlines. According to the 
stepwise regression, it is determined that disposable 
income, the total tourist numbers and price index of 
other transport modes are not statistically significant 
for estimating the number of low cost airlines 
passengers.  

VII. CONCLUSION

It can be concluded that demand for low cost 
airlines in Australia is a function of population and 
full-service domestic airfares price index. This study 
shows exogenous demand variables for low cost 
airlines are different from demand variables for full-
service air travel in Australia. Disposable income, 
tourist numbers and the price index of other 
transport modes are not significant to the model. 
When domestic airfare increases the number of low 
cost airline passenger will increase and also when 
number of population increases the number of low 

cost airline passenger will increase as well. This 
model is based on data for the past three years, and 
can be verified in future as more data becomes 
available.  
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Abstract—This paper describes a doctoral research plan on 
collaborative practices in ATC. The research is in its early phase 
and intends to investigate ATC collaborative practices under the 
Target Time of Arrival Project currently under development at 
EUROCONTROL. Expected outcome will fall in the area of 
display design and/or validation. Current efforts are allocated to 
a review of theories and models that characterize human 
activities in relation to the context. Such review will inform later 
data collection and design phases. 

Keywords-component: human factors; collaborative work; 
distributed team work; target time of arrival (TTA) concept.

I. INTRODUCTION 

Information technology is known as having great potential to 
improve performance and safety, where that is appropriate, in 
virtually any domain, including complex and safety critical 
ones.  I focus on a particular area for potential improvement: 
how can information technology better support the co-
ordination of co-operative work? This seems to be a 
particularly delicate issue in highly distributed work settings 
such as air traffic control, where the safe management of 
operations depends heavily on the ability to share in a timely 
fashion the relevant information.   

In particular problems might arise when people use common 
information in ways different from the intended ones.  The 
Überlingen accident (July 2002) could be regarded as an 
example of a failure to co-ordinate safety critical information, 
in the presence of an advanced information technology 
application (TCAS).  

A set of studies have been developed and proposed in the 
CSCW literature that looked at these issues [1, 2]. According 
to these works designing new technology to support 
collaborative environments, cannot be limited to considering 
the information flow and formal procedures but it has to take 
into account how people construct shared interpretation of 
information [3].  In other words an approach requiring an 
analysis of how Common Information Spaces (CIS) are 
constructed and maintained seems more appropriate to avoid 
the risk of “disrupting cooperative work by computerizing 
formal procedures” [2]. 

This aspect is particularly true in ATC, where controllers have 
to coordinate their actions, take real time decisions extract 
information effectively under often high time pressure.  

II. OBJECTIVE

This research proposes to characterize collaboration and co-
ordination in ATC with the particular focus on how distributed 
operators construct a common knowledge representation that 
supports mutual understanding of goals and intentions.  

The candidate application is the Target Time of Arrival (TTA) 
operational concept. TTA consists in associating to each flight 
a time windows in order to meet a target time of arrival, thus 
ensuring improved predictability and reduced traffic buncing. 
This concept will shift the attention from a sector based 
perspective to a process perspective, where all of the 
distributed actors must work together in function of common 
goal (TTA), instead of sector goal.  The level of maturity of 
the TTA concept is currently between level V1(idea) and V2 
(Prototype) of the ATM concept of maturity scale. Initial 
validation exercises [4] carried out at ECC have indicated that 
many Human Factors issues are still open, for instance it is not 
clear how the responsibility between controllers and pilots is 
going to be shared, how controllers can work with the TTA, 
what are the HMI information requirements for pilots and 
controllers. For example controllers felt TTA information was 
insufficient and need to be further specified. In general the 
challenge presented to operators appear to be how to achieve 
effective synchronization between pilots and controllers and 
controllers of diverse en-route centers to respect the time of 
arrival.  

Research outcomes related to the TTA are expected in the area 
of display design, i.e. how to portray TTA information in the 
light of constraints as emerged from a system level analysis, 
and/or validation, i.e., how to validate, and/or analyze data 
validation of the distributed display concept. 

III. PROPOSED APPROACH

I intend to carry out my work by following a system-centred, 
rather than “user-centered” approach [5].  Two main assertions 
are that design has to be grounded on an understanding not 
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only of the specific tasks being in the focus of investigation, 
but also on an understanding of the context where the action 
takes place. This view suggests going beyond traditional views 
of human activities as sequential actions, with an 
understanding of the relations existing between the overall 
system/organizational goals and the “purposeful” actions 
carried out in everyday practice.   

The second assertion is that such complex inter-relations can 
only be apprehended through iterative learning cycles. As 
shown in the operational validation literature [e.g. 6, 7] 
evaluating an artifact often implies obtaining feedback on its 
operational impact, thus looking at (i) how the artifact will 
affect current methods of working; (ii) whether it will 
introduce new tasks; (iii) how it will relate and co-ordinate 
with other tasks that although not in the focus of the 
evaluation, show to be connected in the current working 
practice.

While some understanding of such functional relationships 
will come from qualitative and quantitative research methods, 
it is postulated that evaluation is a learning cycle where 
initially the most valuable and usable feedback is not so much 
or exclusively on the features of the prototypes but on the 
structure of the work practice, how tasks are related and 
organized to achieve the goals that are partly defined by the 
organization and partly are worked out by the operators (see 
the notion of “finishing the design” [8].  In this respect, it is 
our initial model of the operational environment and not only 
the prototype, which is “tested” during the cyclical evaluation 
and iteratively revised. The better we understand the activity 
the more our evaluation can be focused on the right “unit of 
analysis” that is likely to go beyond what we have originally 
focused on. 

IV. PROGRESS TO DATE

The research is now in its early stages. An on going literature 
review is currently looking at theories and models that study 
air traffic controller activities as a system coupled with their 
context, rather than as a linear set of operations. This latter 
approach has known spread diffusion in Human factors and 
HCI communities despite studying tasks in isolation can lead 
to oversimplification of the real life operating conditions, thus 
introducing potential for erroneous actions.  

The objective of the review is to provide an inventory list of 
principles to study collaborative human activities in relation to 
the context. Such approaches go beyond the traditional focus 
on individual action and present one or more of the following 
characteristics: 

(a). Go beyond a component de-composition of human 
activities, typical for instance of Task Analysis; 

(b). Characterize the contextual factors where activity 
takes place; 

(c). Might include System Theory concepts such as 
functional relationship and self regulation. 

So far the review has covered works on literature on work 
group design, accident models and Human Reliability 
Assessment. The review is covering, but is not limited to, the 
following theories/models: 

− Structural Systemic Theory of Activity (STST) [9] 
− Soviet Cultural Psychology [10]; 
− Systemic Accident Model (STAMP)[11]; 
− Contextual Control Model (COCOM)[12, 13]; 
− Cognitive reliability and Error Analysis Method 

(CREAM)[14]; 
− Socio Technical System Theory (STST)[15].  
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Abstract—The 4D trajectory is envisioned as the kernel of the
future Air Traffic Flow Management system. In this research,
we propose an approach dealing with the predictability and
flexibility of the system using 4D trajectory. A mix integer
programming problem is proposed to minimize the deviation
from actual flown 4D trajectory in relationship to the reference
trajectory.

Key words: Air Traffic Flow Management, 4D Trajectory, mix
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I. INTRODUCTION

In Air Traffic Management (ATM), punctuality is essential

to the smooth operations for the safety of flights knowing

that most flights are subjected to operational uncertainties due

to quality of weather forecast and/or technical and logistics

issues. Traditional ATFM systems are flight-based, i.e. the

schedule are established with discrete events and determinist

approach. Because of operational uncertainties, there exist

gaps between scheduled and executed traffic [3]. Removal of

these gaps can lead to a better use of airport resources and

improve the punctuality of the system.

The SESAR (Single European Sky ATM Research) docu-

ments identified the sources of uncertainties and defined the

future system based on the notion of 4D trajectory in order

to reduce the uncertainties, increase the flight punctuality and

satefy of flight,.... A 4D contract is a set of couple space-time

(O1, t1), ..., (On, tn) where O1, .., On is the space coordinate

of waypoints and ti is the estimated time for arrival (ETA) at

which aircraft must reach the waypoint Oi. The time constraint

increases the predictability of the system and but degrades the

flexibility of the system.

In SESAR, the Key Performance Areas called Predictability

and Flexibility are defined as follows:

• Predictability is the ability of the ATM system to ensure

a reliable and consistent of 4D Trajectory performance.i.e

the ability to control the variability of the deviation

between the actually flown 4D trajectory of aircraft in

relationship to the Reference Business Trajectory

• Flexibility is the ability of the ATM system and air-

ports to respond to ”sudden” changes in demand and

capacity: rapid change in traffic patterns, last minute

notifications or cancellations of flights, change to the

Reference Business Trajectory, late aircraft substitutions,

Fig. 1. Flight scheme

sudden airport capacity changes, late airspace segregation

request, weather, crisis situation, etc.

Typically a flight time is decomposed of three stages:

• Taxi-out time (TOT −OBT ), the time elapsed between

departure from the origin airport gate (Pushback time:

OBT) and wheels off (Takoff Time: TOT). This stage

is assisted by a Departure Manager which aimed at

optimizing the sequence of traffic in the terminal area

including the minimization of flight times by increasing

the accuracy of estimated time of departure.

• Taxi-in time (IBT − LDT ), time time elapsed between

wheels down (Landing Time: LDT) and arrival at des-

tination airport gate (In Block Time: IBT). This stage

is assisted by an Arrival Manager which aimed at opti-

mizing the sequence of arrival traffic based on available

runway and preferred aircraft arrival time data.

• In-flight time (LDT − TOT ), the total time an aircraft

is in the air between an origin-destination airport pair, i.e

from the wheels-off at the origin airport to wheels-down

airport at the destination.

Amongst the three stages of flight, the predictability at the

first and last stages are not good enough: Taxi out time and

taxi-in time. Therefore improving the predictability at the first

and the last stage of the flight are important. For the better

use of airport resources (gates and runways) and aircraft, it

is very important in ATFM to be able to predict the takeoff

time from pushback time and top of descent from takeoff time

for each flight. In other words, it is very important to be able

to control the uncertainties at takeoff time and top of descent

to optimise the available of runways and to schedule the next

flight. Currently, the time window at pushback time is between
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fifteen minutes ahead of planned time and fifteen minutes

after the planned pushback time. Similarly the time window at

takeoff time is between five minutes prior to and ten minutes

after the planned takeoff time. One may suggest that the large

margin at pushback time (and takeoff time respectively) are

the sources of the large uncertainties at the takeoff time (and

Top of Descent time respectively). Therefore a reduction of

time window at pushback time and departure time may have

an positive impact on the uncertainties of the system.

The aim of this research is twofold:

• Study the influence of the time window at pushback time

on the takeoff time and the impact of time window at

takeoff time on top of descent time. Then we can reason-

ably modify the time window to reduce the uncertainties

of the takeoff time and at the top of descent time.

• Build the predictible model for the top of descent. The

predictible model has two important properties: (1) Pre-

dictible property, i.e. It will provides the top of descent

time and (2) Flexible property, i.e. it must take into

account the operational uncertainties

A. Related work

Previous work related to this research topic includes result

obtained by [3]. The authors proved that systematically there

are gaps between planned and executed traffic. This result

means that it is impossible to eliminate the uncertainties in

scheduling of flight. Concerning to the prediction takeoff

time, the most common approach is use the statistical model

to establish the probability distribution of departure delay

then to deduce the taxi-out time. This approach used by [5]

in their work as they used the queuing theory to estimate

the taxi-out time. The authors identifed the takeoff queue

size as an important factor affecting the takeoff time and

validated the model by calculating the taxi-out time for each

runway configuration while [10] focused on the distribution of

departure time to deduce the model for the estimation takeoff

time.

The research carried out by [8] used the Markov decision

process to determine the optimal trajectory of multi-aircraft

under uncertainty.

None of these studies had investigated the impact of the

margin of pushback time on takeoff time and margin of takeoff

time on the top of descent.

Our research is not to provide only the takeoff time pre-

dictibe model but also aimes at incorporating the ”sudden

change” i.e. we investigate a trade-off between the predictabil-

ity and flexibility.

II. MODELING

A. Assumptions and Notations

To model this problem, our assumptions are as follows:

• Flight Plan: 4D Reference Trajectory including:

– Origin airport, destination airport.

– Scheduled departure time (TakeOff Time: TOT), Top

of Descent Time (TOD).

– 4D trajectory defined as a set of consecutives space-

time, denote (O1, t1), ..., (On, tn) where O is the

space coordonates, and t is estimated time that the

flight will reach O at t.

• The aircraft flies along the line between two waypoints

with constant speed.

Notations:

• F is set of flights.

• For each flight f :

– Qf is the set of all possible routes.

– For rf ∈ Qf , (O
rf

1 , t
rf

1 ), ..., (O
rf
nrf

, t
rf
nrf

) is the set

of consecutive waypoints. In our problem, tf1 is the

Takeoff time and tfn

f is top of descent time, we can

extend our model for further flight path but for the

moment we will focus on this segment of flight. So

nf is the number of waypoints on the f ’s contract

Trajectory.

• v
rf

i is the aircraft speed between two waypoints O
rf

i

and O
rf

i+1
. v

rf
max, v

rf

min are the boundaries of vf . These

values can be obtained from database of Aircraft perfor-

mance(BADA) of EUROCONTROL Experimental Cen-

tre.

• mf (xt, yt, zt, t) is the position of aircraft f at t.

From these notations, we have:

1) The flight f takes off at t1rf
will reach the waypoints

O
rf

2 , ..., O
rf
nrf

at
d(O

rf
1

,O
rf
2

)

v
rf
1

,
d(O

rf
nrf

−1
,O

rf
nrf

)

v
rf
nrf

−1

.

2) The time elapsed from take off time to top of descent

is
∑

i=1,..,nrf
,rf∈Qf

d(O
rf
i

,O
rf
i+1

)

v
rf
i

. Then the delay time is

drf
=

∑
i=1,..,nrf

,rf∈Qf

d(O
rf
i

,O
rf
i+1

)

v
rf
i

− (tfnf
− tf1 ).

3) The total delay for all flight is:

TD =
∑

rf∈Qf ,f∈F

drf
(1)

=
∑

rf∈Qf ,f∈F

(
∑

i=1,..,nrf
,rf∈Qf

d(O
rf

i , O
rf

i+1
)

v
rf

i

−(tfnf
−tf1 )).

(2)

B. Constraints

• Separation minimum: Two any aircrafts must be separated

by a minimum distance.i.e df,g(t) = ||mf (xt, yt, zt, t)−
mg(xt, yt, zt, t)||2 ≥ r, with r is minimum separation

and f, g ∈ F . The real number r depends on the aircraft

types: heavy, medium or light.

• Sector capacity: The number of aircrafts in the sector at

any moment should not exceed the sector capacity. We

define the indicator function Ifj(t), whose value is 1 if

the aircraft is in the sector j at t and 0 otherwise. This

constraint can be represented by:
∑

f∈F Ifj(t) ≤ Cj(t),
∀j and t

The goal is to minimize the total delay (TD).
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But we can not solve this problem of optimisation with

real decision variables vt.

We denote vf
ref the reference speed of flight f . This speed

depends on the aircraft characteristics like the engine types,

the flight level,... This speed is used to establish the Reference

Trajectory of flight f . We can rewrite the total delay under the

form:

TD =
∑
f∈F

(
∑

i=1,..,nrf
,rf∈Qf

d(Of
i , O

rf

i+1
)

vf
ref

vf
ref

v
rf

i

− (tfnf
− tf1 )).

(3)

In order to keep the aircraft along the reference trajectory,

we use the speed ajustement and alternative route as tools.

Theorically, the ratio of real speed to reference speed can vary

from 0.001 to infinity but in this framework this ratio is limited

from 0.8 to 1.2. Note xf
i is the integer number, xf

i ∈ 0, ..., 40

and we can approximate the ratio of speed variation as
80+xf

i

100
.

The problem to solve is:

Min
∑
f∈F

(
∑

i=1,..,nrf
,rf∈Qf

d(Of
i , O

rf

i+1
)

v
rf

ref

80 + xf
i

100
−(tfnf

−tf1 )).

(4)

under the constraints sector capacity and minimum separa-

tion.

To simplify the problem, we can divise the segment into

two phases: climbing phase and cruising phase. During the

cruising phase, we can suppose the ratio of speed variation

within 0.95 to 1.05 and during the climbing phase, we limit

this ratio of speed variation within 0.9 to 1.1.

• According to the simplification above, the speed varia-

tion during the cruising phase is limited between 0.95

and 1.05. The ratio can ve represented by
vf

i

vf
ref

=

95+
∑

j=1,..,10
xf

ij

100
for i = 2, ..., nrf

.

• This ratio during the climbing phase can be represented

by
vf

i

vf
ref

=
90+

∑
j=1,..,20

xf
ij

100
, with i = 1.

• xf
ij is the decision variables 0 − 1. And x

rf

i =∑
j=1,..,10 xf

ij , with i = 2, ..., nrf
is the level of speed

modification during cruising phase of flight f along the

route rf

• x
rf

i =
∑

j=1,..,20 xf
ij , with i = 1 is the level of speed

modification to minimize the deviation from the reference

path

MinTD = Min[x + y] (5)

where

x =
∑
f∈F

(
∑

i≥2,rf∈Qf

d(Of
i , O

rf

i+1
)

v
rf

ref

90 +
∑

j=1,..,10 xf
ij

100
−(tfnf

−tf1 ))

(6)

and

y =
∑
f∈F

(
∑

i=1,rf∈Qf

d(Of
i , O

rf

i+1
)

v
rf

ref

90 +
∑

j=1,..,20 xf
ij

100
−(tfnf

−tf1 ))

(7)

We have to solve the problem (5) under the constraints of

sector capacity and minimum separation.

C. Problem complexity

This is a Integer programming problem, the constraints are

sector capacity and minimum separation.

• For each flight we have:
∑

rf∈Qf
nrf

decision variables

• Total decision variables:
∑

f∈F (
∑

rf∈Qf
nrf

)

• This sum is majored by R||F ||||N || with N =
maxrf∈Qf ,f∈F nrf

and R is the number of possible

routes that an aircraft can fly along of.

III. FUTURE WORK

The research has been initiated and real data is currently

under investigating for inital testing of the model. In the

Doctoral symposium the author wishes to be advised on the

topics such as:

• Investigation of the current taxi-out time and taxi-in time.

• Simulation with different airports.

• Incorporation of the ”random walk” into model.

• The model will be validated by comparing the results

obtained from simulation and real results recorded by

radars.
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Abstract— Integrators – companies that offer vertically 
integrated, time-definite, door-to-door transport – have a 
significant market power. However, insight into the market 
structure and the cost structure of these companies, as well as 
into the consequences of their expansion and cooperation 
strategies, is lacking. The purpose of this paper is to analyse the 
integrator market from an organizational perspective, describing 
the strategic behaviour of the market participants. This paper 
provides a clear insight into the major actors of the integrator 
market and their expansion and cooperation strategies. 

Integrators; strategic behaviour; expansion; cooperation; 
industrial economics 

I.  RATIONALE AND SETTING

The globalization of the world economy involves that 
companies are reorganized, resulting in a worldwide spread of 
their production systems. In the ‘global village’, where 
production and consumption are increasingly 
internationalized, transport and logistics services are crucial to 
reduce cycle times and increase products’ speed to market. 
Logistics service providers with an extensive network allow to 
keep the transport costs of international trade down, while 
realizing a more efficient use of production factors. 

However, during the past decade, the requirements for 
transport and logistics have become stricter and more 
numerous. The share of high-value and/or time-sensitive 
goods with a short economic life cycle (e.g. high-tech 
products, textiles, pharmaceuticals, etc.) has increased. 
Therefore, there is a growing need for fast and reliable 
transport that allows companies to gain access to global 
markets and supply chains. 

Integrators are crucial for the delivery of those transport 
services. Since they are able to control the total supply chain 
(‘one-stop shopping’), the strategic and operational 
importance of integrators for the commercial and production 
processes of shippers is extremely high. Inventory costs and 
total distribution costs can be minimized by factors such as 
speed, reliability, guaranteed delivery within a certain time, 
visibility and flexibility [1]. In addition, integrators enlarge 

companies’ catchment area and their options for the location 
of production and assembly facilities [2]. 

Besides the importance of integrators for shippers, the 
competitiveness of a region is also partly determined by the 
presence of one or more integrators. This can be illustrated 
very well by the relocation of DHL’s hub activities from 
Brussels National Airport to Leipzig in 2008, which will have 
far-reaching microeconomic and macroeconomic 
consequences for the airport and for the Belgian economy in 
general. 

Over the past decade, international express has grown at 
more than twice the rate of total worldwide air cargo1 traffic, 
averaging 12.9%2 annually [3]. The integrators account for 
almost 85% of the world’s express shipments [4]. Currently, 
only four players are fully integrated across all transport 
modes, including air transport: UPS, FedEx, DHL and TNT.  

A market structure in which only a few sellers account for 
a substantial proportion of total sales, is an oligopoly. The 
main challenge for the analysis of an oligopoly is strategic 
behaviour or strategic interdependence between competitors, 
which means that each firm’s optimal behaviour depends on 
its assumptions about its rivals’ likely reactions [5]. 

Despite the importance of integrators for shippers and 
economic regions (embedment), the strategies of integrators 
are hardly examined in literature. Insight into the market 
structure and the cost structure of these companies, as well as 
into the consequences of their expansion and cooperation 
strategies, is lacking. 

This paper aims at an analysis of the integrator market 
form an organizational perspective, focusing on the growth 
and relational strategies of the market participants. This 
analysis fits in a broader industrial-economic analysis of the 

1 According to Boeing, air cargo consists of freight, express 
and air mail. In some publications, air cargo is used as a more 
general term than air freight. In this thesis however, both 
terms will be used without any distinction. 
2 Measured in revenue tonne-kilometers (RTK). 
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integrator market. Section 2 gives an overview of the research 
questions and the methodology. The results of this paper 
correspond with the first step of a four step methodology. 
Section 3 provides a definition of integrators. Section 4 
outlines the business positioning of integrators within the air 
cargo industry. In section 5, the Big Four integrators and their 
main expansion and cooperation strategies are considered. 
Section 6 deals with new competitors in the market. Section 7 
finally summarizes the main conclusions of this research. 

II. RESEARCH QUESTIONS AND METHODOLOGY

This paper gives the framework in which four main 
hypotheses will be tested: 

1. Each integrator will finance its growth independently. 

2. New players will enter the integrator market. 
3. Total costs for vertically integrated companies 

(integrators) offering an integrated, door-to-door 
supply chain are lower than the sum of costs for 
companies offering parts of the supply chain. 

4. Integrators will get involved into different types of 
horizontal and vertical cooperation outside the 
integrator market. 

For testing these hypotheses, a four step methodology will 
be used. The research methodology, including inputs and 
outputs, is depicted in figure 1.  

Figure 1. Research Methodology 

First, the integrated express market will be analysed from 
an organizational perspective, describing the behaviour of the 
market agents. The first step will result in some important 
conclusions about the expansion and cooperation strategies 
adopted by the integrators in the past. In the second step, the 
integrators’ expansion and cooperation strategies will be 
analysed from an industrial-economic perspective. Based on 
this analysis, an insight will be gained into the current market 
structure and the future development of the market. In a next 
step, industrial-economic tools will be selected and developed 
in order to understand the expansion and cooperation 
strategies adopted by the integrators in the past. Subsequently, 
an industrial-economic simulation model applicable to the 
integrator market will be developed. This model will allow 
understanding, explaining and forecasting strategic behaviour 
of the current market players. Finally, the model will be used 

to make forecasts about the future market structure and the 
economic consequences of strategic decisions. 

III. INTEGRATED EXPRESS CARRIERS OR INTEGRATORS: A 

DEFINITION

Many definitions of integrators can be found in the 
literature. In this paper, the following definition, based on [6], 
will be used: “integrators are vertically integrated express 
companies that provide time-definite, door-to-door services 
and, for that purpose, perform their own pick-up and delivery 
services, operate their own fleet of aircraft and trucks and tie it 
all together with advanced information and communication 
technologies.” 

This definition contains the most important characteristics 
of integrators, namely: 

3. Selection and development of 
industrial-economic tools 

4. Modelling and forecasting 

Literature review 

Sector and 
company data 

Literature review 

Interviews

Company data

Interviews 

2. Analysis and assessment of 
current and future strategies 

1. Description of the market,  
the major actors and 

 their strategies 
Conclusions about  
strategic decisions 

Insight into current market 
structure

Insight into potential 
scenarios for future

Understanding of  
strategic decisions 

Temporary conclusions about 
future market structure 

Insight into supply function and 
cost structure of integrators 

Quantitative forecasts about 
future market structure 
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• integrated door-to-door service; 
• own transport assets; 
• strongly developed ICT-skills (e.g. tracking and 

tracing) 

IV. BUSINESS POSITIONING OF INTEGRATORS WITHIN THE 

AIR CARGO INDUSTRY

Within the air cargo industry, two major cargo types can 
be distinguished, namely general cargo (heavy lift) cargo and 
express cargo [7]. 

The air cargo industry consists of different actors, which 
can be categorized into three main sub-industries: 

1. general or traditional air cargo industry; 
2. air express industry; 
3. postal services industry. 

This categorization is presented in figure 2. 

Figure 2. Categorization of the air cargo industry 

The general or traditional air cargo industry consists of 
actors providing airport-to-airport services. General air freight 
is the most common type of air cargo movement. General air 
freight companies focus on the transportation of specialized 
and/or consolidated freight, consisting of individual shipments 
from many different customers grouped together and 
transported as one large shipment in an air container [8]. All-
cargo carriers, such as Cargolux, Polar Air Cargo, Nippon 
Cargo Airlines and MK Airlines, belong to the general air 
cargo industry. 

The air express industry is described as “an industry of 
which the core business is the provision of value-added, door-
to-door transport and deliveries of next-day or time-definite 
shipments, including documents, parcels and merchandise 
goods” [9]. Typical characteristics of the air express industry 
are time-definite delivery of goods, door-to-door delivery and 

full tracking control of shipped goods. Two main types of 
players are part of the air express industry, namely couriers 
and express carriers. Examples are GeoPost, General Logistics 
Systems and Ziegler Express. 

Combination carriers, air cargo forwarders and indirect air 
carriers are positioned at the intersection of the general air 
cargo industry and the air express industry. Due to the strong 
competition of integrators, some combination carriers try to 
stay competitive by offering time-definite, door-to-door 
services themselves and, thus, are entering the air express 
industry. This strategy can be illustrated by the case of Cathay 
Pacific, which expanded its services to the express industry by 
offering its Wholesale Courier and Cargo Express services. 
Despite the fierce competition between integrators and 
combination carriers, both types of market players can also be 
complementary to one another. This is illustrated very well by 

Air Express
Industry

General Air Cargo  
Industry 

Postal Services 
Industry 

Combination 
carriers 

Air cargo forwarders 

Indirect air 
carriers

Integrators 

Couriers

Express carriers 

All-cargo carriers
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the case of Northwest Airlines, which will lose DHL Express, 
its most important cargo customer, as from the end of 2008. 
Northwest Airlines is obliged to reconsider its cargo activities 
due to this loss. 

Air cargo forwarders and indirect air carriers are also 
positioned at the intersection of the general air cargo and the 
air express industry since they are increasingly offering value-
added, logistics services and door-to-door delivery. Whereas 
in the past they were merely considered as intermediaries 
between shipper and airline, they are increasingly acting 
nowadays as integrated logistics service providers. Examples 
of these market actors are Kuehne + Nagel, Schenker and 
Panalpina.  

Public postal operators, which originally belonged only to 
the postal services industry, are currently positioned at the 
intersection of the postal services industry and the air express 
industry. The reason for this is the entering of postal service 
providers (e.g. Deutsche Post World Net, TPG, La Poste, etc.) 
in the air express market. 

Integrators are part of all three sub-industries since they 
are offering a broad service portfolio including general air 
freight services, express services and mail services. 

The most important conclusion of this section is that the 
boundaries between the different segments of the air cargo 

industry are blurring since the services offered by the different 
players start to overlap. This intensifies competition and leads 
to various forms of cooperation. An example of the overlap 
between different segments of the air cargo industry is the 
case of Austrian Post, which is increasingly developing its 
B2B express parcels business by the acquisition of parcel 
carriers such as trans-o-flex (Germany, 2006), Scherübl 
(Austria, 2007), Merland Express (Hungary, 2007) and Road 
Parcel (Hungary, 2007). Austrian Post aims at becoming a 
niche player in the European B2B express market. Another 
example is Lufthansa Cargo, which created time:matters in 
1992, a subsidiary specialized in sameday, door-to-door 
express transport. 

V. EXPANSION AND COOPERATION STRATEGIES OF THE BIG 

FOUR

The Big Four integrators have very different origins and 
were founded in different eras. This influences their corporate 
culture and, hence, results in distinctive ways of strategic 
thinking and decision-making. Therefore, to understand 
strategic decisions made by the key players in the industry, the 
historical development of these companies was investigated, 
as well as their recent acquisitions and cooperative 
agreements. The impact of strategic decisions on the 
integrators’ service portfolio and geographical coverage is 
shown in tables 1 and 2. 

TABLE I. ORIGINAL AND CURRENT SERVICE  PORTFOLIO OF INTEGRATORS

Original 
focus 

Main reasons for shift in focus Current focus 

UPS Ground Creation of UPS Airlines (1985) 
Acquisition of Fritz Companies (2001) & Menlo (2004) 

Ground 
Air  
Ocean 

FedEx Air Acquisition of Caliber (1997) Air 
Ground 

DHL Air Acquisition by DPWN (2003) 
Acquisition of Danzas (1999) & Exel (2005) 

Air 
Ground 
Ocean 

TNT  Ground Creation of European air network (1987) Ground 
Air 

Source: Company Websites 
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TABLE II. ORIGINAL AND CURRENT GEOGRAPHICAL FOCUS OF INTEGRATORS

Original 
focus 

Main reasons for shift in focus Current focus 

UPS US Cooperation with Sinotrans (China, 1988) 
Acquisition of LYNX Express (UK, 2005) 
Acquisition of Challenge Air (US, 1999) 

US, Europe, Asia-
Pacific, Latin 
America 

FedEx US Acquisition of Flying Tigers (China, 1989) and route 
authority from Evergreen International Airlines (US, 
1987) 
Acquisition of Flying-Cargo (Hungary, 2007) 
Acquisition of Prakash Air Freight (India, 2007) 

US, Asia-Pacific, 
Europe 

DHL US Acquisition by DPWN (Germany, 2003) Europe, US, 
Asia-Pacific 

TNT Europe Acquisition of Speedage (India, 2006) 
Acquisition of Hoau (China, 2007) 
Acquisition of Mercúrio (Brazil, 2007) 

Europe, Emerging 
Markets (China, 
India, Brazil, etc.) 

Source: Company Websites 

As illustrated in table 1, UPS was originally founded as a 
ground-based delivery company. The company entered the 
overnight air delivery business in the 1980s and created its 
own airline, UPS Airlines, in 1985. Since its primary focus 
was on ground delivery, its current ground network is still 
larger than that of its rivals. On the contrary, FedEx originally 
focused on overnight air express parcel services, a niche that 
did not exist at the time. The acquisition of Caliber in 1997 
diversified FedEx’s product portfolio and brought it in direct 
competition with UPS’s ground-based services. DHL was 
founded as a company shipping documents by airplane. 
Through the cooperation with Deutsche Post, it gained access 
to the most extensive network of ground-based operations in 
Europe. Until now, the main strength of DHL is its air 
network, rather than its ground-based operations. TNT was 
created as a company focusing on road and rail transport 
services. In 1987, TNT started to operate its European air 
network. 

UPS, as well as DHL, offer ocean freight services. UPS 
and DHL both entered the ocean freight segment by means of 
strategic acquisitions. UPS started to offer ocean freight 
services in 2002 after its acquisition of Fritz Companies in 
2001. The purchase of Menlo in 2004 further strengthened 
UPS’s position in the ocean freight market. The most 
important motive to add ocean freight to its product portfolio 
was not growth but customer satisfaction. DHL entered the 
ocean freight business in 1999 after the acquisition of Danzas 
Holding. The purchase of Exel in 2005 reinforced its logistics 
division. 

UPS and DHL have been able to position themselves in 
logistics and supply chain management, in contrast with 
FedEx and TNT. UPS decided to become active in supply 
chain management on the request of its customers. Once 

decided to enter that business, UPS started to take over other 
companies with a suitable product portfolio in the first place 
and the right geographical coverage in the second place [10]. 

FedEx and TNT have a similar business model, as they 
mainly focus on transport and transport-related value added 
services. FedEx is less interested in logistics and 3PL services 
since the margins on these services are small. TNT even 
decided to exit the logistics and freight forwarding businesses 
[11].

While UPS and DHL want to offer all types of products 
(express and logistics) on a worldwide scale, FedEx and TNT 
are focusing more on specific products (particularly express 
transport) and specific markets. One of TNT’s strategic 
choices is the development of special services, namely the 
transport of shipments with special requirements concerning 
volume, weight or other specifications which fall outside the 
normal standards for express transport [12]. 

Table 2 indicates that both UPS and FedEx have their 
origins within the US. UPS expanded to Europe, Asia-Pacific 
and Latin America through acquisitions and cooperative 
agreements. FedEx entered the Asia-Pacific market through 
the purchase of Flying Tigers in 1989 and the acquisition of 
Chinese route authority from Evergreen International Airlines 
in 1995. FedEx became active on the European market in the 
1990s but its European operations were loss-making. The 
company decided to withdraw from Europe in 1993 and to 
concentrate on its core business, namely transatlantic services. 
The acquisition of Flying-Cargo Hungary Kft. in 2007 
demonstrates FedEx’s strategy to re-enter the European 
market and fits in the company’s Eastern European expansion 
strategy. Flying-Cargo Hungary is FedEx’s Hungarian global 
service participant since 2003. Table 3 provides an overview 

THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION                 FAIRFAX, VA, JUNE 1-4 2008

ISBN: 978-0-615-20720-9493



of the key facts of the Flying-Cargo Group, a logistics service 
provider offering solutions along the entire supply chain. 
FedEx will continue with acquisitions in Europe the coming 
years. It is expected that its acquisitions in Europe mainly are 
in the air freight business, since FedEx is not interested in 
offering ground-based services in Europe itself. Currently, 
FedEx offers ground-based services in Europe through 
alliances with e.g. La Poste. This is in contrast with DHL’s 
strategy to establish its own ground network in the US. 

TABLE III. FLYING-CARGO GROUP: KEY FACTS

Flying-Cargo Group 
Founded 1982 
Headquarters Lod, Israel 
Employees 1200 
Network operations in 13 locations 

Source: own composition based on http://www.flying-
cargo.com/pages_eng/about.asp 

DHL was founded in the US but rapidly extended its 
geographical network. The cooperation between Deutsche 
Post and DHL entailed a convergence of services, comparable 
to the service convergence resulting from the acquisition of 
Caliber by FedEx, which shifted FedEx into ground-based 
operations. DHL, originally focusing on air express services, 
gained access to the most extensive network of ground-based 
operations in Europe through the cooperation with Deutsche 
Post. Deutsche Post, on its turn, obtained access to an 
international air express network in Europe, Asia and North 
America [13]. 

TNT originally focused its business on Europe. Nowadays, 
TNT is the market leader in the intra-European express 
market. The company seeks to reinforce its intra-European 
market position, as well as its position in the European 
domestic markets, by means of organic growth. TNT aspires 
to a leading position in the emerging markets, of which two 
are located in the Asia-Pacific region, namely India and China. 
TNT is expanding its position in India and China mainly 
through acquisitions. Besides the connection of these markets 
with Europe, TNT plans to develop a domestic express 
network in these countries, both on the ground and in the air. 
This strategy differs from that of UPS and FedEx, which focus 
on international express and air freight in India and not on 
domestic traffic. DHL also has a different strategy in these 
markets as this integrator concentrates on the development of 
a domestic air network. Concerning TNT’s strategy on the 
world’s largest express market, the US, the company does not 
strive for a large market share on that market. TNT reconciles 
itself to the dominance of UPS and FedEx in the US and 
considers the US express market as a mature market with 
limited growth opportunities. In the US express market, TNT 
focuses on intercontinental express traffic, in cooperation with 
local partners, as well as on the development of services for 
niche markets such as the fashion industry or the financial 
industry [12]. 

VI. ENTRANCE OF NEW COMPETITORS IN THE MARKET

The Big Four integrators are facing increased competition 
from new market entrants. These are mainly traditional freight 
forwarders which are evolving towards integrated logistics 
service providers. ABX Logistics Worldwide, Kuehne + Nagel 
and Panalpina are considered as the main new competitors. 

ABX Logistics Worldwide, acquired by 3i in 2006, ranks 
in the top 12 air and sea freight forwarders worldwide. The 
company divested its domestic road distribution activities in 
several European countries to concentrate on its core business: 
international air, sea and road freight forwarding. Since ABX 
Logistics is in the first place a freight forwarder and no pure 
logistics player, it forms alliances with large logistics service 
providers, e.g. alliance with Penske Logistics in 2006. This 
strategy allows the company to become one of the world’s 
largest freight forwarders and logistics service providers and 
to enter into competition with the Big Four integrators. Two 
years after its acquisition, the private equity group 3i will sell 
ABX Logistics again. The company’s total value in 2008 is 
estimated at  600 million, compared with  80 million in 
2006. Table 4 provides some key figures of ABX Logistics 
Worldwide. 

TABLE IV. ABX LOGISTICS WORLDWIDE: KEY FACTS

ABX Logistics Worldwide 
Founded 1993 
Headquarters Brussels (Belgium) 
Revenues 2006  2.3 bn 
Employees 8000 
Network 250 sites under its own name 

in more than 35 countries. 
Representation in a further 60 
countries by its own 
exclusive agents 

Source: own composition based on http://www.abxlogistics.com 

Kuehne + Nagel (K+N) has evolved from a traditional 
international freight forwarder to a leading global provider of 
integrated supply chain solutions. In 2005, the company 
acquired ACR Logistics, one of Europe’s leading contract 
logistics providers. The deal fits into K+N’s growth strategy in 
contract logistics. Table 5 provides an overview of some of the 
company’s key facts. 

TABLE V. KUEHNE + NAGEL: KEY FACTS

Kuehne + Nagel 
Founded 1890 
Headquarters Schindellegi, Switzerland 
Revenues 2007 CHF 20975 million 
Employees 51075 
Network 830 offices in more than 100 

countries 
Source: own composition based on http://www.kn-portal.com/ 
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Panalpina is described as a leading integrated freight 
forwarding and logistics company. The company has the 
intention to expand its global network further, through organic 
growth as well as by targeted acquisitions and alliances. More 
details about Panalpina are provided in table 6. 

TABLE VI. PANALPINA: KEY FACTS

Panalpina 
Founded 1954 
Headquarters Basel, Switzerland 
Revenues 2007 CHF 10592 million 
Employees 15301 
Network 500 branches in 90 countries. 

Cooperation with selected 
partners in other 60 countries 

Source: own composition based on 
http://www.panalpina.com/www/global/en/about.html 

VII. CONCLUSIONS

The analysis in this paper shows that the services offered 
by integrated and non-integrated service providers start to 
overlap, which leads to a blurring of the boundaries between 
sub-industries of the air cargo industry. This intensifies 
competition and leads to various forms of cooperation among 
service providers. 

Concerning the strategies of the Big Four, it can be 
concluded that DHL and UPS are growing closer to each other 
as they want to offer all types of products (express and 
logistics) on a worldwide scale. On the other hand, FedEx and 
TNT have a similar business model, as they are focusing more 
on specific products (particularly express transport) and 
specific markets. 

As far as the second research hypothesis is concerned, the 
results of this paper show that new players are entering the 
integrator market.  

Regarding the fourth hypothesis, it turns out from this 
paper that it is crucial for integrators to have a global network. 
They aim to reach a global presence via acquisitions and 
cooperation agreements outside the integrator market. 

According to the next step in the methodology, an 
industrial-economic analysis of the integrators’ current and 
future strategies will be made. This involves a determination 

of the market structure. Although the integrator market is an 
oligopoly at first sight, the networks of the agents may overlap 
so that the aggregate market structure may be different. In 
order to complete the second step, industrial-economic 
literature will be reviewed, both theoretical and applied to 
comparable business sectors. In addition, interviews will be 
done with industry stakeholders in order to better understand 
the strategic decisions of the industry participants made in the 
past, as well as to assess the planned strategies and 
developments for the future. 
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Abstract— This paper gives an overview on the first steps of a 3-
year Crew Resource Management and Human Factors training 
project. A construction rationale consisting of a training needs 
assessment phase and of theory driven reflections on training 
design is presented. For the needs assessment, a careful choice 
and application of methods to gather information is vital, because 
this information will form the base of training design. 
Furthermore, a learning theory (instance-based learning theory), 
training methods, legal requirements and training strategies 
(cross training, guided team self-correction and team 
coordination and adaptation training) as well as their 
contributions to training design are described. The intention to 
generate a training theory and the development of a classification 
of training methods along the criteria knowledge, skills and 
attitudes and theory- or experience-based learning are presented.  

Keywords: Crew Resource Management; Teamwork; 
Teamtraining; Human Factor; Needs Assessment; Training Theory 

I. INTRODUCTION

Crew Resource Management (CRM) trainings have been 
utilized in civil and military aviation for more than 20 years 
now [1]. But although CRM training and the like, as Human 
Factors (HF) training in aircraft maintenance or Team 
Resource Management (TRM) training in air traffic control, 
are well established and, depending on the industry, 
mandatory, the topic continues to be of great relevance. 
Recent examples like the lucky ending crash-landing of a 
British Airways Boing 777 in January 2008 at Heathrow 
Airport demonstrate this. CRM trainings have been defined as 
programs and instructional strategies to train crews to 
effectively use all their available resources - information, 
equipment and people - in order to improve safety and 
performance [2,1].  

Although there exists a substantial amount of research in 
the field, [1] emphasize that "the full impact of CRM training 
on safety cannot yet be ascertained (p. 393)" and is still not 
understood. They report findings on the impact of CRM 
trainings on trainees' reactions, learning and attitudes, 
behaviors and/or its impact on the organization. Participants 
generally showed positive reactions towards trainings, but the 
results concerning learning, attitude change, transfer of 
behavior and organizational effects were mixed. What are the 

reasons for this mixed picture? Reference [1] state amongst 
other reasons that firstly, trainings are often not tailored to the 
target audience and secondly, programs are often designed by 
subject matter experts, who know what to teach, but not 
necessarily how. Here, the knowledge of training experts is 
needed. 

II. AIM AND RESEARCH QUESTIONS

The aim of our work is to tackle these deficiencies in a 3-year 
CRM and HF training project started in January 2008. The 
project is a cooperation with a training providing company in 
the aviation sector which is owned by an airline. It provides 
pilot and cabin crew training as well as training for 
maintenance personnel. 
In this paper, we present a construction rationale for training 
and follow two goals:

1) We describe the research questions, method and 
preliminary results of the training needs assessment phase of 
our project. A sound needs assessment is the first step to well-
tailored and effective training programs, as people, tasks, 
behaviors and the organization have to be taken into account. 
[3]. Our first four questions are: 

(a) What is being done by researchers and by practitioners 
in the field of civil aviation and other areas where team 
training is conducted? 

(b) What is the current practice of CRM training in our 
partner company? 

(c) What contents, i.e. what knowledge, skills and 
attitudes (KSA) have so far been trained in the area of CRM? 
How could they be ameliorated by including behavioral 
descriptions that specify theoretical concepts? 

(d) How tight are the legal constraints when it comes to 
the design of training? 

2) We outline results and insights from training research 
literature that will guide training development on the basis of 
the results of the needs assessment phase. In this second phase 
of our project, the focus clearly lies on how teaching of CRM 
could be done. Our last three questions are: 

(e) How can we translate a learning theory that focuses on 
experience-based learning into a training theory?  

(f) And within this training theory, which methods/tools 
(lecture, case-study, role-play, exercise, simulation, video, 
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LOFT or behavioral role modeling) are adequate for gaining 
the specific required KSA and how big should be the portion 
of each of these methods in a CRM training? 

(g) How can we combine the most successful elements of 
several training strategies (e.g. cross training, guided team 
self-correction and team coordination and adaptation training) 
in order to create the most efficient training intervention to 
train CRM? 

III. PROCEDURE

At the moment, we are doing an exploratory interview 
study on the actual practice of CRM and similar trainings in  
different industrial sectors, e.g. air traffic control, military 
aviation (jets and helicopters), swiss army armoured corps and 
mechanised units, flight schools and airlines. The underlying 
reason is that, although numerous theoretical articles have 
been written about the evolution, evaluation and effectiveness 
of CRM trainings and empirical studies have been published, 
there is very little information on what is actually done in 
CRM trainings by practitioners, and how trainings are 
planned and composed. 

In parallel, we started the needs assessment process in our 
partner company and already evaluate strategies for training 
design (see figure 1). The next section describes the methods 
we employ in our needs assessment stage. 

IV. METHOD

The goal is to gain a clear picture on accurate, multiple 
photographs of the current situation [3]. The use of several 
different techniques helps to avoid methodological biases. In 
the following, we will shortly describe what techniques we 
mainly plan to apply to answer our research questions. 

A. Best industry practice

Interviews. Our exploratory study is done in an interview 
study to shed some light on what is done by CRM and HF 
training practitioners in different companies and industry 
sectors. We question key informants, i.e. heads of training or 
responsible persons in charge of CRM in semi-structured 
interviews. We explicitly ask our interview partners to express 
their concerns of and personal attitude toward CRM. The goal 
of these interviews is to get an overview on models and 
methods and tools used in CRM trainings and on the 
assumptions and concerns of trainers and training developers. 

Training needs assessment 
• Best industry practice 
• Current practice in our partner company 
• Legal requirements 
• Specification of KSA and training requirements 

Development of a training concept 
• Special emphasis on experience-based learning 
• Fit of training methods and training goals 
• Combination of successful team training 

strategies 

Figure 1. Intended course of action. 

This shall help us to incorporate best practice approaches, 
but also to avoid pitfalls that were experienced by our 
interview partners. First results show that practitioners are 
generally convinced of the importance of CRM and similar 
training strategies, but are confronted with several problems as 
well. Especially in military aviation, it is difficult to motivate 
trainees for CRM topics, which are often judged as "psycho-
babble" or as "charm schools" [4]. This might be a result from 
the early days of human aspects training, where the focus was 
much more psychological and less applied. 

B. Current practice in our partner company 

Interviews. We will conduct interviews with trainers and 
trainees to gather information on the design and conduct of 
and the participation in existing CRM and HF trainings. These 
interviews will shed light on problems and well-working 
aspects of actual trainings. 

Observation. To get insights into the current practice of 
training, we will host sessions of all trainings with CRM or HF 
content. The focus will be on how training is conducted. 
Ideally, those trainers will be interviewed whose sessions we 
host, and those trainees who participate in these sessions. This 
approach allows us to compare our observations with the 
statements from trainers and trainees. 

C. Legal requirements 

Document analysis. The important legal documents for 
training of human factors aspects are JAR-OPS and JAR-FCL  
(Joint Aviation Requirements, Operations/Flight Crew 
Licensing) [5,6] for pilots and cabin crew and Annex 2 of 
EASA-Part 145 [7] for maintenance staff. The different 
trainings that have to be conducted (e.g. introductory CRM 
course, annual recurrent training), their content and prescribed 
training elements (also called "core elements"), as well as their 
repetition cycle are specified. Examples of training elements 
are "assertiveness" for cabin crew members or "stress and 
stress management", "communication" and "decision-making" 
for both cabin crew members and pilots. Although it seems 
clear what assertiveness means, it is vital for training design to 
define specific behaviors that are judged as "assertive". This is 
part of the specifications of KSA and training requirements 
described below. 

D. Specifications of KSA and training requirements 

Literature analysis. Efforts to specify behavioral patterns 
within training elements have been made before by 
researchers as well as by airlines themselves and can be found 
in literature, but mainly to construct rating systems used in 
performance appraisal of CRM skills. The NOTECHS rating 
system, for example, which is the European taxonomy of 
pilot's non-technical skills  was composed from three sources: 
existing rating systems, research findings reported in literature 
and discussion with subject matter experts [8]. However, 
behavioral markers used to judge performance should also be 
applied to construct training, because before assessing 
performance, the desired competencies have to be trained [9]. 
But information on behavioral specifications used to build 
training programs is less readily available.  

This project is sponsored by the Swiss Confederation’s innovation 
promotion agency (CTI) 
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Document analysis. We will analyze existing training 
manuals and other training material like movies, cases etc. to 
get an overview on how training requirements have been 
translated into training measures.

Interviews. We will conduct Critical Incident interviews 
with experienced job incumbents to adapt or derive behavioral 
descriptions and training objectives of training elements. 
Critical Incident interviews aim at gathering information on 
situations where CRM behavior played a crucial role. Critical 
incidents shall contain descriptions of the situation, the task at 
hand, the actions and their results.

Questionnaires. We will employ questionnaires to gather 
further information on the behavioral descriptions of training 
elements we derive from the literature analysis and the Critical 
Incident interviews. The questionnaire will contain behavioral 
descriptions like "encourages inputs and feedback from 
others" (example from NOTECHS; [8]). Pilots will rate these 
statements on three dimensions: a) importance, b) learnability 
of this behavior, and c) frequency with which this behavior is 
demanded in daily work. Our sample will consist of first 
officers and captains from the airline owning our partner 
company. 

Group discussion. To synthesize the information from 
Critical Incident interviews and questionnaires, a choice of 
interview partners and questionnaire respondents will be 
invited for a group discussion. Group discussions allow it to 
share the problem and data analysis with participants. The 
goal will be to challenge our preliminary conclusions. We plan 
two sessions with ten participants each. 

Preliminary results of the activities described will be 
presented at the doctoral symposium at ICRAT'08. But as the 
design of training programs is not done with the needs 
assessment, we also want to provide an outlook on the second 
phase of our project. 

V. TRAINING DESIGN

The focus lies on tailoring the contents, strategies and 
tools of a CRM training to the audience. This procedure is 
based on the results from training research literature and our 
needs assessment in a previous phase of this project. 

A. Legal requirements 

First of all, one characteristic that has to be kept in mind 
when developing training is the high degree of regulation in 
the aviation industry. Demands on training prescribed by law 
have to be met, as trainings have to be approved by the 
regulatory body. As mentioned above, "Core elements" of 
CRM training, for example, are defined in the JAR-OPS and 
JAR-FCL [7,6]. These elements have to be taken into account 
when developing the contents. Moreover, training design must 
be tailored to the specifications and behavioral markers (that 
we will get from our needs assessment) of these elements in 
order to train the desired competencies. Therefore the methods 
and strategies described below are very essential. 

B. Training theory 

A superior goal will be the transfer of a learning theory 
into a training theory. This novel and innovative course of 
action within our study takes experience-based learning into 
account, because we have a close look at the Instance-based 

learning theory (IBLT) that assumes five sequenced learning 
mechanisms within the context of dynamic decision making 
situations [10]. One important learning mechanism and the 
first one is the formation of "instances", which contain triplets 
of (1) the situations, (2) the decisions that have been made in 
these situations, and (3) the utility of these decisions. These 
instances are often retrieved and re-used in moments of 
decision-making instead of learned rules or heuristics. 
Therefore, it is important to give trainees the chance to gain 
experiences, i.e. instances, during training. Within this setting 
they can explore their decisions and learn from doing 
mistakes. Learning is terminated by a feedback update, the last 
learning mechanism, that helps to understand what had 
happened and what kind of new strategies are necessary for a 
successful outcome. A training theory should describe, explain 
and predict how learning can be enhanced with regard to 
defined learning objectives by using well considered methods. 
Our training theory for social decision making situations 
should devise how relevant aspects of such decision making 
situations could be trained most successfully by creating 
"instances". Simulations and role-plays for example, are of 
importance. 

C. Training methods 

Furthermore, it is also indispensable to establish a perfect 
fit between training methods and learning outcomes [9], in 
order to achieve the intended goal of a CRM training (e.g. error 
prevention, decision making, coordination, leadership). The 
methods and tools used in trainings must be tailored to the 
tasks and competencies of the trained team to enhance 
teamwork [11,12]. Competencies combine different KSA 
necessary to succeed in an organization [13]. A lot of methods 
like lecture, video based demonstration and practice are 
declared to be effective in enhancing teamwork [11]. Reference 
[9] developed a classification if a method supports knowledge 
(e.g. how to communicate), skill (e.g. giving feedback or being 
assertive) and/or attitude (e.g. valuing my crews comments). 
According to these distinctions and the fact that learning can be 
theory- and experience-based, we developed a classification:
Methods are differently categorized whether they enhance 
knowledge, skill and/or attitude and whether they are theory- or 
experience-based (see table 1). Lecture, lesson, case study, 
exercise and Line Oriented Flight Training (LOFT) are 
supposed to enhance knowledge. Skills should be developed 
through role-play, exercise and LOFT and these three methods 
plus case study and videos are supposed to alter attitude. 
Moreover, simulators are often used to facilitate technical/task 
related and team related competencies in order to reduce 
human failure and accidents [14]. 

TABLE I: CLASSIFICATION OF TRAINING METHODS 

Knowledge Skill Attitude 
Experience-
based 
learning 

exercise, 
LOFT, 

simulation 

role-play, 
exercise, 
LOFT, 

simulation 

role-play, 
exercise, 
LOFT, 

simulation 
Theoretical-
based 
learning 

lecture, 
lesson, case-

study 

behavioral 
role

modeling 

case-study, 
video 
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Using simulators supports error learning and developing shared 
mental models among team members with different tasks and 
duties. We suppose that simulation enhances knowledge, skill 
and attitude during experience-based learning. Behavioral role-
modeling is also a method that leads to significant performance 
and behavior improvement in trained teams [15], but a match 
between the behavior model, the role play and the real work 
situation must exist. This method is supposed to alter skills 
during experience-based learning. If an indented goal of the 
CRM training would be just to know, for example, how to lead, 
the selection of the method would be a different one as 
compared to the goal that the trainee should be able to show a 
trained behavior (e.g. being assertive at work). 

D.  Training interventions 

Within a training intervention, methods will be applied 
and, if suitable, combined. Two team training strategies that 
showed promising results in enhancing team performance are, 
for example, Guided Team Self-Correction or Cross-Training.
The first strategy focuses on the leader, who helps the team in 
diagnosing and solving problems whereas the second one
enables team members to use more efficient communication 
and coordination strategies and to built up shared mental 
models [16]. A third successful team training strategy is called 
Team Coordination and Adaptation Training [17]. Here, team 
members learn to improve team work during periods of high 
stress by anticipating and discussing potential challenges 
during low-workload periods. 

VI. CONCLUDING REMARKS

A lot of research on CRM trainings has been done before 
[11,18,1], but results show several limitations: Training studies 
don’t report evaluations on all necessary levels (reaction, 
learning/attitude, behavior, organization) and don’t specify 
what was done in training interventions. Furthermore, a 
significant amount of research was conducted within the 
military aviation context. These factors hinder generalization 
and application of results for teams in other contexts outside 
(military) aviation. The goal of our project is to detect 
mechanisms responsible for the success of CRM trainings 
within civil aviation. By developing training based on a sound 
needs assessment and on insights from theory and research and 
by evaluating implemented training measures, we want to 
contribute to the research field and enable a transfer of the 
findings to other fields of application outside aviation. 
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Abstract—The air transportation industry is a significant
source of employment for millions of people around the world. It
is also an indispensable part of the economic infrastructure and
as such, the gridlock experienced and forecast at large airports
may have major negative impacts on the economy. This research
aims to address the increase in demand and resulting capacity
issues by considering the implementation of operational concepts
and technologies at underutilized airports. The objectives of
this work are primarily to off-load the busiest airports by
increasing operations at smaller airports, reduce door-step to
destination travel time, and provide transportation alternatives.
More particularly, this work proposes a methodology to help in
the assessment and prioritization of equipment packages and
technologies necessary to enable that increase in operations.
By associating multi-criteria technology selection techniques to
ongoing small airport simulation effort, this work aims at helping
airport managers make more informed decisions with regards
to equipment offers in order to meet their future technological
needs.

I. INTRODUCTION

Though very sensitive to rising fuel prices, and political

and economical crises [1], the air transportation industry

has not stopped growing over the last decades, both in

terms of passengers and aircraft movements [2]. However

the passenger traffic is far for being uniform and is mainly

concentrated over a few airports, generally in metropolitan

areas, meaning that most of the airport infrastructure is

currently underutilized. In addition, since 1990 and more

significantly after 2000, the major legacy carriers in the U.S.

underwent major restructuring and gradual downsizing of

their fleet, replacing large aircraft with smaller regional jets.

The emergence of regional jets, along with the significant

growth in low-cost carriers experienced during these years [3],

resulted in the number of operations growing faster than the

passenger traffic [4]. This increase in the number of operations

is also expected to be reinforced within the next 10 to 15

years with the entry into the market of Very Light Jets (VLJs).

A. The Problem

The trends in passenger and aircraft movements is likely

to continue within the next decades [5]. As a matter of fact,

the Federal Aviation Administration (FAA) is forecasting a 40

percent increase over today’s passenger demand by 2010 [6],

with a “45 percent increase in passengers between 2005 and

2017 being accomplished by a 33 percent increase in air carrier

operations” [3]. This statistic would imply that the number of

operations would grow slower than the number of passengers.

This would then worsen the already existing disparity between

demand and capacity and reinforce congestion levels at some

major airports [4].

Tomorrow’s air transportation system will be characterized by

an increase in the types of airspace users (regional jets, very

light jets, unmanned aerial vehicles, etc.) as well as very few

new airports development projects. This leads to the realization

that the forecast demand and resulting capacity needs will have

to be addressed with innovative uses of the existing airport

infrastructure ([4], [7]).

Airports have been identified as the major constraint to growth

[8] and different strategies have been proposed to address

the capacity issue. These strategies can mainly be divided

into capacity increase strategies (addition of new runways,

use of new/additional equipment, implementation of new

operational concepts, etc.) and demand management strategies

(peak period pricing, shifting flights from congested airports to

less-busy secondary and regional airports, etc.) [9]. However,

no strategy alone can solve the problem. Eurocontrol, for

example, in “The Challenges to Growth” study published in

December 2004 [10] found that even if they use every runway

to its maximum capacity, “airports will still be unable to

cope with the demand if traffic continues to increase in line

with the higher estimates of future growth” [11]. Similarly,

there exist divergent opinions with regards to the capability

of new technologies and operational concepts to resolve the

congestion issue.

II. THE NEED FOR A DIFFERENT APPROACH

Most of the research conducted in the past has only

considered either demand management or capacity increase

strategies. However, it has recently been acknowledged

that the improvement of the air transportation system

should come from the implementation of a combination of
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solutions and strategies Furthermore, each combination of

solutions should be evaluated with economic and policy

factors/impacts/analysis in mind [12], and not only from a

technical perspective.

Secondary and underutilized airports have also been the

focus of recent studies ([13], [4], [12], [14], [3], [2]).

The development and increase of operations at smaller,

underutilized airports now appear as a viable and key means

to meet travel demand in congested metropolitan areas. The

NGATS Report for example states that “it is essential to

enable increased operations at smaller airports in the same

region to offload some of the demand on the busiest airport(s)

where practical (e.g. air taxi operations)” [14]. In the same

report, it is acknowledged that “significant growth at the

busiest airports as well as regional and smaller airports

is needed to achieve the capacity goal of the NGATS”

[14]. In its Report to Congress, the FAA also mentions

that “redistribution of traffic among airports to make more

efficient use of facilities is another measure that can be used

to reduce delays” [3]. In that same report, the FAA stresses

that “another factor that helps to limit delay is the ability of

carriers to introduce service to outlying, suburban airports,

using them to relieve congestion at the principal airport”

[3]. The THENA Consortium also recognized that “new

secondary airports that are adjacent to main population areas

might constitute an additional air traffic channel (with even

more rapid growth rates than the hub), especially for short

haul, point-to-point routes” [2]. Further, some governments

are also more interested in developing secondary airports as

illustrated by the British government who refused to expand

London Heathrow but gave the priority to the expansion of

Stansted airport, the London metropolitan region secondary

airport [15].

Finally, the growing interest for secondary airports also

comes from the travelers themselves. More and more travelers

are flying from alternate or secondary airports and are

motivating their choice by citing reasonable driving time,

competitive air fares and time savings [16]. As mentioned

in a recent newspaper article, “from 1996 to 2002, the

number of passengers departing from Manchester Airport

almost quadrupled, to 1.85 million from 500,332. During

the same period, passengers leaving from Logan declined

by about 10 percent, to 11 million” [16]. This trend has

also been observed at other airports such as Fort Lauderdale

or Midway [16], confirming that this type of airports

offers a viable option to air travel. The growing interest

for secondary airports, particularly due to the presence of

low cost carriers, also exists in Europe. Brussels South

Charleroi airport, for example, saw its passenger traffic

increasing from 200,000 travelers to more than 2 million

annually in only four years, primarily due to the presence

of two of the busiest low-cost airlines [17]. However, while

secondary and regional airports may be part of the solution,

they often lack the appropriate equipment and technology

that would allow for an increase in their number of operations.

Some studies have been focussing on the impact of new

technologies and operational concepts on both the National

Airspace System (NAS) and airports. However, little work

exists that considers both operational concepts implementation

and spatial shifting of flights from busy and congested airports

to close-by less used secondary and regional airports. Hence,

very little work has been carried out that focuses on the

technological and operational impacts of technologies on small

and medium airports.

Furthermore, small or regional airports differ greatly from

large airports, as their budgets, needs and constraints are

different. As such, the benefits identified in previous studies

to large airports may not be applicable to small and medium

airports. Definition and selection of technology or equipment

portfolios must be based on thorough benefits assessment

as these decisions will require suitable investment strategies.

However, the benefits considered shouldn’t be limited to per-

formance only, but should include cost and monetary benefits

as well. This is particularly important when considering small

and medium airports, as their budget and ability to finance

equipment investments are more limited than for large airports.

Finally, current work on the topic lacks a methodical approach

for airport technology evaluation and selection. Smaller air-

ports have different needs and constraints, and all existing

or future technologies may not be suitable. Technology and

equipment selection should thus be made based on airports’

needs, constraints and requirements with regards to their

current equipage and operations, but also with regards to the

future type of aircraft mix that will be operating at these

airports.

A. Approach

This research proposes to address the increase in demand

and resulting capacity issues by considering the implementa-

tion of operational concepts and technologies at underutilized

airports. The methodology developed offers a simulation and

multi-criteria decision-making framework to assess and pri-

oritize equipment packages and technologies, based on both

performance and economic metrics. The operational concepts

and related technologies/equipment considered in the scope

of this work are mainly related to Communication, Navigation

and Surveillance, both on board and on the ground.

This methodology is divided into three main steps:

• Identifying the gap: this step consists in identifying

airport needs, constraints and requirements to reduce

the gap between the forecasted demand and the airport

capabilities

• Addressing the gap: this step consists in assessing the

benefits and degradations of candidate technologies and

equipment against both performance and financial factors.

A candidate portfolio of technologies is then obtained

through a Multi Criteria Decision Making framework.

• Closing the gap: this step consists in ensuring that the

technology portfolio defined in the previous step provides

the airport with the desired capabilities while remaining

within the budget considered.
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B. Research Goals and Objectives

The goal of this research is to provide a parametric, robust,

and multi-criteria environment to help in the evaluation and

prioritization of technologies and equipment packages for

small and medium airports. Such an environment will enable

”what-if” games and trade-off analyses to be conducted and

will provide scenario-based solutions to the airport managers,

hence allowing them to make more informed decisions with

regards to equipment offers.

The objectives of this work are four-fold:

• Unburden the demand at the busiest airports by increasing

operations at smaller airports

• Improve mobility by reducing door-step to destination

travel time

• Provide transportation alternatives

• Gain a better understanding of the functional and emer-

gent relationships between the different technologies and

operational concepts at the airside level

C. Challenges

Airports are complicated and complex systems exhibiting

many interacting, interrelated and interdependent components.

As such, the challenges of this work are directly related to

the characteristics of such systems. Challenges can be divided

into research and technical challenges. Research challenges

include:

• Identifying the appropriate airport measures of perfor-

mance

• Identifying the appropriate technical and financial factors

that the equipment packages/technology portfolios have

to be evaluated against

• Identifying the different sources of uncertainties

• Obtaining a proper understanding of technology and

equipment interdependencies and interactions

Technical challenges mainly concern the development of the

Multi Criteria Decision Making environment and the lack of

information available with respect to the different technologies

and operational concepts. As a matter of fact, limited work has

been conducted on the impact of existing equipment or tech-

nology on airport performance. Hence, this lack of data makes

the equipment/technology evaluation and impact assessment

difficult. Finally, the Multi Criteria Decision Making tool

developed in the framework of this research should provide

appropriate fidelity and robustness without requiring excessive

computer time and resources.

D. Benefits

This research proposes to address some of the recom-

mendations and research gaps mentioned in previous studies.

Particularly, this work considers the need expressed by many

to:

• Develop “models/tools, operational concepts and method-

ologies to assist in assessing airport operations efficiency,

(...), exploring trade-offs, implications, and interdepen-

dencies between several airport performance metrics” [2]

• To account for emerging technologies [18]

• To incorporate both ground-based and airborne systems

capabilities ([5], [18])

• And to develop “tools to monitor and quantify implica-

tions, measures and effectiveness of the new strategies

and solutions proposed” [19]

This research is also relevant to the following NextGen goals

and strategies [20]:

• Satisfy future growth in demand (3X current levels) and

operational diversity

• Develop airport infrastructure to meet future demand:

integrate airport, airspace and air traffic management

design, development and deployment

• Develop cost-effective concepts, technologies, and proce-

dures for providing comprehensive air traffic services at

small airports

Finally, this work will provide scenario-based robust solutions

to the issue of capacity and delay and deepen the understand-

ing of the functional and emergent relationships between the

different technologies and operational concepts at the airside

level.

III. CONCLUSION

This research proposes to address the increase in demand

and resulting capacity issues by focussing on the implementa-

tion of operational concepts and technologies at underutilized

airports. By doing so, this work considers both demand

management and capacity increase strategies. This work also

addresses the lack of a structured approach for airport technol-

ogy evaluation and selection by proposing a methodology for

the assessment and prioritization of technology for small and

medium airports, with technologies and operational concepts

being evaluated with respect to both airports performance, and

economic needs and constraints. The multi-criteria decision

making environment proposed will provide airport managers

with the ability to conduct tradeoff analyses, and make more

informed decisions with regards to technology offers. Finally,

this work is relevant to NextGen goals and strategies and pro-

poses to address some of the recommendations and research

gaps mentioned in previous studies.
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Abstract—The purpose of this thesis project is to present an 
innovative methodology (consisting of methods, tools and 
procedures) which seeks to improve the rulemaking processes 
currently used to develop aeronautical safety and security 
regulations. The two main contributions of this methodology are: 
its use of rigorous methods and tools to help improve the 
regulation's validation process and its capacity to help identify 
the impact of proposed amendments on enacting regulation 
(while helping mitigate regressions). 

Keywords; Rigorous modeling, Very Light Jet, aeronautical 
regulations, safety, security. 

I. INTRODUCTION

The chief objective of Civil Aviation Authorities (CAA) 
worldwide is to continuously guarantee the safety and security1

of civil aviation. To ascertain this, they have implemented a set 
of complementing and hierarchical regulations at the 
international, national and local level. 

These regulations impose standards and recommended 
practices specifically targeting the prevention2 of either 
accidental events or unlawful acts of interference within a 
given domain. This "regulation enforcement" approach to 
safety and security imposes that the regulation's innate quality
and its homogenized and ubiquitous implementation become 
effectual factors to the achievement of their objective.  

In what concerns a regulation's innate quality, [1] identified 
that aviation security regulations have three esteemed traits 
steering their effectiveness, which are: consistency, robustness
and unambiguousness. Presently, rulemaking procedures 
include a consultation and validation phase. In it, proposed 
drafts are analyzed and discussed until they are considered 
mature for adoption and publication. For this, special attention 
is placed in: verifying their compatibility with existing rules, 
attesting the exhaustiveness of their scope and limiting their 

1 Safety relates to the prevention and mitigation of accidental events, 
which can affect material or people while security is the prevention and 
mitigation of intentional acts, which aim to affect planes or people. 

2 Regulations seek to prevent accidental events and unlawful acts, 
whereas reactive/emergency procedures dictate actions that help mitigate their 
consequences. 

equivocalness (given the inherent ambiguity of natural 
languages). Nonetheless, operational feedback has proven that 
the current process can benefit from improvements. This is of 
great significance since -analogously with safety-critical 
software- these properties ensure that the benchmark regulation 
being enforced by the CAAs is intrinsically effective. 

Moreover, over the past few decades, technological and 
ideological changes have prompted amendments within the 
industry's established Regulatory Framework (see Section 4). 
The purpose of such amendments has been the continual 
assurance of safe, secure and efficient3 commercial operations 
under an enhanced state-of-affairs (through the exclusion, 
inclusion and/or evolution of affected regulations and/or 
procedures). The predicament is that, independently of their 
origin and dimension, regulatory and procedural amendments 
inevitably lead to the (unwilling) introduction of new errors [2] 
and the obsolescing of sanctioned workarounds. In other 
words, amendments lead the framework from an "error-
cognizant" state, where (an indicative part of) its inherent 
errors have been identified (and possibly solved or 
circumvented), to an "error-incognizant" state.  

Therefore, the aim of this thesis project is to present an 
innovative methodology (consisting of methods, tools and 
procedures) that will help improve the rulemaking processes 
currently used to develop aeronautical safety and security 
regulations.  

To better recognize this situation, this thesis also seeks to 
appreciate the Regulatory Framework being implemented in 
aeronautics, by identifying how the prevailing ideas (principles, 
objectives and policies) within civil aviation are linked to the 
regulatory infrastructure (regulations and procedures) being 
implemented. This will help identify and bound the 
"impingement zone" of the regulatory amendments, opening 
the path for the subsequent development of the methodology 
that will help identify possible regressions arising from such 
type of amendments. Finally, the methodology that is proposed 
shall be appraised by implementing it in the study of the 

3 A global efficiency attained through the prioritized optimization of 
various factor such as: environmental and economic costs, performance …
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discerning operational certification requirements for Very 
Light Jets (VLJs) in Europe and the United States of America. 

II. THE CHOSEN APPROACH

In 2003, a group of French universities and research 
laboratories proposed the implementation of rigorous methods 
to assist in the specification, design and validation of regulation 
documents [1]. They named their project EDEMOI.  

Rigorous methods had already been used within other 
domains of aeronautics, "to enhance the current practice of 
procedures development" [3] and for the analysis and 
verification of aeronautical safety critical systems. However, 
the formal methodology developed by EDEMOI (see Figure 1) 
sought to enhance the rulemaking process by incorporating 
simulation and counterexample checking tools into the 
validation phase, to better ensure the regulation's innate quality. 
This methodology is centered on a two-step approach involving 
two stakeholders: the Certification Authorities, which establish 
International Standards concerning Civil Aviation Security, 
and the Model Engineers, who translate these natural language 
documents into formal models that can be tested. 

 In the first step of this approach, a model engineer extracts 
the security goals imposed in the International Standard and 
translates them into a semiformal model that faithfully 
represents their structure and relations (while reducing the use 
of inherently ambiguous terms). This graphical model,
comprehensible to both stakeholders, is later revised and 
validated by the certification authority, giving way to the 
second step of the ‘EDEMOI approach’ in which the model 
engineer performs a systematic translation of the semiformal 
model to produce a formal model that can be analyzed through 
test scenarios.

Figure 1. The EDEMOI methodology. 

Having obtained positive results from these experiences, 
this thesis proposes a twofold expansion of the EDEMOI 
methodology by (1) broadening its scope to include aviation 
safety regulations and (2) by extending its usability throughout 
the regulation's "lifecycle".  

More concisely, the extended methodology will devise 
methods and provide tools to help validate and enhance 
aviation regulations throughout their development, verification, 
validation and amending phases. This presents a large 
challenge as there are fundamental and operational differences 
between safety and security regulations. At the outset, safety 
regulations need to be more adaptive to the industry's 
constantly evolving state-of-affairs, helping steer developments 

instead of contriving their progress. Therefore, will their 
consistency and robustness still be driving traits? And can their 
adaptability be inferred through the models? 

For example, given the current technological and 
economical trends in the aeronautical sector, the industry is 
preparing itself to the challenge of successfully extending 
single crew operations to jet aircraft. More concisely, the Very 
Light Jets (VLJs). The stakeholders to this undertaking -such as 
the aircraft manufacturers, service providers and safety 
regulators (which in the case of Europe would encompass 
EUROCONTROL and EASA)- are concerned with 
determining the regulatory enhancements (exclusions, 
inclusions and/or evolutions) that will be required to ensure 
safe operations under this new state-of-affairs. 

The extended use of this methodology, in this case, would 
be focused in helping identify the impact of regulatory 
enhancements by modeling and comparing the regulations and 
procedures, before and after an amendment is enacted (see 
Figure 2).  
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Figure 2. The extended methodology. 

Therefore, analogously with the work done in [4], rigorous 
formal models of the affected aeronautical regulations will be 
studied and animated to: (1) help identify the impacts of 
proposed technologies on the regulation (influencing the 
aircraft's operation and flight-cabin design), and (2) to infer 
possible solutions for such incompatibilities. 

It is important to say that this methodology does not aim to 
provide the consequences of the "inaction" with respect to the 
adjusting factors4, but rather to prevent the regression of the 
regulatory framework by assessing the impact that the 
amendments themselves have on the system (e.g. loss of 
consistency and/or robustness, introduction of ambiguous 
statements or ideas…). 

III. RIGOROUS SPECIFICATION

As was done in our appraisal of Regulation 2320/2002 [4], an 
interpretation of the regulation is captured using (part of) the 
UML language (Figure 2, Step 2.a). The use of this graphical 

4 An adjusting factor is any operational, ideological and/or 
technological change whose introduction, into the civil aviation system, 
obliges a change in the contemporary regulations to preserve the appropriate 
overall functioning of the system. 
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notation helps tackle the text's innate ambiguity, while 
proposing a conceptual layout that can be validated/invalidated 
by officials from the certification authority.  

The validation of this conceptual layout (Figure 2, Step 3)
helps establish the adhesion of the semiformal model to the 
convened international standard. For this, the appraisal and 
feedbacks provided by aviation authority officials are 
integrated into the model by way of amendments. Once 
validated, the semiformal model is translated (Figure 2, Step 
2.b) to a rigorous formal model using translation rules between 
the semiformal and formal notations (in this case, UML → Z). 

This ensures that our methodology benefits fully from the 
integration of both approaches: the intuitive structured notation 
of the semiformal approach and the precise semantics of the 
formal approach. 

Finally, when the models have been deemed mature enough 
(both in their notation and their faithfulness to the regulation) 
an animation or verification tool (Figure 2, Step 4) is used to 
test the formal model’s consistency (through simulation) and 
robustness (through counterexample checking). The results of 
the tests and simulation are stored to enable regression analysis 
after further evolutions of the regulation and the models 
(Figure 2, Step 5). Currently, two formal method targets are 
being considered: RoZ + Jaza Animator [5] and Alloy 
Analyzer [6]. However, independently of the software option 
that will be ultimately chosen, it is important to fully apprehend 
the context of these regulations and of the approach privileged 
by the CAAs. 

IV. THE REGULATORY FRAMEWORK

An important aspect of this thesis work is to correctly 
understand the regulatory framework being implemented today 
in the civil aviation domain. Therefore, the first part of this 
thesis sought to propose a model of the idealistic regulatory 
framework which is in place today. 

As stated before, CAAs worldwide strive to continuously 
guarantee the safety, security and efficiency of the civil 
aviation system. For this purpose they define policies and 
administer regulations which are in line with globally 
embraced objectives and principles. In addition to this, 
concerned aviation stakeholders develop procedures that 
dictate safe and practical methods for the successful 
performance of aeronautical-related tasks5.

Combined, these five elements make up what we will refer 
to as the Regulatory Framework. So, in broad terms, this 
framework is a mix of: (1) the underlying ideas/concepts (i.e. 
principles, objectives and policies) deemed essential for the 
development of civil aviation and (2) the regulatory 
infrastructure required for their implementation (i.e. 
regulations and procedures).  

As shown in Figure 3, the Regulatory Framework is rooted 
from the Principles defined by the various concerned States. 
However, it is the task of the ICAO to translate these political 
goals into attainable Objectives and to define its Policies. The 

5 Under the guidance and supervision of the Civil Aviation 
Authorities. 

different CAAs then align their policies with those of the ICAO 
and define new policies for the domains outside of ICAO's 
competence.  
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Figure 3. The Regulatory Framework. 

The Policies defined by the CAAs are then imposed 
through local Regulations. These regulations must be 
consistent with the standards stated in the ICAO Annexes. This 
has led to a comprehensive base of compatible regulations. 
Concerned stakeholders then design and implement Procedures
in conformance with these regulations.  

However, these five elements cannot be considered as 
simple aggregates of the Regulatory Framework. As discussed 
in [7], the link between these elements is important and can be 
exploited to facilitate the detection of possible discrepancies 
and conflicts. Furthermore, a clear and structured 
representation of these links will provide: (1) an understanding 
of the Regulatory Framework and (2) insight on its interactions 
with the different adjusting factors (which impose a change in 
its state-of-affairs). 

It should be noted that Figure 3, reflects the hierarchy of the 
different civil aviation organizations/agencies and their 
respective documents/rules by highlighting that CAA's derive 
their regulations from ICAO policies and adopt its standards. 
Furthermore, it identifies the regulations and the procedures, as 
the "impingement zone" for the adjusting factors. Because, 
given the industry's need for a flexible Regulatory Framework, 
its underlying principles, objectives and policies use abstract 
wording to convey what is deemed essential for the 
development of civil aviation. This makes them less 
susceptible to sways (owing to adjusting factors) than the 
regulations and procedures, which require detailed wording 
given the special need for unambiguousness at their level. 
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V. APPRAISING THE METHODOLOGY 

The methodology proposed will be appraised by implementing 
it on the study of the discerning operational certification 
requirements for Very Light Jets (VLJs) in Europe and the 
United States of America. These small but relatively high-
performance airplanes are a potential adjusting factor to a large 
part of the regulatory infrastructure presently established within 
civil aviation. This is due, in part, to the considerable contrast 
between their small size/weight (seating between 5-8 
passengers with an MTOW under 4,536 kg) and their relative 
high performance (Cruise speed: ~ 0.62 M). But more 
particularly, by the fact that they were designed to fly within 
the same flight band (and terminal airspace) as that of 
commercial-aviation airplanes (FL 330-350) with an "in-
design" compatibility for both single and double flight-crew 
operations.  

Concerned with this situation, both EUROCONTROL and 
the European Aviation Safety Agency (EASA) have taken 
steps to ensure the smooth entry of this new "technology" 
while seeking to alleviate the ripple effects that it will have on 
the civil aviation system. For example:  

Under current mandates, VLJs are not required to be 
equipped with an Airborne Collision Avoidance System 
(ACASII) to operate within the EUR region.  

But, given their forecasted growth and their incompatible 
speed (with respect to large commercial airplanes), 
EUROCONTROL may seek to impose the mandatory 
equipping of VLJs with an ACASII system; to continue 
ensuring a high level of safety and efficiency in the pan-
European Air Traffic Management (ATM) system. 

EASA, on its part, has opted to limit the airplanes’ 
operational envelope by restricting it to double-crew 
operations. This decision was based, in part, on the increased 
likelihood of: level busts, airspace incursions, runway 
incursions and fatigue in single pilot operations [8]. This is in 
clear contrast with the Federal Aviation Administration's 
(FAA) decision of certifying single flight-crew operations 
under a special scheme6.

These concerns not only demonstrate some of the 
regulatory enhancements that will ensue the VLJ concept, they 
also hint the (possible) need for a larger and more 
comprehensive regulatory enhancement; namely the evolution 
of the regulations' applicability criteria. A shift from the current 
criteria is required; the aircraft's weight and passenger seating 
capacity can no longer be regarded as the main parameters for 
determining its regulatory requirements. New criteria must be 
adopted, to effectively highlight that it is the aircraft's operating 
environment and its performance which are determinant. 

VI. CONCLUSIONS AND FUTURE WORK

Having already applied the methodology to the modeling of 
Regulation 2320/2002, we have tested the compatibility 
between the security guidelines imposed and the different 
notations used to represent them. Consequently we shall 

6 Limited to Part 135 operations. Requires an experienced 
professional-pilot licence holder that has undergone special training. 

implement the extended methodology to the case of VLJ 
aircraft, in order to illustrate the main ideas and contributions 
of both the model and the methodology. 

By our part we believe that the introduction of VLJs into 
the civil aviation system represents an excellent opportunity to 
appraise this methodology. For this, we shall benefit from the 
discerning operational certification requirements for VLJs in 
Europe and the United States of America. Since VLJs in 
Europe are not going to be certifiable for single crew 
operations (in contrast with the FAA's decision for Part 135 
operations), this gives us a "∆" (delta) between two state-of-
affairs which can be used as a "before" and "after" state to 
compare (and tweak) the performance of our proposed tools. 
The systematic probing would focus on the regressions 
introduced by the amendments implemented in the USA, with 
regards to its VLJ stance in a bid to facilitate the detection of 
unintended consequences. 

However, the work will not be a clear-cut translation of the 
requirements (into a graphical and formal model). There is a 
complexity in specifying all of their aspects; with a potential 
loss of connotation during the conversion. This problematic is 
inherent to the passage from a natural language to the semi-
formal and formal notation. Nevertheless, the converse is also 
true; the translation to formal notation helps enrich the 
requirements by imposing precision in terms and relations.  

Additionally, work is being pursued to determine the 
possibility (and the interest) of extending this same 
methodology onto other aspects of civil aviation, such as flight 
procedures and manuals. 
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