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Welcome from Programme and Conference Chairs

Welcome to the Third International Conference on Research in Air Transportation!

On the behalf of the ICRAT 2008 Organization Committee, we would like to express here our deep
gratitude to the senior and young researchers in Air Transportation for having contributed to this young
but challenging and exciting conference.

For this third edition of ICRAT, there were 77 qualified submissions by authors from 19 countries. The
referee process resulted in 57 acceptances, for an acceptance rate of about 75%, among which 38
submissions were selected as standard papers, and 19 as short papers, representing respectively 50% and
25%. All selected papers, long and short, are of good quality, and we are very proud of the
professionalism of all authors, reviewers, and of all Program Committee members. Thank you so much
for your contributions and collaborations.

This is also the second year that Tutorials and a Doctoral Symposium are included in the conference
program. Seven tutorials on the practice Air Transport are expected to bring up the understanding of how
things work for the young scientists. The Doctoral Symposium is expected to create a forum for young
researchers to discuss their research approaches with senior researchers to obtain guidelines and supports.
The program is even more exciting with the six invited keynote speakers, all senior research scientists or
strategists in Air Transportation. We are very grateful for their presence, contributions, and support.

The proceedings you are handling are the result of much hard work from many people. We would like to
thank:

- The authors and co-authors of the paper submissions. They are, of course, what makes the
conference program great.

- The invisible tertiary reviewers, who often supply the most expert and informed comments on
their review, and the ICRAT’08 Scientific Program Committee. There were 40 members who
had spent most of their free time during the referee process to review the submitted papers, and
to return with careful comments. They are the guardians for the quality of the conference.

- The logistic team, also known as the conference secretariat team and the Webmaster team who
worked hard to ensure the on-line processes with the authors, to collect, compile, and edit the
final camera-ready proceedings.

- Telecom-Paris Tech with the support to host the website as well as for the time of Pr. Patrick
Bellot and Loic Baud, who have worked pro-actively on the development and maintenance of the
conference website.

- The Local Organising committee members and volunteers, for the local arrangements, the
printing of the proceedings, and all the logistics at the conference place.

- The various institutions that provided the support for the paper process. The list includes the
employers of all authors and co-authors and the employers of all reviewers and committee
members.

Thank you all again, authors and reviewers, for your contribution to ICRAT’08 that surely be exciting.
Thanks once more to the conference secretaries: Loic Baud, Simone Rozzi, Andrea Ranieri, Stephen
Peterson, Ronish Joyekerun and the Publication Chair John Shortle to be the bridge between the Program
Committee, the authors, and the Local Organisers. The success of this conference will be yours!

Andres Zellweger, General Chair,

George Donohue, Conference Chair,
Vu Duong, Program Chair.

viii
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PASSENGER TRIP DELAYS IN THE U.S.
AIRLINE TRANSPORTATION SYSTEM IN 2007

Guillermo Calderén-Meza

PhD candidate
Center for Air Transportation System
and Research/GMU
Fairfax, VA, USA
gcaldero@gmu.edu

Abstract— The value of the air transportation system is the
transportation of light-weight, high-value cargo, and passengers.
Industry and government metrics for the performance of the air
transportation focus on the performance of the flights. Previous
research has identified the discrepancy between flight
performance and passenger trip performance, and has developed
algorithms for the estimation of passenger trip performance form
publicly available data.

This paper describes an analysis of passenger trip
delays for 5224 routes between 309 air ports in the U.S. air
transportation system for 2007. The average trip delay
experienced by passengers was 24.3 minutes for nationwide total
of 247 Million hours. Flights delayed 15 minutes or more
contributed 48% of the total delays, cancelled flights 43%o,
diverted flights 3%, and flights delayed less than 15 minutes
contributed the remaining 6%. Passenger trip delays for oversold
flights were negligible. Analysis of passenger trip delays for
routes and airports, and the implications of these results are also
discussed.

Keywords- passenger trip delay; flight delay, airport delay.

l. INTRODUCTION

The value proposition of the air transportation system is the
rapid, safe, and cost effective transportation of high-value,
lightweight cargo, and human passengers. This transportation
is achieved by combining air transportation between airport
terminals with ground transportation between origin (e.g.
home)/destination (e.g. meeting) and the airport. The air
component of the transportation is achieved through via single
segment or multiple connecting segment scheduled airline
operations.

To leverage economies of scale, airlines schedule and
operate a daily itinerary that networks passengers, aircraft,
flight, and cabin crews in connecting segments throughout the
day. Individual flights on a segment may be delayed for several
reasons such as: (e.g. mechanical) problems, weather, or traffic
congestion. To maintain integrity of their networks in the
presence of individually delayed flights, airlines may choose to
delay, divert, or cancel flights.

Lance Sherry, PhD
Center for Air Transportation System
and Research/GMU
Fairfax, VA, USA
Isherry@gmu.edu

George Donohue

Center for Air Transportation System
and Research
/GMU
Fairfax, VA, USA
gdonohue@gmu.ed

When flights are delayed, the passenger trip for this
segment is also delayed for the duration of the flight delay.
When flights are cancelled or diverted, or passengers are
bumped for overbooking, the passenger trip delay includes the
duration of delay accrued waiting for the re-booked flight. All
of these delays represent passenger trip delays.

Previous research by Bratu & Barnhart [2005] identified the
discrepancy between flight performance and passenger trip
performance. Wang [2007] showed that the 2% of passengers
experiencing cancelled flights accrued delays of approximately
10 hours each, and that the total delays experienced by these
passengers accounted for 40% of the total passenger trip
delays.

This research provides the results of analysis of the U.S. air
transportation system in 2007. The results are summarized as
follows:

1. Passengers experienced a total of 247 Million hours of
delays. The average delay was 24.3 minutes. Flights delayed 15
minutes or more accounted for 48% of the total delays,
cancelled flight 43%, diverted flights 3%, and flights delayed
less than 15 minutes accounted for almost all the remaining
6%. Passenger trip delays for overbooked passengers were less
than 1%.

2. For flights on the 5224 routes between 309 airports,
50% of the routes experience an average passenger trip delay
less than 15 minutes. 90% of the routes experience an average
trip delay of less than 30 minutes.

3. For flights inbound and outbound of the 309 airports,
40% of the airports experience an average passenger trip delay
of less than 15 minutes, 90% less than 30 minutes. Poorly
performing airports included major hub airports as well as
small commuter airports.

4.  Passenger trip delay exhibited similar performance on
routes of different stage-lengths’.

The paper is organized as follows: Section 2 provides a
summary of previous research. Section 3 describes the

! Stage-length is the great-circle distance of a flight.

ISBN: 978-0-615-20720-9
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algorithm and database structure used to compute estimates of
passenger trip delay in 2007. Section 4 describes the results of
the analysis. Section 5, Conclusions, discusses the implications
of these results.

II.  PREVIOUS RESEARCH

Researchers have shown that flight-based metrics, like the
metrics reported in the Department of Transportation’s Airline
Travel Consumer Reports (ATCR) [DOT, 2007] are a poor
proxy for passenger experience [Wang, Schaefer, Wojik, 2003;
Mukherjee, Ball, Subramanian, 2006; Ball et al., 2006; Bratu &
Barnhart, 2005]. Bratu & Barnhart [2005] used proprietary
airline data to study passenger trip times from a hub of a major
U.S. airline.

This study showed that that flight-based metrics are poor
surrogates for passenger delays for hub-and-spoke airlines as
they do not capture the effect of missed connections, and flight
cancellations. For example, for a 10 day period in August
2000, Bratu & Barnhart [2005] cite that 85.7% of passengers
that are not disrupted by missed connections and cancelled
flights arrive within one hour of their scheduled arrival time
and experience an average delay of 16 minutes. This is roughly
equivalent to the average flight delay of 15.4 minutes for this
period. In contrast, the 14.3% of the passengers that are

disrupted by missed connections or cancelled flights
experienced an average delay of 303 minutes.

Wang [2007], Sherry, Wang & Donohue [2006] developed
an algorithm to estimate passenger trip delay for publicly
available data from the Bureau of Transportation Statistics
(http://www.bts.gov). One part of the algorithm joins separate
databases with secondary data to derive the parameters to
perform the passenger trip delay analysis. The next part of the
algorithm computes an estimate of passenger trip delay for
each scheduled flight. Key among those parameters used in the
algorithm is the Passenger Load Factor for a flight. This
algorithm uses the quarterly average Passenger Load Factor for
flights on a given route. This results in undercounting for peak
operations, and possible overcounting for non-peak operations.
Further this analysis accounts for flight delays and cancelled
flights only for routes between the OEP-35 airports.

The main results of this analysis are that passenger trip
delays are disproportionately generated by cancelled flights.
Passengers scheduled on cancelled flights represent 3 percent
of total enplanements, but generated 45 percent of total
passenger trip delay.

On average, passengers scheduled on cancelled flights
experienced 607 minutes delay, and passengers who missed the

O il Airport «— PTDI

PK Year PK | Code > gﬁ I\Yniar:th

Px ';';’“th Name ¢ PK,FK1 | Origin
Day. > Num_code PK,FK3 | Dest

PK,FK3 | Origin PK,FK2 | Carrier

PK,FK1 | Dest PK’ Dep Time

PK,FK2 | Airline —ep_'me

PK Elight Num Airline Enp

. Avg_avail
Dep_time PK | Code -

FK4 Carrier > évgﬁLD_Factor
Canceled > Name CC led
Div_delay Num_code D_ancr:tez i

— iverted_
gsﬁ_:ﬁlay A A Avg_delay_on_time
= Pax_on_time
ﬁ;r;::;?y Avg_delay_delayed
Avapax Pax_delayed
Pa?(p dela Avg_delay_canceled
— Y Pax_canceled
Avg_delay_diverted
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vgsea
Departures_performed
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Figure 1. ER diagram of the local database
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connections experienced 341 minutes delay in 2006.

The analysis described in this paper improved the algorithm
by increasing the pre-processing of data to eliminate infeasible
data and check for referential integrity. Further improvements
were made to the algorithm to include diverted flights, improve
processing throughput and automating manual steps in the
processing.

I1l.  DATABASE AND ALGORITHM

A. Thelocal database

A local relational database stores data imported from public
databases. The data consist of actual flight and performance
values collected by competent institutions. Being as massive
as they are, the raw data contain errors. Because of that, the
database includes constraints to improve the quality of the
input data. The design of the local database is illustrated by an
ER diagram as shown in Fig. 1; it consists of six entities and
thirteen integrity and referential constraints. Since the data are
time dependent all several entities identify the tuples using year
and month among other attributes. Other attributes that
identify tuples in the entities are the carrier or airline, and the
route (composed of one origin airport and one destination
airport).

The Airport and Airline entities make sure that the other
entities contain only known airports and airline codes: all of the
other entities have foreign keys referring to Airport and
Airline.

The On_Time entity contains the data about each individual
flight. In particular, the attribute canceled, if its value is one,
indicates that the flight was canceled (a value of one).;
otherwise, its value is zero. The attribute div_delay is either 0
for not diverted flights or 360 (min) for diverted flights. The
attributes avaseat and avgpax are only used as temporal
variables during the computation of Estimated Passenger Trip
Delay, EPTD [Wang, 2007, Sherry, Wang & Donohue, 2006].
The attribute pax_delay (min) is the cumulated EPTD for all
the passengers of the flight. Clearly, if canceled is 1, div_delay
must be 0, and if div_delay is not 0, then canceled must be 0.
The attributes carrier and airline are only different when the
actual carrier is a subsidiary of an airline.

The T 100 entity contains the input data concerning
performance of pairs of route and carrier for domestic flights
only. There are no data for individual flights. The entity
includes information about the total number of departures done
for a route and a carrier in the particular month
(departures performed), the total number of passengers
transported (passengers), the total number of seats including all
the flights (seats), and the distance of the particular route (in
miles).

The entity Load_factors contains data derived from T_100.
For a particular route and airline, the each record contains the
average number of unoccupied (available) seats in the flights
(avaseat), the average number of passengers per flight
(avgpax), and the average number seats in the plane -the size of
the plane- (avgseat). Clearly, the following conditions must be
true at all times: avgseat > avaseat and avgseat > avgpax.

The entity PTDI contains the result of the Passenger Trip
Delay Index (PTDI) computation. In this case, flights are
identified by their route, carrier, and departure time: no
individual flights are recorded in this entity, but only averages
of the flights that occur periodically at the given route, carrier,
and departure time. The entity also includes data about the
total number of enplanements? (enp), the average total number
of seats available (avg_avail), the average load factor of this
flight (avg_LD_factor), the number of scheduled flights (schfl),
the number of canceled flights (canceled fl), the number of
diverted flights (diverted fl), and the average delay time in
minutes and number of passengers delayed for each category
(canceled, diverted, delayed, and on-time) of flight. Finally,
the entity also contains (though redundantly because it can be
derived from the other attributes) the PTDI value in minutes.
Notice that the delays can be zero, negative or positive real
numbers. Negative numbers indicate that the passengers were
not delayed but they arrived early. The number of
enplanements must be greater than zero for the PTDI to make
sense. The same happens with the number of scheduled flights.
Clearly, the condition canceled_fl + diverted_fl < Schfl must be
true at all times.

B. Input data

The computation of the PTDI uses data from the Bureau of
Transportation  Statistics (BTS); particularly from two
databases that are available on-line to download.

The first database is the T-100 for the domestic segment
[BTS, 2006b]. This database allows the download of a whole
year for all the carriers in the domestic (USA) segment. The
fields selected to download are: year, month, origin, dest,
carrier, seats, departures performed, passengers, carrier region,
and distance. This experiment uses a single file containing data
for the year 2007 from January to October®. The file contains
277870 records for 203 different carriers, 1142 airports®, and
23507 routes. The process to compute load factors for the
flights and distance information for the routes uses these
values. Every record of this file must comply with the
conditions states in Table I to enter the local database.

TABLE I. CONDITIONS FOR EACH RECORD OF THE T_100 DATABASE
Field Condition
Year Equal to 2007
Month In range [1, 10]
Origin The value must be already in the Airport table
Dest The value must be already in the Airport table
Carrier The value must be already in the Airline table
Seats An integer number that is greater than or equal to
Passengers

Departures performed A positive integer number

Passengers A positive integer number
Carrier region Only the value “D” (for domestic) is accepted
Distance A positive real number

2 An enplanement is a transported passenger.

¥ November and December were not available at the time of
the experiment.

* These data include airports in Puerto Rico, and airports in
project that are being used already.

ISBN: 978-0-615-20720-9
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A record that does not comply with all the conditions does
not enter the local database, so that it is not used during the
computation of the PTDIs. A total of 134111 records actually
entered the local database including 932 airports, 115 carriers,
and 17493 routes. Notice that some of the airports, carriers and
routes are not actually referred in the On-Time database for the
same period of time. These extra records in T_100 have no
effect in the final results because the algorithm does not use
them. The values for seats, passengers, and departures
performed are monthly totals. There are no data for individual
flights; therefore, average values are used in this experiment to
approximate the actual values. The local database derives and
stores the following values concerning load factors per year,
month, route, and carrier:

e average number of seats, avgseat = seats / departures
performed

e average number of passengers, avgpax = passengers /
departures performed

e average number of available seats, avaseat = (seats —
passengers) / departures performed

Therefore, the average load factor for a year, month, route,
and carrier is: If = avgpax / avgseat.

The second database is the so-called Airline On-Time
Performance [BTS, 2006a]. This database allows the
download of individual months of a particular year for all the
airports and carriers in the USA. The fields selected to
download are: flight_date, carrier, origin, dest, arr delay, crs arr
time, dep delay, crs dep time, cancelled, diverted, fl_num, and
tail_num. This experiment uses ten separate files for the year
2007, one for each month from January to October. Table 11
summarizes the figures for each one of the files.

TABLE Il CONDITIONS FOR EACH RECORD OF THE ON-TIME DATABASE
Field Condition

Flight date Any valid date for the year 2007

Origin The value must be already in the Airport table

Dest The value must be already in the Airport table

Carrier The value must be already in the Airline table
Arrival delay Any integer number (including 0 and negative
ones).

A four digit positive integer number. The two left-
most digits represent the hour in 24 hr format. The
two right-most digits represent the minutes.

Scheduled arrival time

Departure delay Any integer number (including 0 and negative
ones).

Scheduled  departure A four digit positive integer number. The two left-

time most digits represent the hour in 24 hr format. The
two right-most digits represent the minutes.

Cancelled Either 0 (not cancelled) or 1 (cancelled)

Diverted Either 0 (not diverted) or 360 (6 hrs in minutes)

Flight number Any value, but usually a three or four digit integer
number.

Tail number Any value. Used only to filter invalid records.

TABLE II. STATISTICS FOR EACH OF THE ON-TIME INPUT FILES
Month Records Carriers Airports Routes
January 621555 20 289 4436
February 565602 20 288 4411
March 639209 20 288 4396
April 614648 20 289 4504
May 631609 20 294 4476
June 629280 20 298 4599
July 648542 20 300 4569
August 653276 20 298 4606
September 600186 20 298 4568
October 629990 20 292 4554
Total entered 6233873 17 309 5224

Notice that only 17 of the 20 carriers entered the local
database. It is because the records with the three missing
carriers did not comply with the conditions stated below. To
enter the local database, each record must comply with the
conditions stated in Table I11.

Each record must be unique with respect to flight date,
origin, destination, carrier, and flight number. If there are
repeated records, only one of them enters the local database.
When the repeated records show differences in other fields, the
user decides which one to keep. For instance, one of the
records states that the flight was delayed and the other, that it
was cancelled. The cancelled flight enters the local database in
this case. Situations like this are not frequent: for the current
input data only 53 records were repeated.

C. Thealgorithm

At a very high level of abstraction the algorithm to compute
the PTDI is as follows:

e Import the T_100 data into the local database. This
implies the computation of the load factor-related
values.

e Import the on-time data into the local database. This
implies the consideration of the carrier / subsidiaries
relations. This means that subsidiaries are changed to
their “parent” carrier every time they appear.

e Compute the EPTD based on the local load factor
values and the local on-time data. This is done flight-
by-flight, one month at a time. Fig. 2 illustrates the
computation process of the EPTD.

e Compute the PTDI based on the EPTD, the delay,
cancellation, and diversion data.

The following formulas compute the EPTD for each
category of passengers:
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‘ Initialize avaseat, avgpax from load_factors table ‘

v

‘ Pax_delay = 0 (for all canceled flights) ‘

v

‘ Pax_delay = avgpax * (arr_delay + div_delay) (for all not canceled flights) ‘

Repeat for all canceled flights

‘ Get the next not canceled flight (new flight) ‘

~Found
S
g Compute new arrival fime/date

~ Compute SinglePaxDela

inglePaxDelay <= 900
$ K
z S5,

A

‘MinSeats = min(canceledPax,new flight avaseat)‘

MinSeats = canceledPax
SinglePaxDelay = 900

¥y
MinSeats = canceledPax
SinglePaxDelay = 900

Updafe avaseat = avaseaf — minSeats
(for the current new flight)

Pax_delay = pax_delay + minSeafs * singlePaxDelay
CanceledPax = canceledPax — minSeats

‘ Update pax_delay in the database for the current canceled ‘
flight

Get the next cancelled flight

\]

Figure 2. Algorithm to compute the EPTD

EPTD,, . (f)=Pax(f)* ArrDelay_.(f)
EPTDd,54ayed (f)=Pax(f)* ArrDelay,, ()

EPTD gapeatea () = > Pax(f, ) *

max(15* 60, SchArr(j) — SchArr(f) + ArrDelay(j))
EPTD jyeeq () = Pax(f) *6*60

Where Pax(f) is the number of passenger in the flight f.
Pax(f, j) is the number of passenger from flight f, that were
reloaded on flight j. ArrDelay.5(f) is the arrival delay of flight
f (in minutes) when it is less than 15 minutes (flight arrives on-
time). ArrDelay-5(f) is the arrival delay of flight f (in minutes)
when it is delayed (15 minutes or more delay). SchArr(f) is the
scheduled arrival time of flight f. The constant 15*60
represents the maximum wait time (assumed) the passengers
will tolerate before changing to another airline or transportation
means, it equals 15 hours (in minutes). The constant 6 * 60 is
the estimated delay time for a diverted flight; it equals 6 hours
(in minutes).

At a high level of abstraction, the computation of the PTDI
consists of eight steps:

o Compute the passenger delay for on-time flights: those
arriving early or up to 15 minutes after the scheduled
arrival time®.

e Compute the passenger delay for delayed flights: those
arriving 15 or more minutes after the scheduled arrival
time.

e  Compute the passenger delay for canceled flights.
o Compute the passenger delay for diverted flights.
e  Compute the number of enplanements.

e  Compute the PTDI-related load factors.

e Eliminate null values (if any) and merge flights that
depart less than 40 minutes after another flight of the
same carrier on the same route.

e Compute the PTDI. Fig. 3 illustrates the computation
process of the PTDI.

The following formula computes the PTDI:

Zthgn_tim t
PTDI rat = ral___ * EPTDCr),f’time +
; Pax

Zt PaX e

—“'a'z S . EPTDgéaé;ed +
r,at

D PaX e

—Z oo EPTDLces +
r,at

D PaXyeieq

—Z o EPTDgiees
r,at

Where PaX,n1ime IS the number of passenger on-time (less
than 15 minutes delay), PaXgeiayeq i the number of passengers
delayed, PaXcanceed 1S the number of passengers in canceled
flights, and PaXgerteq iS the number of passengers in diverted
flights.  Notice that the summations are performed after
grouping the flights by route (r), airline (a), and departure time
(t). Corresponding definitions are valid for the EPTD. Sub or
superscripts r,a,t indicate that the associated values correspond
to the average EPTD for the category (on-time, delayed,
canceled, diverted) after grouping by route, airline, and
departure time.

® The convention is that flights arriving with less then 15
minutes of delay are on-time.

ISBN: 978-0-615-20720-9



THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION

FAIRFAX, VA, JUNE 1-4 2008

IV. RESULTS

The following analysis was conducted for 2007 for the
months January through October using data derived from the
BTS database for those months and year. The data included
512.8M passengers on 6.2 million flights on 5224 routes
between 309 airports. The passenger trip delay includes an
estimate of the total number of delay hours for on-time,
delayed, cancelled, and diverted flights.

e  Estimated total passenger trip was 247.08M hours. The
average trip delay was 24.33 minutes.

e Estimated total passenger trip delay for passengers on
flights delayed more than 15 minutes 119.44 M hours.
The average trip delay for these passengers was 56.19
minutes.

e Estimated total passenger trip delay for passengers on
cancelled flights was 107.39M hours. The average trip
delay for these passengers was 667.93 minutes.

o Estimated total passenger trip delay for passengers on
diverted flights was 7.77 M hours. The average trip
delay for these passengers was 360 minutes.

e Estimated for passenger trip delay for over-booked
passengers was negligible.

A. Comparison of flight delay and passenger delay

Fig. 4 shows a graphical comparison of flight delay and
passenger trip delay (PTD). The y axis of the chart shows
percentage of the total delay hours. The categories included
are delayed, cancelled, and diverted flights. Flights that arrived
early or with less than 15 minutes of delay are not included in
the chart: they are considered on-time. Because of these on-
time flights, the bars do not add to 100%. In other words, the
on-time flights can also generate delays, but they are low
enough to consider them as negligible.

The total delay measured using flight delay is 1.63 million
hours as indicated in the chart. Notice that the flight delay
metric does not consider canceled flights because those flights
do not incur in delays.

On the other hand, the total delay measured using PTD is
240.08 million hours. This amount is very different from the
1.63 million of the other metric. In this case the total also
considers the delays due to canceled flights, and not only
diverted and delayed flights.

The PTD metric is more detailed and faithful to the real
situation: passengers from a canceled flight experience
considerable delays. In fact, the delays for passenger from
canceled flights amount for about 43% of the total delay.
About 48% of the total delay is due to delayed flights, and the
rest of the delay is distributed among diverted and on-time
flights.

B. Comparison of routes

Fig. 5 compares the histograms and cumulative
distributions of the average PTDI and the maximum PTDI for
all the routes with respect to the delay ranges (15 minutes each

Compute Pax_delay_On_Time
Compute Pax_Delay Delayed
Compute Pax_Delay_Canceled
Compute Pax_Delay_Diverted
Compute flight enplanements
Compute load factors

'

‘ Eliminate null values (if any) ‘

Y

‘ Get the first flight (first) ‘

] Repeat for all the flights

A

departure time
et than 40 minu

‘ Merge the flights (second intc ‘
first)

‘ Delete the second record ‘

‘ Update PTDI for all the records ‘

Figure 3. Algorithm to compute the PTDI

range). Form the point of view of the average PTDI, 50% of
the routes show on-time flights; and 90% of them show flights
that are delayed less than 30 minutes. In extreme situations
(maximum PTDI) about 20% of the routes show on-time
flights and 50% show flights delayed 30 minutes or less. This
distribution shows a peak not at the 0-15 minute range as the
one for the average PTDI, but at the 30-45 minutes range.
After the peak, the distribution descends monotonically slower
than it the distribution of the average PTDI.

100%

90% -

80%

70%

60%

50%

Percentage

40%

30%

20%

10%

HHHHHHHHHH
0%

Flight delay (1.63M hours)
Performance metric

PTD (247.08M hours)

‘Ei Diverted O Delayed O Canceled ‘

Figure 4. Comparison of flight delay and passenger delay as performance metrics
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Figure 5. Distribution of routes with respect to the delay range
Comparison of route distance
The distribution of routes is similar for each distance range
as shown in Fig. 6. Notice that the distance ranges are given in
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Figure 6. Percentage of routes grouped by distance per delay range

nautical miles (nm). All the ranges show between 55 and 47
percent of on-time routes. Between 29 and 38 percent of the
routes show delays of 15 to 30 minutes. For the delay of 45
minutes the percentages are between 8 and 12. For the other
distance ranges the behavior is also similar though with smaller
percentage values. Though the differences are not big (8% at
most), shorter routes tend to perform better: most of the routes
of 500 nm and less are on-time (delay smaller than 15
minutes). Longer routes tend to delay more often. A
significant part of the routes longer then 500 nm delay 30
minutes.

The informal comparison of the distribution of delays
across distance ranges shows that the distribution has the same
shape for all the distance ranges as shown in Fig. 7. In all the
cases most of the flights are on-time and then the number of
delayed flights decreases with each increase in the delay range.
But, this chart also says that for shorter routes, is less probable
to have long delay than it is for longer routes. For instance, the
ratio of on-time to 30 minutes delay is about 17/10 = 1.7 for
routes of 300 nm or less, but it is 31/24.5 = 1.2 for routes of
500 to 1000 nm.
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Figure 7. Percentage of routes grouped by distance range and delay range

C. Comparison of airports

The next step after comparing the routes is the comparison
of the airports. In the case of inbound airports, Fig. 8 shows
that most of them receive flights on-time or with 30 minutes
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Figure 8. Inbound airport performance

delays: 40% of the airports show on-time flights, and 90%
show delays of 30 minutes or less. Only few airports show
average delays of 45 minutes or longer.

Table 4 summarizes a ranking of all the inbound airports in
the database with respect to the average delay.

TABLE IV. BEST AND WORST INBOUND AIRPORTS RANKED ACCORDING
TOPTDI
Best Worst
Rank Airport (delay) Rank Airport (delay)
1 Greenville, MS 202 PHL (23)
2 Hilo, HN 226 1AD (26)
3 Pocatello, ID 239 DFW (31)
22 HNL 241 EWR (31)
31 SJC 245 LGA (33)
35 HOU 248 ORD (33)
39 OAK (10) 255 JFK (37)
40 MDW (10) 268 Meridian Regional (95)
59 LAS (11) 269 Rhinelander-Oneida (171)
61 DAL (11)
75 BWI (12)

This ranking is based on the average PTDI for the airport.
Rank ties are possible as shown in the table. Airports in bold
belong to the OEP-35. Notice that some of the OEP-35
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airports are ranked among the 75 best ones with respect the
PTDI values.

The outbound airports behave as the inbound ones with
respect to PTDI (see Fig. 9). About 90% the of the airports
show delays of 30 minutes or less, and 40% show delays of 15
minutes or less. Again, only few airports show average delays
of 45 minutes or more.
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Figure 9. Outbound airport performance

Table 5 summarizes the ranking of all the outbound airports
with respect to the average PTDI.

TABLE VI. AIRLINES RANKED BY PTDI
Average PTDI Maximum PTDI
Rank Airline (delay) Rank Airline (delay)

1 Hawaiin (5) 1 Alaska (50)
2 Aloha 2 Aloha
3 Southwest 3 Hawaiin
4 Frontier 4 Frontier
5 Air Tran 5 Southwest (200)
6 Continental 6 USAirways
7 Alaska 7 Air Tran
8 ExpressJet (19) 8 Continental (250)
9 United (19) 9 JetBlue
10 SkyWest (19) 10 SkyWest
11 USAirways 11 United
12 Delta 12 ExpressJet
13 Northwest 13 Northwest/Airlink (291)
14 Northwest/Airlink 14 Mesa
15 Mesa 15 American
16 JetBlue 16 Delta
17 American (32) 17 Northwest (750)

TABLE V. BEST AND WORST OUTBOUND AIRPORTS RANKED ACCORDING
TO PTDI
Best Worst
Rank Airport (delay) Rank Airport (delay)

1 Bristol/Johnson, TN 194 PHL (23)

2 Pocatello, ID 214 IAD (26)

6 Greenville, MS 229 EWR (29)

25 SJC 238 DFW (31)

28 HNL 239 ORD (32)

36 OAK (9) 248 LGA (34)

38 HOU (9) 249 JFK (35)

42 DAL (11) 265 Rhinelander-Oneida
(55)

53 MDW (11) 270 Middle GA Reg
(260)

89 BWI (13)

109 LAS (15)

This ranking is based on the average PTDI for the airport.
Rank ties are possible as shown in the table. Airports in bold
belong to the OEP-35. Notice that some of the OEP-35
airports are ranked among the 89 best ones with respect the
PTDI values.

D. Comparison of airlines

Finally, Table 6 summarizes the ranking of the airlines with
respect to the average and maximum PTDI. Notice that in the
case of average PTDI the difference is at most 27 minutes. In
the case of the maximum PTDI, the difference is at most 700
minutes.

This ranking is based on either the average or the maximum
PTDI for the airport as indicated in the column headings of the
table. Rank ties are possible as shown in the table.
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V. CONCLUSIONS

Passenger trip delay is a critical performance metric for the
airline transportation system. This metric assesses the
performance of the true end-users of the system, and provides a
measure of the true cost of delays.

Future research is planned to: (1) extend the algorithm to
include lost luggage and refine the overbooked passenger
algorithm, (2) add an algorithm to adjust the load factor for
peak and non-peak periods, (3) continue to refine the
automation of data retrieval and processing.
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An Aggregate-level Approach
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Abstract—The on-time performance of passenger trips has
received a great attention from government agencies in recent
years but lacks a systematic metric to measure or trace the
impact of flight delay to air travelers. The proposed model
considers possible trip types of a passenger, utilizes system-wide
flight-based performance metrics, and employs statistical
approaches in order to develop an aggregate delay metric from
passenger’s perspective. Its results can be used to analyze
historical passenger schedule reliability and can also be used to
predict passenger experience for future aviation system.

Keywords-delay, passenger trip, performance metric, air travel

l. INTRODUCTION

The on-time performance of flights is a key concern of
carriers and administrative agencies of aviation worldwide. It
can be easily quantified for the U.S. National Airspace System
(NAS) because all flight arrival and departure information is
well recorded and disclosed by the Federal Aviation
Administration (FAA). For example, the FAA’s Aviation
System Performance Metrics database (ASPM) provides
individual flight information from all participating carriers at
75 major U.S airports. Arrival delay of flights can thus be
calculated by comparing scheduled and actual arrival time [10].
With suitable aggregation methods, delay metrics at airports or
at the NAS-wide level can easily be constructed.

While flight delay statistics are well-recorded and well-
publicized, they are not necessarily an accurate measure of a
passenger’s level of satisfaction. In particular, a passenger’s
average trip delay can vary substantially from average flight
delay due to trip disruptions due to cancelled flights or missed
connections. Bratu and Barnhart [1] analyzed proprietary
airline data and indicated that the average time penalty on
passenger trip time due to flight cancellations and missed
connections is 303 minutes, while the average delay for non-
disrupted passengers was only 16 minutes. However,
acknowledging that passenger delay is also an important factor
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of system performance, it is not easily measurable from any
publicly accessible data. Since ticket information is not
released by airlines nor collected by the government due to
privacy concerns, the delay of multiple-leg passenger trips can
be traced only with great difficulty. Even through proper
sampling and survey techniques, passenger delay can only be
observed during the selected survey period. Considering a long
term objective of quality assurance of air travel, it would
appear that there exists a need for defining a passenger oriented
metric to be used as a quantitative measure of system-wide
flight delay impact on passenger trips.

There is limited research that models passenger delay most
likely because of the relative unavailability of individual
passenger trip information. The essential challenge is to
quantify the impact of flight delay on passenger trip disruption.
Wang [3] treated passenger delay by its causes: delay due to
delayed flights and due to cancelled flights. To estimate the
passenger delay from cancelled flights, an algorithm was
proposed that processed single-segment flight data. The
underlying idea was to assign cancelled seats to the temporally
closest available flights. Intuitively, this approach should work
well in cases where only direct flights are being considered or
under the assumption that on multi-leg passenger trips, the
passenger always maintains the same intermediate stopping
point. It should also be noted that this research does not model
the possibility of missed connections on multi-leg flights.

The common characteristics of our paper and Wang [3] are:
1) both develop passenger-based performance metrics, and 2)
both quantify the impact of flight cancellations on passenger
delays. However, while the Wang model is a detailed
“microscopic” model that estimates delays at a flight level, our
model is macroscopic scope, attempting to directly estimate
overall averages. The FAA’s NAS Strategy Simulator (NSS) is
a high-level policy analysis tool that predicts the impacts of
future demand growth, policy changes, increasing fuel price,
etc. [7]. Our research was specifically aimed at producing a
performance module for the NSS. In the NSS context, all input
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and output data are maintained at an aggregate level and so it is
assumed that flight-level data are not available. Likewise, the
required output should be NAS-wide average flight delay and
cancellation rates rather than similar flight-specific metrics.

This paper is organized as follows. In Section 2, the
concepts of the proposed model are discussed, and statistical
methods are performed to estimate the probability of missing a
connection flight. Numerical examples are constructed to
illustrate the model, and the trend of passenger delay since
2000 is presented in Section 3. In Section 4, sensitivity analysis
is conducted by analyzing the impact of key parameters on
passenger delay. In Section 5, the potential usages and
limitation of the proposed model are discussed.

Il.  MODEL CONSTRUCTION AND ESTIMATION

Passenger delays can be “inherited” directly from delayed
flights but also can result from cancelled flights. Further, on
multi-leg passenger trips, long flight delays on the initial leg
can result in missed connections and induced delays not equal
to, or even proportional to the original flight delay. In fact,
cancellations and missed connections very often result in the
most severe passenger delays. With these effects in mind, it
can be seen that passenger delays depend on:

o Distribution of flight delays
e  Flight cancellation rate
e Average load factor

e Percentage of passengers with 2 or more flight legs in
their itinerary

In order to accurately address the actual delay experienced
by passengers, models and statistical analysis are required that
transform statistics related to these factors to passenger delay
measures.

A. Scenario Tree Model of Passenger Delay

Our passenger delay model employs in a fundamental way,
the concept of a disrupted passenger, which was introduced in
Bratu and Barnhart [1]. A disrupted passenger is a customer
who must use a flight other than the one on which the customer
was originally scheduled due to a missed connection or flight
cancellation. Disrupted passengers incur delays not related in a
direct way to the delays on any of the flights in their original
itinerary. Such passengers might be able to recover quickly,
e.g. by taking the “next” flight scheduled to the missed
destination or might incur a very long delay, e.g. requiring an
unplanned overnight stay.

In order to model passenger delays, we create a scenario
tree that represents all possible outcomes of a passenger’s trip.
The database of Airline Origin and Destination Survey
(DB1BMarket) contains directional market characteristics of
each domestic itinerary of the quarterly Origin and Destination
Survey [11]. The trip leg information of domestic markets from
2000 to 2007 is summarized in Figure 1, indicating that on
average over 97% of the passengers chose direct or two-leg
flights. Thus, because of the relative infrequency of three or
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more leg trips in the U.S., we will represent itineraries as
consisting of either one or two flight-legs.
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Figure 1. BTS Survey Results on Passenger Trip Leg Information

Our scenario tree is given in Figure 2. It represents the
various events that can occur on a passenger itinerary, where
for a 1-leg trip, the flight is denoted by f; and for a 2-leg trip
the first flight is f; and the second is f,. Each leaf of the
scenario tree represents a different outcome of a passenger trip
and leads to a different “type” of passenger delay.

[ Disrupted Passenger

f, canceled

B Passenger Delay = Flight Delay

f1 not canceled

f, canceled
Connection
Made

Two-leg
Trip

f, not canceled

Connection

Missed
f,canceled

Scenarios Tree for a Passenger Trip

1 not canceled

Figure 2.

Expected passenger delay could be computed by computing
the expected passenger delay at each leaf node in this tree and
the probability of reaching each leaf node. The sum of the
product of the leaf node probabilities times their expected
delays would give the expected passenger delay. This would
accurately compute expected passenger delay given the
restriction to one and two leg trips. This is the approach we
take; however, we must make several approximations in order
to estimate the various probabilities and expectations. We
hope that over time some of these approximations can be
improved.

In computing our estimate of passenger delay, we use the
following quantities:

e P_DIRECT: the fraction of passenger itineraries that
are direct flights
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P_CANCEL.: the fraction of scheduled flights that are
canceled

e F_DELAY: Average flight delay
e DISRUPT: Average delay of disrupted passengers

e P MISS: An estimate of the probability that a
passenger misses connecting flight (the method for
computing this estimate is discussed in the next
section)

We now list all leaf nodes in the scenario tree, give our
approximations of the expected passenger delay at that node
and the probability of reaching that node, and discuss the
accuracy of these approximations.

The various possibilities that can arise are:

1) Direct Trip, f; canceled:
Probability estimate: P_DIRECT*P_CANCEL
Delay estimate: DISRUPT

Discussion: The probability estimate is fairly accurate;
however, P_CANCEL is actually a surrogate for the
probability that a passenger is booked on a canceled flight. To
the extent that there is a greater propensity for airlines to cancel
flights with fewer passengers, a more accurate estimate could
be obtained by doing a calculation that weights flights by the
number of passengers (or seats). In fact there is not source of
accurate statistics on the delay of disrupted passengers so the
value we use for DISRUPT is a very rough estimate. Further,
models could take into account whether a passenger is
disrupted by a cancellation or a missed connection. DISRUPT
also would be impacted by changes in airline policies and flight
characteristics, such as load factor, so these could be used in
improving estimates.

2) Direct Trip, f; not canceled:
Probability estimate: P_DIRECT*(1-P_CANCEL)
Delay estimate: F DELAY

Discussion: Subject to the caveats related to P_CANCEL
mentioned above, both the probability estimate and the delay
estimate should be highly accurate in this case.

3) Two-leg Trip, f; canceled:
Probability estimate: (1-P_DIRECT)*P_CANCEL
Delay estimate: DISRUPT
Discussion: See discussion for previous two cases.
4) Two-leg Trip, f; not canceled, f2 canceled:

Probability estimate: (1-P_DIRECT)*(1-P_CANCEL)*
P_CANCEL

Delay estimate: DISRUPT
Discussion: See discussion for previous two cases.

5) Two-leg Trip, f; not canceled, f, not canceled,
connection made:

15

Probability estimate: (1-P_DIRECT)*(1-P_CANCEL)*(1-
P_CANCEL)*(1-P_MISS)

Delay estimate: F_ DELAY

Discussion: As will be discussed later, estimating P_MISS
can be very challenging. Our approach is to estimate the
probability that flight delay exceeds a certain (constant)
threshold. Clearly the required connection time varies
substantially by flight so in reality the required threshold itself
is a random variable. Further, it can be the case that both f; and
f, are delayed so that even with a large delay on f; the
connection can be made. Assuming the connection is made the
passenger delay equals the delay on f, so that F_DELAY is a
good estimate of passenger delay in this case.

6) Two-leg Trip, f; not canceled, f, not canceled,
connection missed:

Probability estimate: (1-P_DIRECT)*(1-P_CANCEL)*(1-
P_CANCEL)*P_MISS

Delay estimate: DISRUPT

Discussion: See discussion in previous case regarding
P_MISS. As discussed earlier it is certainly the case that the
expected delay experienced by a disrupted passenger could
vary depending on whether a canceled flight or missed
connection was involved.

Based on this scenario tree and the preceding analysis, our
estimate of average passenger delay, Pax DELAY can be
computed as:

Pax_DELAY =

(P_DIRECT)*(P_CANCEL)*DISRUPT +
(P_DIRECT)*(1-P_CANCEL)*F_DELAY+
(1-P_DIRECT)*(P_CANCEL)*DISRUPT+
(1-P_DIRECT)*(1-P_CANCEL)*(P_CANCEL)*DISRUPT+
(1-P_DIRECT)*(1-P_CANCEL)*(1-P_CANCEL)*(1-
P_MISS)*F_DELAY+
(1-P_DIRECT)*(1-P_CANCEL)*(1-P_CANCEL)
*P_MISS*DISRUPT

B. Probability of Passenger Missing Connection

Three of the inputs in the Pax_DELAY equation, i.e.
F_DELAY, P_CANCEL and P_DIRECT, can be easily
obtained from historical NAS performance statistics. For
example, the monthly flight arrival delay and cancellation rate
for the NAS can be calculated from ASPM individual flight
data; the percentage of direct trips can be estimated from the
quarterly market survey provided by the Bureau of
Transportation Statistics, as shown in Figure 1. However, two
inputs, i.e. DISRUPT and P_MISS, require reasonable
approximation or further modeling efforts since they are not
readily available in any data sources or previous research.

In order to provide a reliable estimate of P_MISS, we
conduct a statistical analysis on the composition of P_MISS. If
we denote by Dy, the random flight delay, then we define our
estimate of the probability that a connection is missed because
of a delayed flight by:
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P_MISS = Prob { D > Threshold }

where Threshold = LAY — CONNECT, LAY is a nominal
flight layover time for connecting flights, and CONNECT is an
estimated minimum time required to connect between two
flights.

We assume that schedules are created so that if a flight
arrives “on-time” then it makes its connection. Here on-time is
defined relative to the U.S. Department of Transportation
standard so that a flight is not classified as delayed if it is no
more than 15 minute late. Thus, if Dy is less than or equal to 15
minutes, then we assume the passenger makes the connection
successfully to the second flight leg. The probability of
passenger missing connecting flight can thus be modeled as a
conditional probability. Specifically, the probability that the
connection is missed “given that” the flight is delayed (more
than 15 minutes) is represented as:

Prob { D, >Threshold | Flight being Delayed}
_ Prob { D;>Threshold n D,>15}
B Prob (D, >15)
_ P_MISS
~ P_DELAY

where P_DELAY = the probability that a flight’s delay > 15
=Prob (D, >15)- The probability of missing a connecting flight

can thus be represented as:
P_MISS = P_DELAY x Prob {D,>Threshold | D, >15}

The first term is the probability that a flight is delayed more
than 15 minutes. The second term is a conditional probability.
P_DELAY can be estimated directly from flight delay data for
the purposes of computing a metric. We also provide a way of
estimating it using only an estimate of F_DELAY. This was
done in order to derive estimates for future years in the context
of the FAA Strategy Simulator. Our approach to estimating the
second term for a time period, e.g. one month, will be to
estimate the distribution: Prob{ D > D | D; > 15} based on
several years of historical data. The parameters of this
distribution will be estimated as a function of F_DELAY and
P_CANCEL. The value of Threshold and these flight
performance statistics for the time period in question will be
plugged into the distribution function to determine the estimate
of the second term.

C. Probability of a Flight Being Delayed

As discussed above, P_DELAY can be computed directly
from historical data. However we also provide a way of
estimating it from flight delay statistic. From the ASPM
database [10], for each month from January 2000 to December
2004, we computed the monthly values of F DELAY and
P_DELAY. Due to the obvious non-linearity in distribution
functions, we postulated a quadratic relationship between
F_DELAY and P_DELAY. A simple regression produced the
following model with an R? of 0.9628.

P_DELAY = [ (-0.0206)* (F_DELAY) * (F_DELAY) +
2.0431 * (F_DELAY)]/100
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D. Estimating Conditional Distribution of Flight Delays

In this section we describe our approach to estimating the
conditional distribution function: Prob { D > D | Df > 15}.
Individual flight information stored in APSM database was
used to compute the arrival delay of flights, which is defined as
the difference between actual and scheduled arrival time. For
each of month, an empirical distribution of flight delays > 15
was created. Specifically, each flight delayed over 15 minutes
was placed into a 15 minute bin (15-30, 30-45, etc.) based on
its delay value.

Empirical flight delay distributions were obtained in this
way for each month from January 2000 to December 2004.
These distributions were then fitted with the Bi-Weibull
distribution. The Bi-Weibull, which is a combination of two
Weibull distributions, is widely used in reliability applications.
The Bi-Weibull distribution assumes a different form based on
its shape parameters, which are:

e Xg: the point at which the parameters change, and

e (oy, By) and (o, Bo) : the parameters of the two Weibull
distributions.

The parameter [, is a function of the other parameters, so
there are four parameters in total to be estimated.

The fitted distributions gave 60 sets of observations of (X,
a;, B1, ap). A regression was performed on each of these
parameters, respectively, by using independent variables
F_DELAY and P_CANCEL. The results from the regression
are as follows:

e X, = 111081 + 0014 * F_DELAY * F_DELAY +
741.87 *P_CANCEL (R’ = .93)

e = 0.37+0.00083 * F_DELAY * F_DELAY + 3.2*
P_CANCEL * P_CANCEL +0.0032 * F_DELAY (R
=.87)

e By =11+283*F DELAY +112.12 * P_CANCEL *
P_CANCEL (F?=.901)

e a,=0.1143 + 0.0013 * F_DELAY * F_DELAY + 0.87
*P_CANCEL * P_CANCEL (R = .82)

Thus, the distribution Prob{D; >D | D; > 15} was estimated
as a Bi-Weibull distribution whose parameters are given as
functions of F_DELAY and P_CANCEL.

I1l.  MODEL APPLICATION AND DATA ANALYSIS

The passenger delay model takes into account several major
factors that impact passenger delay. Some model inputs are the
results of aforementioned statistical models; some are available
from reliable data source or analysis.

As the market survey results on trip leg information from
2000 to 2007 shown in Figure 1, it is observed that on average
two-thirds of the passengers take direct flights. Hence, for
model application purposes, we set

P_DIRECT = 66%.

Disrupted passengers might be re-assigned to a later flight
and often experience overnight stays. There are no publicly

ISBN: 978-0-615-20720-9



THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION

FAIRFAX, VA, JUNE 1-4 2008

available data about average delay of disrupted passengers. The
research results of Bratu and Barnhart [1] based on a
combination of proprietary data and simulation provide an
estimate of 303 minutes as the average delay of disrupted
passengers. Hence we set

DISRUPT = 303 minutes.

The delay threshold of not missing a connection flight is the
difference between the average flight layover time and
minimum required connection time. Calculating average
layover time experienced by a passenger requires detailed
analysis on either passenger itinerary information or flight
schedule along with seat information, which are not publicly
accessible. The minimum required connection time can differ
among individual airlines or even airports. Therefore, we take a
conservative estimate on these two inputs based on empirical
experience and assume that LAY = 45 minutes and CONNECT
15 minutes. Thus, the delay threshold of not missing
connecting flight is:

Threshold = LAY — CONNECT = 30 minutes.

We now have provided models, estimation methods or
approximation to obtain all required inputs for our metric. We
use a simple example summarized in Table 1 to show how the
passenger delay metric is computed. Given that Monthly NAS
delay is 13.62 minutes and cancellation rate is 3.08%, the
probability of a flight being delayed as well as the parameters
of flight delay distribution is determined. The probability of
flight delay more than connection threshold is computed by
using the fitted distribution. As a result, the probability of
missing a connection flight is 0.113, and the estimated monthly
average passenger trip delay is 35.95 minutes. The relation
among major model components is shown in Figure 3.

TABLE I. A NUMERICAL EXAMPLE OF PASSENGER DELAY MODEL
Variable Name Value Source

Avg Monthly NAS  13.62 mins. Historical data or estimated

Delay of Flights from other models

Monthly NAS 3.08% Historical data or estimated

Cancellation Rate from other models

P_DIRECT 66% BTS DB1B Database

DISRUPT 303 mins. Result from Bratu’s study

Threshold 30 mins. Assumed

P_DELAY 24% Estimated by this study

Xo 36.55 Estimated by this study

o 0.57 Estimated by this study

o 0.35 Estimated by this study

B1 49.65 Estimated by this study

B2 = Xo*Ba/ (02 — 01) 22.96 Estimated by this study

P_MISS 0.1134 Estimated by this study

Pax_DELAY 35.95 mins. Calculated by using scenario

tree formula
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Monthly NAS Monthly NAS Other System-wide
Cancellation Rate Flight Delay Parameters
Flight Delay Probability of
Distribution Flights Being
I Delayed
A4
/ Scenario Tree Formula
Probability of Probability of
Flight Delay —» _Missing
Longer than Connection v
Threshold Flights Expected Monthly

Passenger Delay
Figure 3. Application Procedures of Proposed Passenger Delay Model

Given the application procedures in Figure 3, monthly
passenger delay metrics from January 2000 to May 2007 are
computed by using ASPM flight delay and cancellation data.
Figure 4 shows the time series of monthly passenger delay
against flight delay and cancellation rate. Most of the spikes of
passenger delay trend are due to high cancellation rates in those
months as more passengers are disrupted. This suggests that
there will be large penalty for passengers in terms of delay-
minutes whenever a flight is cancelled, and also provides an
explanation for why passenger experience varies from year to
year as the overall cancellation rates change.
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Figure 4. Time Series of Passenger Delays

The comparisons of modeled passenger delay against
cancellation rate and average flight delay in the NAS are
plotted in Figures 5 and 6, respectively. It can be also seen that
as flight delay increases the passenger delay increases in more
than a linear fashion. This validates our claim that as flight
delays increase, more passengers are disrupted and the impact
on passenger delays is much worse than actual flight delays.
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IV. SENSITIVITY ANALYSIS

As one of the modules in a high-level policy analysis tool,
our model is designed to use flight performance statistics and
to evaluate the passenger trip experience in response to changes
in aviation system. The creditability of our model relies on
proper inputs of parameters, either processed from historical
data or calibrated from other modeling efforts. To better
understand how passenger delays correspond to average flight
delay, sensitivity analysis is conducted by varying the values of
several key parameters. The parameters of our base scenario
are summarized in Table 2.

TABLE Il PARAMTERS OF BASE SCENARIO
Variable Name Value

P_CANCEL 2%

P_DIRECT 66%

DISRUPT 300 mins.

Threshold 35 mins.

Figure 7 illustrates the relation between flight delay and
passenger delay with increasing values of DISRUPT, which is
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the average delay of disrupted passengers. Certainly,
DISRUPT is the most difficult to estimate input parameter.
We see that P_DELAY increases with DISRUPT but that the
sensitivity is fairly modest and the functional relationship
between F _DELAY and P_DELAY generally retains its
structure as DISRUPT changes. Figure 8 provides a similar
sensitivity analysis for P_DIRECT. Note that the nonlinear
structure of the curves in Figures 7 and 8 results from the fact
that the probability of missing connections increases more than
linearly with average flight delay.
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Figure 7. Sensitivity of Increasing Average Delay of Disrupted Passengers
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Figure 8. Sensitivity of Increasing Direct Trip Percentage

Figure 9 shows the sensitivity of varying the flight
connection threshold. The choice of Threshold depends on the
settings of minimum required connection time and average
flight layover time, which are related to airlines’ behaviors on
schedule design and fleet management and require further
exploration. This value is employed in determining the
probability of missing a connection. The shorter the connection
threshold, the greater the likelihood a flight is missed. The
P_DELAY growth rate exhibited in Figure 9 is explained by
the rather drastic growth rate in the probability of missing a
connection for F_DELAY over 15 minutes as illustrated in
Figure 10.
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The multiplier effect of reducing Threshold on the
probability of missing connection becomes more significant as
flight delay increases. When system performance is getting
worse, stringent connection times will increase the chances of
missing connections and aggravate passenger trip delay. At 15
minutes of flight delay, the probability of missing connections
with Threshold=40 is about 170% of that with Threshold=100.
At 25 minutes of flight delay, the probability of missing
connections with Threshold=40 is more than 220% of that with
Threshold=100.
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Figure 10. Sensitivity of Increasing Connection Threshold on Probability of
Missing Connections

V. CONCLUDING REMARKS

It is generally agreed that flight-based delay metrics are not
good surrogates of overall passenger experience of air
transportation system. This study addresses the need for a
quantitative measure of NAS passenger trip delays. The main
contribution is that a passenger-based metric is modeled by
considering a scenario tree for a passenger trip. This model
allows the estimation of passenger delay based on existing
flight-based performance metrics. A drawback of this study as
well as other comparable research on passenger delays is that
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the results can not be validated because of the unavailability of
comprehensive passenger trip records.

The proposed model uses NAS-wide performance metrics,
i.e. average flight delay and cancellations, in order to measure
passenger delay from a strategic perspective. The inputs of the
passenger delay metric are obtained from historical data
analysis, statistical models, and reasonable approximation. Its
intention is to provide an efficient but dependable estimate of
passenger schedule reliability without much effort on analyzing
detailed flight activities. Using models that forecast NAS-wide
performance metrics, e.g. the flight delay models in Wieland
[8] and Subramanian [9] and the cancellation rate model in
Subramanian [9], the results of this research can also be used to
predict passenger experience of future aviation system.
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Abstract—This paper describes some methods for filtering and
aggregating delay data from individual flights. The purpose for
these transformations is to make the delay data more consistent
with the outputs from queuing models. The transformed data
can then be used to make much more relevant, and successful,
comparisons against such models. This enables better calibration
of the models, and helps to reveal what fraction of the total delay
in a system might be generated solely from the consideration of
congestion resulting from competition amongst aircraft for
scarce airspace and airport resources. The paper describes the
transformations in detail, and demonstrates their theoretical
validity through examples. Real data are modified according to
these transformations and are then compared against a stochastic
queuing model to show the efficacy of the technique.

Keywords-queuing models, airport delay, delay filtering

. INTRODUCTION

Queuing models, either deterministic or stochastic, are
commonly used to predict delay statistics in the National
Airspace System (NAS). The need for estimating delay is
great, especially for busy airports. These models are
particularly useful for studying future conditions that might
include changes from the demand and capacity profiles
expected under current operations. In some cases, such models
can also be used to predict the effects of important
infrastructure or policy changes, such as the addition of a
runway or changing separation standards.

Queuing models are designed to estimate that component of
delay that is incurred by aircraft as a result of competition, with
other aircraft, for a capacitated resource, such as a portion of
the airspace or a runway. Real delay data at a destination
airport represent a broader collection of influences, and might
include, among other things, upstream delays that accrued in
previous flight legs, delays caused by late arrival of the crew,
and delays caused by a mechanical problem with an aircraft.

Queuing models expect, as their inputs, nominal arrival
times of flights; i.e., those arrival times that would prevail if
other influences did not create delays. The differences between
the nominal (or “desired”) arrival times and the actual arrival
times are the statistics recorded as delays. Real demand data,
in the form of flight schedules, do not represent this notion
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exactly, primarily because air carriers include in their estimates
of arrival time some expectation of delays. When executed
properly, this is a perfectly reasonable practice, because it
maximizes the likelihood that the actual performance of a flight
will match the customers’ expectations for that flight. The
problem, however, arises when an analyst tries to use the same
data to populate queuing models, because their intent is to
estimate those congestion-related delays themselves, rather
than having them subsumed in the input data source. In this
paper we offer a partial solution to this problem, although it is
our belief that the general question of determining nominal (not
padded for expected delay) arrival times for aircraft remains
open.

All of the above constitute some of the reasons that the
process necessary to facilitate proper comparisons of the
outputs of queuing models with real data can be quite involved.
Some form of comparison is essential, however, because the
queuing models require calibration. It is also important to
understand, once they are calibrated, that their delay
predictions represent only a fraction of the total delay that
might be expected when all of the other influences (which
might be more difficult to model) are present. This proportion
can be estimated as part of the overall calibration process and
that is a valuable result in and of itself.

Il.  APPROACHES FOR MODIFYING DATA

The methods described in this paper for transforming
individual flight data can be thought of as belonging to two
classes of operations: filtering and aggregation. In the former
case, we are attempting to subtract from real flight delay data
the best estimates of delay components that are not directly
attributable to congestion in the queuing sense. This step
makes a direct comparison with delay data from queuing
models much more valid.

Because the results from queuing models are most often
shown in aggregate terms (e.g., the average delay incurred by
all aircraft in the system during a particular time slice), the
second step is to aggregate the real data, filtered accordingly, in
a manner consistent with how queuing models tend to report
their results. The need for this step is obvious, but its inclusion
here is important because the paper illustrates how the
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aggregate delay statistics available in the most common
aviation databases are not averaged in a manner that allows for
direct comparison with model results. Any attempt to make
such a comparison, therefore, without following steps such as
those outlined in this paper, is very likely to lead to a poor
match between model results and real data, leading to the
possible (and likely erroneous) conclusion that the model is
doing a bad job or that queuing delays are not a significant
component of the overall delays incurred by aircraft.

A. Filtering Schemes

The basic inputs to a queuing model are demands and
capacities. A straightforward (although, we will argue,
incorrect) method to use real data to feed such a model would
be to use the collection of scheduled arrival times at an airport
as the demand and a record of the declared airport arrival rates
(AARs) as the capacity. The outputs from the queuing model
might include average delay per time period, and it might be
tempting to compare these directly against an aggregate
average delay statistic in a database such as the FAA Aviation
System Performance Metrics (ASPM) database, partly because
the name of the metric is very similar. Again, this paper offers
evidence that a more refined method is better for these
purposes.

The filtering mechanism encapsulates two basic processes,
one for the input data for the model, and one for real delay data
to which output data will be compared. In the input data, rather
than using scheduled arrival times directly, we develop a
scheme for predicting the nominal or “best” arrival time for
each flight being considered. Since the queuing model only
represents congestion effects at the single airport in question,
data of similar scope must be used for output comparisons. We
take individual flight delay data from a real database and
subtract an estimate of upstream propagated delays that would
not be accountable for in the queuing models. These processes
are described in detail in Section I1I.

B. Aggregation Schemes

When looking at one of the readily available aviation
performance databases such as ASPM, one can find aggregate
delay statistics recorded on an hourly (or sometimes quarter
hourly) basis. For example, one could find a report of the
average delay at Atlanta Hartsfield-Jackson International
Airport (ATL) between 4 pm and 5 pm on some day. It is not
clear simply from the title of the field, however, what the
domain of aggregation is. In fact, what happens, using the
above example, is that for all flights that landed at ATL
between 4 pm and 5 pm, their delays (relative to schedule)
were computed, and then these were averaged over these
flights. A flight scheduled to land at 3 pm but landing at 5 pm
would be assigned two hours of delay, but both of those hours
of delay would be aggregated in the time window 4-5 pm,
when actually only one of them actually occurred during that
window. In fact, given the possibility of upstream propagated
delays, the actual delays might have occurred considerably
earlier in the day. This is not a flaw in the reporting
mechanism, however; the way that ASPM (and other) delays
are aggregated is simply the easiest and least ambiguous way to
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record the ultimate differences between scheduled and actual
arrival times.

The problem comes when trying to compare such data to
the outputs of queuing models. In a deterministic queuing
model, one can track the progress of individual aircraft, so it is
possible to generate data that are consistent with this reporting
mechanism. It is more common with such models, however, to
use delay accounting practices taken directly from seminal
sources on deterministic queuing (see for example [1]), where
delays are accounted for as they occur, rather than after flights
have landed. This difference can perhaps best be seen by
graphical example; we call the mechanism used for reporting
real data in places like ASPM *“horizontal aggregation” and
that typically used in deterministic queuing “vertical
aggregation.”

Importantly, stochastic queuing models (not simulations)
frequently do not allow for the tracking of individual aircraft.
Instead, the state space consists of the range of possibilities of
the length of the queue at any given time, and the differential
equations of the state dynamics govern how this queue grows
or shrinks over time. There is no accounting, however, for
which particular aircraft are present at any given time. Thus,
the horizontal aggregation mechanism is not possible. The
vertical aggregation mechanism is possible, and in a stochastic
model each possible queue length is assigned some probability
of prevailing at any particular time, so the vertically aggregated
delay statistic generated represents the expected value of the
delay incurred by aircraft during that time slice.

Fig. 1 shows an example of a cumulative demand curve
(the upper curve, representing the number of flights that
wanted to land by a particular time) and a cumulative supply
curve (the lower curve, representing the actual number of
flights that were allowed to land by a particular time, as
constrained by the arrival capacity). The abscissa represents
time, while the ordinate represents flight count, and the flights
can be considered to be sorted in order of their desired arrival
times.

During the time slice t; to t,, flights labeled f; through f,
landed. The total delay experienced by these flights over their
lifetimes can be computed as the area of the horizontal band
bounded by these two flight labels on the top and bottom, and
by the two cumulative curves on the left and right. After
dividing by the number of aircraft f, — f;, the result is the
average delay statistic that would have been reported in a
database like ASPM. Because delays for individual flights are
read from the figure as horizontal spacings between the two
cumulative curves, we call this form of averaging delay
“horizontal aggregation.”

If one looks vertically at the same time slice, however, the
band between the curves represents the total quantity of delay
incurred by flights whose desired landing times occurred prior
to the time slice in question, but whose actual landing times
occur (or will occur) during or after that time slice. In this
case, the total number of flights represented is f; — f; and the
average delay statistic can be computed as the area of the
vertical band divided by this number of flights. Again, this is
the statistic traditionally (but not necessarily) drawn from
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deterministic queuing models, and necessarily drawn from
stochastic queuing models.

It should be clear from the figure that the two quantities can
be quite different. Perhaps only a few flights are figured into
both calculations, and even then the entirety of a flight’s delay
experience would be horizontally aggregated while only a
portion of the delay would be captured with vertical
aggregation during that time slice. Another way of thinking of
the two methods is temporally: the horizontal aggregation
method looks to the past, recording statistics about delays that
have already occurred, while the vertical method looks to the
present, by recording delays as they occur, but also to the
future, because delays components yet to occur for those flights
will be reported in later time slices. It is extremely important
to note that both methods represent the “truth”; neither is more
or less accurate than the other. The difference is simply in
deciding which domain, in terms of time and flight
identification, will be considered for aggregation and reporting
during any particular time slice.

*

kT

—h

Cumulative arrivals

*

-
¢ i £
a

I
d Time

Figure 1. Vertical and horizontal integration of delay

When considering the specific flight " shown in Fig. 1, its
desired landing time was t, and its actual landing time was t; .

It would have contributed t, — t; units of delay to the vertical
measure of aggregate average delay for that same time slice,
and other amounts to other time slices. In the horizontal
scheme, however, it would only have contributed to the

measure recorded for the time slice containing time t; , and the
amount of delay contribution would have been t, —t;.

Because of the economic realities of the airline industry,
individual aircraft are scheduled to operate several flights each
day with little time between flights. Thus, if an aircraft suffers
a delay early in the day, it becomes more likely that later flights
operated by that same aircraft will also be delayed. When
using real delay data to calibrate a queuing model, however,
these propagated delays must be accounted for.

DELAY FILTERING
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In this section, we describe an approach for identifying and
removing these propagated delays from real delay data. The
resulting statistics more clearly represent the queuing delay
imposed on the aircraft. Additionally, we propose a technique
to utilize this filtered data to produce a new “schedule” for each
aircraft (and hence, for each airport). These schedules can be
used as a better proxy for the true demand for resources as
input to queuing models.

A. Procedure

The approach taken in this work and several others (see [2],
[3]) has been to use individual flight records to trace aircraft by
their tail numbers as they are routed from airport to airport over
some period of time. These series of flights by a single aircraft
are used to identify and remove propagated delay.

Thus, the first step in this process is to identify series of
related flight data. Initially, data are grouped by tail number
and sorted by departure day and time. However, because some
flight records may be unavailable in the database, it may be
infeasible to use all records for a single tail number as a single
series. This phenomenon is evidenced by an arrival airport not
matching the subsequent departure airport, indicating a missing
flight record (e.g. caused by a “ferry” flight or data corruption).
Data series are also considered broken if more than 24 hours
elapse between an arrival and subsequent departures. From
this procedure come several series of data for each tail number
being examined.

Once these series of connected flights have been built,
propagated delays must be distinguished from “new” delays.
This process works by determining the best possible departure
time for a flight, given the delay the previous flight
experienced prior to its arrival. The best departure time is
calculated as the maximum of two quantities: the scheduled
departure time, or the previous (delayed) arrival time plus some
minimum turn time, as shown in (2) and (3). The maximum of
these two quantities is considered so as to prevent the best
possible departure time from falling before the scheduled
departure time. This would unfairly penalize flights relative to
their schedule.

The minimum turn time is calculated in (1) as the minimum
of the scheduled turn time and some parameter Ty, In this
analysis, only domestic flights were considered. Because these
are generally operated by small or medium sized aircraft, the
minimum turn time parameter Ty, was taken to be 40 minutes.
An enhancement to be considered for future work using this
delay filtering algorithm would be to consider variable
minimum turn times, wherein the parameter might vary based
upon the aircraft type, length of previous flight, airport in
question, time of day, or some other factors.

Once the best departure time has been calculated, the best
arrival time must be computed. In this work, the best arrival
time was taken to be the sum of best departure time and the
scheduled block time, as shown in (4). As mentioned
previously, this block time does not represent the minimum
time against which a queuing model might compare, as the
scheduling carrier implicitly accounts for delay when
scheduling the block time. However, estimating a true
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minimum block time for a given flight may be a fairly complex
endeavor, and as such, has been left for subsequent work.

Finally, the filtered arrival delay Dy; is computed as the
maximum of zero and the difference between the best and
actual arrival times. It is customary in aviation delay
calculations to disregard negative delays, and we maintain that
practice here, particularly because a queuing model would
never predict negative delays.

This algorithm is stated below for a series of flights
i=1,...,1,given the input data listed previous described.

Compute minimum turn time:

Torni = Min[ Ty (ta; —tai 1) | vie{2,..,1} (@
Compute best departure time:
tog: =ta; i=1 )
by = MaX| by (taay s+ Tarni )| vie{2,..,1} (3
Compute best arrival time:
toai = toa i + Thioaci Vie{2,...,1} (4
Compute filtered delay:
Dy, =max(0,t,,; —t.;) Vie{2,...,1}  (5)

Input data:

tei: Scheduled departure time for flight i
twi: Scheduled arrival time for flight i
taai Actual arrival time for flight i
Thioeki: Scheduled block time for flight i

Once the filtered arrival delay Dy; has been computed for
each flight, these records can be aggregated in either the
horizontal or vertical methods previously mentioned. If they
are aggregated horizontally by airport and time period, they
will be comparable to those typically reported, but they will
necessarily be lesser in magnitude. The case in which they are
aggregated vertically will be discussed later.

If the aircraft counts are aggregated by best possible arrival
time, it is possible to create a new “schedule” which better
reflects the true demand for operations during that time period,
from the perspective of the queuing model. For example, a
queuing model being applied to ATL does not care if a flight
had originally intended to arrive at ATL at 5 pm but due to
delays two flight legs prior to that cannot even depart the
airport immediately upstream of ATL until 5:30 pm. The real
question for the queuing model is, given this penultimate status
update, what would be the nominal arrival time for the aircraft
at ATL. This data can be used as input for a delay prediction
model to provide a better proxy for demand than the traditional
schedule would.

B. Numerical Example

To illustrate the principles described above, a numerical
example has been developed. The aircraft under consideration
was routed as shown in Fig. 2. The detailed calculations for
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one flight leg are shown in Table I, while the scheduled and
actual performance for its entire itinerary are shown in Table II.
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Figure 2. Example case routing

This aircraft suffers a fairly significant delay of 41 minutes
on the second flight in this series. As a result, the best
departure and arrival times computed for the subsequent flights
are later than the scheduled ones. Further, the filtered flight
delay must then be significantly less than the delay reported by
traditional metrics.

To illustrate the steps of the algorithm described above, the
calculations for the third flight leg (SFO — PHX) are presented
here in Table I.

TABLE I. DELAY FILTERING COMPUTATIONS SFO — PHX FLIGHT

Compute minimum turn time:

Tyns =Min[40,(11:05-10:11) | = 40

turn,i
Compute best departure time:
ty; = Max[11:05,(10:52+40) | =11:32
Compute best arrival time:
t.; =11:32+113=13:25
Compute filtered delay:
D, =max(0,13:27-13:25)=2

It is interesting to note that the schedule for each of these
flights allowed for turns longer than the T, parameter of 40
minutes. As a result, each of the assumed turn times used to
compute the best possible departure time was smaller than that
which was scheduled. It should also be noted, however, that
the average scheduled turn time was 48.5 minutes, while the
average performed turn time was 44.3 minutes. Because of the
time pressure of the delayed flight, the turns were performed
faster than scheduled, and more closely matched the 40 minute
parameter used in the algorithm.
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TABLE II. DELAY FILTERING EXAMPLE DATA
From To Schedule Actual Best Delay
Turn | Dep. AT, Turn Dep. AT, Turn Dep. Arr, Reported Filtered
DEN LAS - 7:10 7:55 - 7:05 7:56 - 7:10 7:55 1 1
LAS SFO 0:45 8:40 10:11 0:39 8:35 10:52 0:40 8:40 10:11 41 41
SFO PHX 0:54 | 11:05 | 12:58 0:37 11:29 | 13:27 0:40 11:32 | 13:25 29 2
PHX ORD 0:50 | 13:48 | 19:14 0:55 14:22 | 19:36 0:40 14:07 | 19:33 22 3
ORD LAS 0:45 | 19:59 | 21:49 | 0:46 | 20:22 | 22:10 | 0:40 | 20:16 | 22:06 21 4
JIFL>t &L<t , &U <t  &L<U
IV. VERTICAL INTEGRATION (@) P <tpa <tpn <
There are many ways in which individual flight delays can THEN D, =U-L
be aggregated. The most familiar category of metrics involves ~ (b.) ELSEIF L>t &L <t , &U >t ,

summing delays across flights arriving at a given airport (or set
of airports) during a particular time period. However, one must
be precise when describing exactly which data are summed for
the given time period.

In the traditional metrics reported in the ASPM and other
systems, delays are grouped according to the time at which
flights arrived. Regardless of when those delays were accrued,
they are assigned to the period of arrival under consideration.
The essence of the vertical integration technique, however, is to
sum delays that are accrued during a given time period,
regardless of when the affected flights arrive.

A. Procedure

The first part of this procedure is to establish at what time
delay begins accruing on a flight. Establishing this baseline
allows the delay to be assigned to bins beginning at that time.
This assumption must be carefully examined, lest delay be
assigned to the incorrect time bins. In this work, we assume
that delay begins accruing when the nominal, or best possible,
arrival time has passed, and the aircraft has not yet arrived at its
destination. This best possible arrival could be calculated in
many ways, depending upon the assumptions about departure
and flight times that were applied. Based upon the delay
filtering analysis presented previously, we will use the best
possible arrival time calculated as part of that algorithm.

The first step in calculating these delays is to divide each
day into a series of time bins, each bounded by some numbers
t, and t,.1. Let L and U define the upper and lower bounds for
the delay accrual period. In this case, these bounds are the best
arrival time and the actual arrival time, respectively. Then,
find the first bin | into which the flight i contributes delay, as
shown in (6).

| =max{p|L-t, 0} (6)

Next, find the last bin u into which the flight i contributes
delay, as shown in (7).

u=max{p|U-t, >0} )

Then, for each bin pe{l,...,u}, apply the following four

logical tests to determine the delay accrual D,; from flight i
into bin p.
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THEN D, =t,,, —L
(c) ELSEIFU >t &U <t &L <t &L<U
THEN D, =U —t,
(d) ELSEIF L<t, &U >t
THEN D, =(t,.,-t,)

The L<U condition is applied to exclude those cases in
which the flight arrives before its best possible arrival time. In
those cases, the new calculated delay would be negative. We
treat these cases as having accrued zero delay.

Fig. 3 illustrates each of these logical tests, and the specific
case of L and U that they approach. The hatched area in the
figure shows the delay accrual period for the flight. Case (a.)
applies when both L and U fall in the same time bin. Case (b.)
applies when L is in the current bin, but U is in any later one.
Case (c.) applies when L is in a previous time bin, but U is in
the current one. Case (d.) applies when L is in an earlier time
bin, and U is in a later one.

@) - IV//// >
6 LU t,
®) 77—
v, L ty U
O |
Lt U t,,
) Wiz
R LN

Figure 3. Logical cases for binning delays

B. Numerical Example

This algorithm is illustrated here by examining a fictitious
set of flights shown in Table 111, and represented graphically in
Fig.. 4. Assume that the delay filtering algorithm previously
described has been applied to a larger dataset, and that these
flights destined for ORD were extracted. The best departure
and arrival times, as well as the actual arrival times, are shown.
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The filtered delay is calculated as the difference between the
best possible and actual arrival times.

TABLE IlI. VERTICAL INTEGRATION EXAMPLE DATA
Best Actual | Filtered
From To -
Departure | Arrival | Arrival | Delay
ATL ORD 12:19 1:23 1:38 15
BWI ORD 12:11 1:26 1:32 6
LGA ORD 12:05 1:29 1:41 12
CLT ORD 12:03 1:00 1:21 21
OKC ORD 12:00 1:15 1:30 15
A
ATL ¢ (@171 |ORD
L
. i i i i . I
BWM & O T Ty (ORD
: : : : : : 774 |
LGA (&1 o 1 1:0RD
| | | | ' ' Uy
CLT & ™ i IORD
A
1 1 1 1 // 1
OKC &——————— 4, ORD
12:00 *+ 12:30 1:00 1:30
12:15 12:45 1:15 1:45

Figure 4. Vertical integration example data

As an example, apply the various tests on the first flight
shown above, that from ATL to ORD. The first bin | to
consider is the 1:15 bin, and the last bin u is the 1:30 bin. Each
of the logical tests is evaluated for this flight and the results
shown in Table IV.

TABLE IV. VERTICAL INTEGRATION COMPUTATIONS FOR ATL — ORD
FLIGHT
Test 1:15 bin 1:30 bin
Test Result Dy Test Result Dy

(a) FALSE - FALSE -
(b) TRUE 7 FALSE -
(c) FALSE - TRUE 8
(d.) FALSE - FALSE -

Upon evaluating the logical tests for each of these flights,
the data are summed across time bins, and the results
summarized in Table V. As expected, the reported delay
differs significantly from the delay actually accrued by all
flights in each period.
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TABLE V. VERTICAL INTEGRATION EXAMPLE SUMMARY STATISTICS
Time period Arrival Count Total Arrival Delay
Begin End Sch. | Actual | Reported | Accrued
1:00 1:14 1 0 0 15
1:15 1:29 3 1 21 31
1:30 1:44 1 4 48 22
V. RESULTS

The delay filtering and vertical integration algorithms were
incorporated and applied to a large test dataset to provide
comparison data for calibrating a queuing model. Several
airports were considered.

A. Delay Models

For this work, we used a stochastic queuing model with
non-homogeneous Poisson arrivals and Erlang services times
(M()/E(t)/1). This model is solved analytically using the
DELAYS software developed at MIT (see [4], [5]). It is
specifically designed to estimate the delay incurred by aircraft
on landing at an individual airport given the capacity and
demand profiles over specific time periods. Previous work has
focused considerable attention on the accuracy of the
approximation scheme used by this software. This work will
demonstrate that DELAY'S provides a suitable queuing model
for airport arrival operations.

B. Input Data

The individual flight records were obtained from the
Bureau of Transportation Statistics (BTS). The BTS database
includes records for certified US air carriers that account for at
least one percent of domestic scheduled passenger revenues.
Other sources of individual flight records could be used as
well, but the BTS data provides excellent coverage of
operations at most of the largest airports in the US.

The Airport Arrival Rates used as capacities for the
DELAYS model were drawn from the ASPM system. The
demands used as input for the DELAYS model were not the
scheduled demand, but rather were summed using the best
possible arrival time as the scheduled arrival time.

C. CaseSudies

Data from numerous airports were examined in this work.
The results for several are shown here, but others are available
from the authors.

The “Reported” category refers to the horizontally
aggregated data typically reported. The “Filtered” category
shows the results of filtering out propagated delays, but
aggregating in the traditional horizontal manner.  The
“Filt/Vert” category shows the results of both filtering the data,
and aggregating it by the period in which it was accrued.
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1) Atlanta Hartsfield-Jackson International Airport (ATL)
ATL is a very large and busy airport serving as the hub for
several carriers. Demand is frequently at or near capacity.

Fig. 5 shows results for a sample month during 2004. The
first thing to note is that the reported delays are almost always
higher than all other metrics. The filtered delays fall slightly
below the reported delay, but follow the same series of peaks
and valleys. Particularly at the end of the day, the gap between
these two is large, as should be expected. The vertically
integrated and filtered data suggest an amount of total delay
similar to the filtered delay, but have peaks and valleys that
more closely follow those of the DELAYS series, which are
nearly almost lower.

4
x 10
25¢

Reported
Filtered

L| === Vert/Filt
DELAYS

Total minutes of arrival delay

. Lo . *osy

17 19

13 15
Time of day

Figure 5. ATL: February. 2004

Fig. 6 shows three sets of pairwise correlations, between
the three delay quantities mentioned above, and the delays
predicted by the DELAYS queuing model over each month in
2004. The correlations between the vertically integrated and
filtered data and the DELAYS output (the gray bars) were
uniformly higher than those for all other metrics. The figure
only shows results for ATL, but this conclusion held true for
every airport examined.
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Figure 6. ATL 2004: Monthly Correlations
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2) Detroit Metropolitan Wayne County Airport (DTW)

The results for DTW were fairly similar to those for ATL.
An interesting feature of the DTW results, which was present
to a much lesser degree for ATL, is the correspondence of
peaks and valleys in the monthly data shown in Fig. 7. The
peaks for the reported and filtered series correspond quite well,
as should be expected, because they are both horizontally
aggregated. In addition, the peaks for the vertically integrated
filtered data and the DELAYS model correspond quite well.
The interesting feature here, however, is that the peaks for the
first pair of data lag those for the second pair. This exhibits the
exact feature espoused earlier in the paper, which is that the
delay model will show delay as it is accumulated, while the
reported statistics will show it as the aircraft arrive.
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Figure 7. DTW: December, 2004

As was the case for ATL, the correlations between the
vertically integrated filtered data and the DELAYS outputs are
uniformly and significantly higher than those of any other
metric. This suggests that the proposed methods provide data
that corresponds better with the DELAYS model output, and
we would expect this same conclusion to hold for other
gueuing models.
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Figure 8. DTW 2004: Monthly correlations
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VI. CONCLUSIONS

Several schemes were presented in this paper to help
understand the relationship between operational and queuing
model data in aviation systems. In their native formats, the
data have slightly different contextual meanings, and this
makes direct comparison troublesome. They can be rectified,
however, by the methods discussed in the paper.

The first method discussed for bringing the data sources
into agreement was the application of filtering techniques.
These are useful in removing the effects of delay propagated
between flights using the same aircraft. This technique
removed some portion of this delay, and produced data that
showed a stronger correlation with predicted results.

The second technique shown in this paper was a different
scheme of aggregation than is typically used for aviation delay
data. The methodology proposed allows for delays to be
reported in the time bin in which they are accrued, rather than
the time bin in which the flight arrives. This technique,
combined with the first, produced results that show a very
strong correlation to the predicted delays.
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These two techniques have myriad applications in aviation
system planning and modeling. Both are very useful in
calibrating and understanding delay prediction models. In
addition, they encourage the reader to consider the nature of the
delay reporting mechanisms in use.
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Abstract— The discrepancy between the demand for arrival slots
at an airport and the available arrival slots on a given day is
resolved by the Ground Delay Program (GDP). The current GDP
rations the available arrival slots at the affected airport by
scheduled arrival time of the flights with some adjustments to
balance the equity between airlines. Current rationing rules do
not take into account passenger flow efficiency in the rationing
assignment tradeoff.

This paper examines the tradeoff between flight delays
and passenger delays as well as airline equity and passenger
equity in GDP slot allocation. A GDP Rationing Rule Simulator
(GDP-RRS) is developed to calculate efficiency and equity
metrics for all stakeholders. A comparison of alternate GDP
rationing rules identified that passenger delays can be
significantly decreased with a slight increase in total flight delays.
Compared to the traditional Ration-by-Schedule, Ration-by-
Aircraft size (RBAc) decreased the total passenger delay by 10%
with 0.4% increase in total flight delay, and Ration-by-
Passengers (RBPax) decreased total passenger delay by 22% with
only 1.1% increase in total flight delay. The disutility of
implementing a GDP is minimized with Ration-by-Passengers
(RBPax) when passengers as well as airlines are considered in the
decision. The current scheme, Ration-by-Schedule (RBS), is
preferred only when the system solely focus on airlines. The
tradeoffs between airline and passenger equity, and the
implications of these results are discussed.

. INTRODUCTION

The purpose of the air transportation system is the cost-
effective, rapid, safe transportation of passengers and cargo. In
this way the air transportation system is a significant “engine”
of the national economy and provides a service that cannot be
achieved by other modes of transportation (Duke and Torres,
2005).

Passenger and cargo demand for air transportation has
been growing steadily over the years and is forecast to grow at
the same rate for several decades (FAA Forecast, 2007). The
growth of air transportation capacity to meet this demand has
been lagging (MITRE, 2007). Denver International (DEN),
Dallas Fort Worth (DFW) and George Bush Intercontinental
(IAH) airports are the only new airports opened in the last 40
years. The capacity of these airports is helpful, but does not
solve the current congestion problems at the nation’s busiest
airports, such as Newark (EWR) or Chicago O’Hare (ORD).
The most congested airports cannot expand due to land and/or
environmental problems (Howe et.al. 2003). Further, the full
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capacity improvement benefits of Next Generation Air
Transportation System are not expected to be operational
before 2025.

This imbalance between demand for flights and available
capacity is estimated to cost passengers $3 billion to $5 billion
a year in trip delays (Robyn, 2007). Congestion related flight
delays are estimated to cost the financially fragile U.S. airlines
an estimated $7.7 billion in direct operating costs in 2006
(MITRE, 2007). These delays also have environmental and
climate change implications as well as regional economic
repercussions (Miller and Clarke, 2003).

In the presence of over-scheduled arrivals at airports,
Traffic Flow Management (TFM) initiatives are used to
resolve the daily demand-capacity imbalance. In particular, the
Ground Delay Program (GDP) collaborates with the airlines to
manage the scheduled arrival flow into airports consistent with
the airport’s arrival capacity. The current GDP rations the
arrival slots according to the scheduled arrival time of the
flights. This rationing scheme is adjusted to account for
penalties suffered by long-distance (e.g. transcontinental
flights) flights when arrival capacity increases (e.g. due to
improving weather) and the GDP is cancelled. The rationing
scheme is also adjusted to more equitably allocate arrival slots
between airlines to ensure that one airline (e.g. with a hub
operation) is not excessively penalized.

Previous research has examined alternative rationing
schemes to: (i) maximize throughput while preserving equity
amongst airlines (Hoffman, 2007), (ii) improve airline fairness
(Vossen, 2002), and (iii) improve airline efficiency by trading
departure and arrival slots (Hall, 1999, 2002).

This paper examines the impact of passenger flow
efficiency during a GDP. Three alternate GDP rationing rules
were applied to a GDP at Newark Airport. A comparison of
the alternate GDP rationing rules identified that passenger
delays can be significantly decreased with a slight increase in
total flight delays. For example, compared to the traditional
Ration-by-Schedule,  Ration-by-Aircraft size  (RBAC)
decreased the total passenger delay by 10% and Ration-by-
Passengers (RBPax) decreased total passenger delay by 22%.
The tradeoffs in airline and passenger equity, and the
implications of these results are discussed.

Section Il provides an overview of the GDP’s and previous
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research on GDP rationing rules. Section Il describes the
GDP Rationing Rule Simulator (GDP-RRS). Section IV
describes the results of a case study of the alternate rationing
rules for a GDP at Newark airport. Section V discusses the
implications of these results and future work.

Il.  BACKGROUND

A. Ground Delay Program (GDP)

The Ground Delay Program (GDP) is a mechanism to
decrease the rate of incoming flights to an airport when the
arrival demand for that airport is projected to exceed the
capacity for a certain period of time. The motivation behind
GDP is to convert the foreseen airborne delays into cheaper
and safer ground delays (Ball and Lulli, 2004).

FAA first implemented GDPs in times of major-weather-
related-capacity reductions at airports after the air traffic
controllers strike in 1981 (Donohue, Shaver and Edwards,
2008). Since 1998, GDPs have been implemented under
Collaborative Decision Making (CDM). CDM is a joint
government-industry effort, which tries to achieve a safer and
more efficient Air Traffic Management through better
information exchange, collaboration, and common situational
awareness. Air Traffic Control (ATC) specialists and CDM
participating airlines use Flight Scheduled Monitor (FSM),
developed by Metron Aviation Inc., to monitor and model
TFM initiatives and evaluate alternative approaches. Fig.1
shows a visualization of a demand-capacity imbalance that
warrants a GDP similar to charts available in FSM. In the
figure, the airport capacity drops from 100 flights to 75 flights
per hour between hours of 17:00 and 22:00. Thus, demand is
in excess of capacity during this time period. When GDP is
implemented, it brings the scheduled demand to match the
airport capacity by delaying flights on the ground. Blue bars in
Fig.2 shows the delayed flights, which spill into the hours
after the GDP program.

If the ATC specialist decides a GDP is needed, there are
three parameters to be set before issuing the program. The first
parameter is GDP Start Time and GDP End Time. These are
the start and the end times of the program, and they are
determined by the scheduled demand and forecasted weather
profile at the time of the GDP planning. If a flight is scheduled
to arrive at the constraint airport between these times, it will
be controlled by the GDP. The second parameter is the
“scope” of the program. It specifies the flights departing from
which origin airports will be controlled by the GDP. There are
two types of scope: 1) Tier-scope identifies the airports
included in the program by ATC centers. 2) Distance scope
specifies a radius around the GDP airport and exempts any
flights departing from origins outside the specified radius. The
third parameter is the GDP Program Airport Acceptance Rate
(PAAR). It depicts the number of aircraft that can safely land
in an hour during GDP.

The overall GDP process under CDM can be summarized
as follows: ATC specialists continuously monitor the demand
and capacity of airports. When an imbalance between demand
and capacity exists for any reason, they model GDP using
FSM. If time allows, they send an advisory to all airlines
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Figure 2: Demand Capacity after GDP (FSM View)

before implementing the program. Airlines check the impact
of this proposed GDP on their operations and may opt to
cancel some of their flights. Then, specialists reevaluate
whether a GDP is still needed. If it is, they run a Ration-by-
Schedule (RBS) algorithm and issue each flight its Controlled
Time of Arrival (CTA) and Controlled Time of Departure
(CTD). Once flight controlled times are received, airlines get a
chance to respond by substitutions and cancellations. CTAs
depict the arrival slots assigned to each airline, and these slots
are now considered to be “owned” by that airline, and airlines
can swap any two flights as it fits their business needs as long
as both flights can depart by their new CTDs. Following the
airline substitutions and cancellations, compression is run.
Compression is an inter-airline slot swapping process that fills
open slots that airlines are unable to fill through substitutions
and cancellations. Compressions are now run automatically
whenever an open slot is created. During the GDP, program
parameters might need to be revised to account for changing
conditions. GDP revisions may lead to further substitutions
and cancellations, followed by compression. GDP ends when
the GDP End Time is reached or the program is cancelled.

Avrrival slots in a GDP are time intervals to achieve PAAR.
If PAAR is set at 60 aircraft per hour, the airport can safely
land 1 aircraft every minute; therefore, there will be 60 arrival
slots to be allocated in an hour during GDP. These slots are
uniformly spaced in an hour. The interpretation of an arrival
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slot during GDPs is different than that of a “regular” arrival
slot. International Air Transport Association (IATA)
scheduling guidelines explicitly state that flight schedules
planned at the biannual conferences for available airport slots
has nothing to do with adjustments to these schedules on the
day of operation for air traffic flow management, such as
GDPs. The two types of slot allocation are quite different and
unrelated (IATA, 2000). The slots owned by airlines under the
High Density rule are often interpreted as “the right to
schedule or advertise a flight at a specific time”, which entails
no explicit connection to a right on the day of operation
(Vossen, 2002). Thus, allocation of arrival slots during GDPs
can be based on different rationing rules than every day
operations.

In a GDP, the available arrival slots are allocated on a
“first-scheduled, first-served” basis. This allocation scheme is
called “Ration-by-Schedule” (RBS). In other words, arrival
slots are allocated based on the flight’s original scheduled time
of arrival as published in the Official Airline Guide (OAG)
rather than reported departure time on the day of operation.
When flights are cancelled or delayed, airlines retain their
rights to these arrival slots and can assign flights to these slots
based on their own business models. RBS algorithm creates
three distinct queues; exempt flights are assigned to slots first,
followed by previously GDP controlled flights, then non-
exempt flights. A flight can be exempt because the flight is
active when GDP is issued or the flight is departing from an
origin outside the scope.

B. Trendsin GDP Use

1500
1274 1305

2005 2006

1250

1083 1119

798 789
704
I 615 I

1999 2000 2001 2002 2003 2004

Number of GDPs
@ ~ °
Qo [52] (=]
Qo (=] (=]

4]
o
o

Figure 3: Total Number of GDPs by Year (1/1/1999-12/31/2006)

The use of GDPs has been growing over time as has the
number of airports affected by GDPs. Fig.3 shows the growth
in the number of GDPs per year as the growth in flight
demand increased after 2001.

Fig.4 shows the number of GDPs implemented on a given
day between 2000 and 2006. On any given day, there is an
86% probability that flights into at least one airport will
experience a GDP. Note: the high number of GDPs per day
(10 and above) were GDPs implemented to address airspace
congestion due to rare national severe weather days. This use
of the GDP is now obsolete and has been replaced by Airspace
Flow Programs (AFP).
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C. Previous Research

Vossen (2002) examined different GDP rationing rules to
achieve fairness among airlines. Fairness was interpreted as
allocating delays equally among airlines. Several methods
were used to decide how to distribute delays. The
“Proportional Random Assignment (PRA)” scheme assigns an
available slot to an airline with a probability that is
proportional to the number of flights with earlier scheduled
arrival times than the slot, following preset axioms. Results
show that both RBS and PRA result in similar average airlines
delays, even though their underlying philosophies are
fundamentally different. PRA may introduce a substantial
amount of variance in the assigned delays, which may not be
acceptable by airlines. Vossen (2002) also examined methods
to deal with achieving slot allocation fairness in the presence
of flight cancellations, substitutions and GDP exemptions.
These methods are alternatives to the compression where
available slots are re-rationed whenever there is an open slot.
The results indicate that Greedy Procedure (favors the airline
with the earliest flight that can use the slot) and Compression
result in very similar flight-slot assignments.

Hoffman (2007) developed a rationing scheme, known as
“Ration-by-Distance (RBD)” to maximize airport arrival flight
throughput while preserving equity among airlines under
changing arrival capacity (due to improving weather). RBD
puts flights in order of their distance from the GDP airport and
gives preference to long-haul flights. Equity among airlines is
total amount of delay assigned to each airline. Results show
that if RBS assignment is assumed to have the “perfect”
equity, then RBS with distance scope has perfect equity when
the GDP is not cancelled, since RBS calculates the slots based
on a GDP End Time. When a GDP is cancelled early, RBD
significantly reduces delays. Both RBD delay and equity
savings gets better when GDP is cancelled 3 or 4 hours early.

Hall (1999, 2002) examined “Arrival-Departure Capacity
Allocation Method (ADCAM)”. This rationing method
allocates both arrival and departure capacity to airlines
according to the published schedule. Airlines can then trade
arrivals for departures. The results show that airlines achieved
a greater objective value with ADCAM compared to RBS,
because it allows airlines to have better connectivity without
using more airport capacity. However, some airlines with a
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small number of operations can get penalized to a greater
extent. Hall (1999, 2002) also examined “Objective-based
Allocation Method (OBAM)”. This method assigns arrival
slots to GDP flights by maximizing the collective value
produced by the airlines. It uses airline objective functions to
assign slots, but airlines cannot represent combinatorial or
stochastic objectives directly. The motivation behind OBAM
is to prevent airlines from scheduling flights they don’t intend
to fly. In practice, OBAM requires airlines to pay fees for the
slots they receive and these fees may be viewed by airlines as
means to introduce new taxes.

Previous research has examined the impact of GDP
rationing rules on only airline efficiency and equity. This
research is directed toward examining the impact of GDP rules
on passenger flow efficiency.

I1l.  GDP RATIONING RULE SIMULATOR (GDP-RRYS)

GDP Rationing Rule Simulator (GDP-RRS) developed by
Center for Air Transportation Systems Research at George
Mason University, investigates the impact of different GDP
rationing rules on airlines, passengers, and airports. GDP-RRS
calculates GDP efficiency and equity metrics that result from
GDP planning for airlines, passengers and the GDP airport.
Fig.5 shows three main components of the model.

First module inputs a flight schedule and airport capacity
profile, and then determines whether a GDP is needed. This
module captures the decision making process of an ATC
specialist. If a GDP is needed, then the second module is
activated.

“GDP Slot Assignment Module” assigns slots to flights
that are scheduled to arrive at the GDP airport during the
program. Fig.6 shows the pseudo algorithm with nine main
steps. Steps 1-5 result in Planned CTDs and CTAs, which are
sent to airlines for substitution and cancellations. Steps 6-7
show the simulated decision making for airlines in Airline
Substitutions and Cancellations module. Steps 8-9 input
airline updated CTDs and CTAs, and result in the main CTDs
and CTAs that airlines are expected to comply with after the
compression algorithm.

1. Calculate Required Variables for Each Flight:
Scheduled Gate Time of Arrival and Scheduled Gate Time of
Departure for each flight are inputs to the model. Scheduled
runway times, which are used in the GDP slot assignment, are
calculated from these inputs assuming 10 minute taxi times.
Estimated Time Enroute (ETE) for each flight is the difference
between Scheduled Runway Time of Arrival (SRTA) and
Scheduled Runway Time of Departure (SRTD). “Available
Seats” is the average yearly number of seats for a given
aircraft type assigned to each flight (ETMS database). “PAX”
is the number of passengers on-board and is calculated as
Available Seats on a flight multiplied by its load factor. Load
factor is the average yearly monthly load factor for a given
airline from a given origin (BTS database). For international
origins and airlines coming from unknown origins, the default
load factor is 100%.

2. Find Flights in GDP: All flights going to the GDP
airport are assigned control times. However, the delay as a
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Figure 5: GDP Rationing Rule Simulator

result of the capacity reduction is only distributed among the
flights that are controlled by the GDP. For a flight to be
controlled, it needs to fulfill the below requirements:

a. Flight’s SRTA is between GDP Start and End Time.
b. Flight is not originated from an international airport.
c. Flight’s departure airport is in GDP scope.

3. Create Priority Queues: Two priority queues are created
for all flights scheduled to arrival at the airport between GDP
Start and End Times. Exempt Flights queue has precedence
over the remaining flights. Exempt Flights queue contains
international flights and flights departing from airport outside
the GDP scope.

4. Create Slots: The number of slots available for
distribution depends on the PAAR. Airport capacity profile is
an input to the model. Slot size is the time in minutes between
two available slots. The number of slots created depends on
the number of scheduled flights. Slot times are uniformly
distanced based on Slot Size starting from GDP Start Time.

5. Assign Slots to Flights: The assignment of slots to
flights is done by queue type. Exempt Flights are assigned
their slots first based on an ordering of increasing SRTA.
Then, non-exempt flights are assigned their slots based on an
ordering depicted by the GDP rationing rule. For each flight,
algorithm searches for the earliest slot which has the slot time
equal to or later than the flight’s SRTA. When such a slot is
found, if the flight’s SRTA is later than the slot time, the
flight’s CTA is the same as the slot time. If the flight’s SRTA
is between the chosen slot time and the next slot, then the
flight’s CTA is the same as its SRTA. CTD is back-calculated
using CTA and ETE for the flight. These CTAs and CTDs are
sent to Airline Substitutions and Cancellations Module.

6. Cancel Flights: Each flight is cancelled randomly based
on a probability distribution for a given airline from a given
origin airport in the year that GDP is implemented.

7. Substitute Flights: Substitution for an airline is only
possible if that airline has cancelled a flight. If there is a
cancellation, the slot opened can be used by a flight from the
same airline if the new flights CTA is later than the open slot
time or the flight can arrive at the new assigned slot. If such a
substitution is made, the flight’s CTA and CTD are
recalculated and its previous slot is open for another possible
substitution. Substitution algorithm stops when there is no
further substitutions can be made. Substitution algorithm uses
two different strategies to simulate airline behavior. Strategy 1
orders an airline’s all flights by increasing SRTA and gives
earlier scheduled flights precedence for substitution. This
strategy minimizes an airlines overall GDP flight delay.
Strategy 2 orders an airline’s flights by decreasing PAX and
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gives precedence to flights carrying more passengers. This
strategy results in less overall GDP passenger delays. At the
end of this step, passenger delays are calculated as well as
flight delays. It is assumed that a cancelled flights passengers
will be transferred to another flight from the same origin.
However, due to high load factors, some passengers may not
be accommodated. It is assumed that these passengers will
leave the airport the next day at 6am.

8. Run_Compression: Compression tries to fill in the
unused slots after airline substitutions and cancellations. All
slots are sorted in order of their slot times. If an unassigned
slot is found, algorithm checks if the delay of any non-
cancelled flight can be reduced by assigning the flight to this
slot instead. First, flights from CDM member airlines are
considered in the order of their ranking due to the chosen GDP
rationing rule, followed by the remaining flights. Assignment
is done only if the flight can make it to its new assigned slot.
If such a flight is found, flight's CTA and CTD are
recalculated. If no such flight is found, then slot remains
unassigned. Algorithm stops when all unassigned slots are
checked.

9. Issue CTA and CTD: The last step in the algorithm is to
validate the slot assignments before CTDs and CTAs are
issued. Algorithm checks if each flight is assigned to only one
slot, if each slot is assigned to only one flight, and if each
flight’s SRTA is equal to greater than assigned slot time. If
there is a problem, algorithm goes back to Step-5. If not,
Planned GDP efficiency and equity metrics are calculated.

Steps 1-5 and Steps 8-9 are simplified versions of the
current GDP algorithm. Differences between GDP-RRS and
the current GDP algorithm are shown in italics in Fig.6. These
additions are required to simulate new GDP rationing rules
and calculate passenger-based metrics. Current GDP algorithm
only runs Ration-by-Schedule (RBS) scheme, and only
calculates flight-based metrics.

IV. RESULTS

To examine the impact of passenger flow efficiency and
airline equity in a GDP, three alternate rationing rules are
examined.

1. Ration-by Schedule (RBS) allocates available slots
among GDP flights in the order of their scheduled arrival
times. The earlier flights are given precedence over later
flights. If there are two flights scheduled to arrive at the same
time, one of them is randomly selected to be the first for slot
assignment.

2. Ration-by-Aircraft Size (RBAC) rations available slots by
aircraft size. RBAc creates three priority queues for three
categories of aircraft size considered: Heavy, Large and Small.
Flights under Heavy category are assigned their slots first,
followed by Large and Small categories. 23% of the flights in
the study fall under Heavy, 77% in Large, 1% in Small
category. Heavy, Large, and Small category flights are re-
ordered by their scheduled arrival times in a given category.
Thus, if there are two flights in the same category (Heavy-
Heavy), RBAc chooses the flight with the earlier scheduled
arrival time for slot assignment first. If two flights are in the
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same category and are scheduled to arrive at the same time,
one of them is picked randomly to be the first for the slot
assignment.

STEP-1: Calculate required variables for each flight

= SRTA = Scheduled Gate Time of Arrival - Taxi_in Time {10 minutes)

« SRTD = Scheduled Gate Time of Departure — Taxi_out Time (10 minutes)

-ETE = SRTA-SRTD

« PAX = Avaliable Seals " Load Factor

- Available Seals = Average number of seats for a given Aircraft Type (ETMS database)

= Load Factor = Average yearly load faclor for a given airline from a given origin (BTS dalabase)

}

STEP-2: Find flights in GDP

« Flight is not international
= Flight's Daparture Airport is in GOP scope
« Flight's SRTA is between GDP Start Time and GDP End Time

+ Highast Priority Queus: Exempt flights
* Low Priority Queue  : Non-exempt flights

I

* PAAR = Number of Available Slots for 15-min bins
« Slot Size = 15/ PAAR
= Slot (i) = GDP Start Time + (Slot Sizel)

STEP-3: Create priority queues

STEP-4: Create slots

STEP-5: Assign slots to flights

= Get EXEMPT flights
* Sort by SRTA

« Assign a slot to each flight
« 1f Slot (i) » SRTA CTA = Slot (i)
» If Slot i) = SRTA < Slot (i+1), CTA = SRTA
+CTD =CTA-ETE

* Get Non-exempt flights
* Sort by GDP Rationing Rule criteria, then by SRTA
« Assign a slot to each flight

« If Slot (i) > SRTA . CTA = Sot (i)
« If Slot (i) = SRTA < Slot (i+1), CTA = SRTA
+CTD = CTA-ETE

}

= Cancellafion Probability: Average yearly probability of cancellafion for a given airline fram
a given ongin

Canceliation Probability =

No. duled arrivals in 2006 for airine A from B airport

STEP-T: Substitute flights

= Order each airfine flights by Subsilution Strategy
«If Subsitution Startegy 1, order fights by increasing SRTA.
=If Subsitulion Strategy 2, erder flights by decreasing PAX.
- If a filght Is cancelled, OpenSiot (i) = Cancelled Flight's Siof
= Subslitute the next flight in the list,
« If the flight's CTA > OpenSlot {i)
- If OpenSiat (i) > SRTA . CTAnew = OpenSlot (i)
= If OpenSlot (i) = SRTA < OpenSiot (i) + SlotSize, CTAnew = SRTA
« CTDnew = CTAnew - ETE

STEP-8: Run Compression

= Sort all slots by increasing Slot Time
+ Find unassigned siots (OpensSiot (i)
= Sort all nen-cancelled flights by GDP Rationing Rule
= Check If the unassigned slot can be used by
- a flight cperated by COM member airlines.
« If not, any remaining flights.
+ Assignment is done
= If OpenSiet (i) > SRTA . CTAnew = OpenSlot (i)
= If OpenSilot (i) € SRTA < OpenSiot (i) + SlotSize. CTAnew = SRTA
* CTOnew = CTAnaw - ETE
-.Stop when all unassigned slots are checked

}

STEP-9: Issue Planned CTA and CTDs

= Validate CTA and CTD assignmenis for each flight
« If any problems, go back to Step-2.
= If not. calculate Planned GDP efficiency and equity metrics

Figure 6: GDP Slot Assignment Module Pseudo Algorithm
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3. Ration-by-Passengers (RBPax) rations available slots by
the number of passengers carried on each flight. RBPax
algorithm puts flights in the order of passengers on board.
Flights carrying more passengers are given precedence over
flights carrying fewer passengers. If there are two flights
scheduled to arrive at the same time carrying the same number
of passengers, RBPax chooses the flight with the earlier
scheduled arrival time for slot assignment first. If two flights
are in the same category and are scheduled to arrive at the
same time, then one of them is chosen randomly to be the first
for slot assignment.

Substitution strategy 1 is used in this case study.
Case Sudy GDP at Newark Liberty Airport
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Figure 7: Flight List before GDP is Implemented

A GDP is implemented at EWR on June 10", 2006 starting
at 18:00 and ending at 23:59 GMT time. Fig.7 shows the
scheduled flights arriving at EWR during this time before any
cancellations or substitutions. Projected Airport Arrival Rate
(PAAR), the red line, is set at 9 flights per 15 minutes. This
PAAR value falls in the historic range for EWR GDPs. Scope
is chosen as all domestic airports (Tier scope: All) with
international flights being exempt. Yellow bars in Fig.7
represent the exempt flights.

There are 231 flights between GDP Start and End Time, 63
of which are international. GDP delay is split among 168
domestic flights. There are 26 major airlines coming from 109
different origins carrying 25,501 passengers (11,516
international and 13,985 domestic passengers). Among these
origin airports, the most number of scheduled flights are from
Chicago (ORD: 7), Atlanta (ATL: 6), Los Angeles (LAX: 6),
and Boston (BOS: 6). It is interesting to see departure airports
in 100 nautical miles radius from EWR (LGA, FRG, and
BDL). Even though the number of passengers on these flights
is not very large, the flight categories can be different. For
example, the flight from La Guardia (LGA) is a “Small”
carrying 8 passengers, whereas the flight from Windsor Locks,
CT (BDL) carrying 32 passengers is a “Large”. There are 15
cancellations, and the cancelled flights are kept the same in all
three rationing rule simulations.

The results of the case study are summarized in Fig.8. All
three rationing rules result in different trade-offs for the
system. Both RBPax (blue) and RBAc (red) trades off more
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flight delays with less passenger delays compared to the
current rationing rule (RBS). Compared to RBS, RBAc (red)
decreases total passenger delay by 10% (67,288 minutes less
delay) with a 0.4% increase in total flight delay (12 minutes).
The biggest improvement in efficiency is achieved by using
RBPax. Moving to RBPax from RBS decreases total
passenger delay by 22% (144,407 minutes less delay) with
only 1.1% increase in total flight delay (31 minutes).
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Figure 8: GDP Efficiency Comparison between RBS, RBPax and RBAc

Since all GDP rationing rules result in a trade-off, a
decision can be reached using utility theory. Disutility of
implementing a GDP can be calculated using different weights
for two efficiency metrics calculated; Total flight delay and
total passenger delay as a result of a chosen rationing rule.
Below is the disutility calculation for RBS as an example:

Disutilityrgs = WTED * TFDggs
TFDges+TFDgeact TFDrppax

+ (1- wrep) * TPDgas
TPDgrps+TPDgrpact TPDrepax

WrED : Weight of Total Flight Delay
(1-wrrp) : Weight of Total Passenger Delay
TFDggs : Total Flight Delay as a result of RBS

TFDggs : Total Passenger Delay as a result of RBS

Fig.9 shows the disutility calculated for EWR case study
using different weights. As the weight of the total flight delay
gets larger, the system focus moves further away from
passengers to airlines and flights. Fig.9 shows that current
rationing rule (RBS) is acceptable only when the system solely
focus on flights. However, when the passengers are
considered, RBPax gives the minimum system disutility,
followed by RBAC.

Total flight and passenger delay values are important
metrics. However, they don’t imply any information about the
fairness of the delay distribution. Equity becomes an issue
whenever goods, in this case available arrival slots, which are
held in common by a group of users, airlines, must be allotted
to them individually (Young, 1994). In the case of GDPs,
equity means distributing fairly among all involved
stockholders. Airline Equity by Flights (Fig.10) and Passenger
Equity by Distance (Fig.11) captures this from the view point
of airlines and passengers.
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From airlines’ perspective, the more flights an airline has
the more delay it should be assigned. Airline Equity by Flights
is calculated as the ratio of an airline’s flight delays over the
total GDP flight delay divided by the ratio of that airline’s
flights in the GDP over all GDP flights. “Perfect equity” is
represented as 1. If an airline’s equity is smaller than 1, the
airline is given less delays than is fair. Conversely, if an
airline’s equity is greater than 1, than the airline is given more
delays than its fair share. Fig.10 shows the equity for airlines
in the GDP. Airlines which have only international flights are
omitted in this figure, since all their fights will be exempt. For
each airline, the number of flights in GDP is also given in
parenthesis.

£
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Figure 10: Airline Equity by Flights under RBS, RBPax and RBAc

As expected, the results are different for different airlines.
For Airline 1, the dominant carrier, the three rationing rules do
not make much difference in its overall delays. However, for
Airline 2, the main competitor, the equity does not reach 1 but
it moves in the right direction with new rationing rules. All
airlines have less delay with RBPax, except for airlines 2 and
11. Airline 11 has two flights, one from Cleveland (CLE) and
one from Long Island (FRG). FRG flight is assigned the same
slot in all rationing rules and is cancelled later on. CLE flight
is a general aviation flight carrying only 6 passengers,
scheduled at 19:05. As seen from Fig.7, this is a very busy
period for EWR, and RBPax assigned this flight a delay of
306 minutes. Since there are only 2 “small” category flights,
RBAC also assigned a very high delay. On the other hand,
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Airline 7 enjoys RBPax whereas RBS and RBAC results in the
same unfair equity level. It has 4 flights, 3 of which are from
DTW. All four flights are “large”, carrying 71-95 passengers.
RBS gives these flights higher delays than RBPax because
they are scheduled at the busy times of EWR. RBACc also gave
high delays because all flights are “large”. Since 77% of all
flights are large, the RBAc delay assignment is very close to
RBS. However, RBPax further distinguishes flights with the
number of passengers on board and assigned less delay to
these flights. (Note: Equity metrics are calculated over a long-
term. For the purposes of this case study, only one day of data
isused.)

Equity
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Figure 11: Passenger Equity by Distance under RBS, RBPax and RBAc

From passengers’ perspective, the passenger delay they
encounter is important rather than the flight delay itself.
Flight-based metrics cannot accurately reflect passenger travel
experience (Wang, 2007). Flight cancellations reduce total
flight delay while increasing total passenger delays, especially
when the load factors are high. Passenger Equity by Distance
(Fig.11) compares how much passenger delay is assigned to
passengers flying from a distance group compared to the total
number of passengers in the GDP. In other words, the more
passengers a distance group has, the more passenger delay it
will be assigned. Passenger Equity by Distance is calculated as
the ratio of passenger delays for a given distance group over
the total GDP passenger delay divided by the ratio of the
number of passengers from that distance group over all
passengers encountering the GDP. “Perfect equity” is again
represented as 1. Fig.11 shows that the long-haul passengers
are encountering much less delays than short-haul passengers
in all three rationing rules. This is due to the fact that longer-
haul flights are scheduled less frequently with larger aircraft
having more seats, whereas short-haul flights are scheduled
more frequently with smaller aircraft. The higher load factors
(100% for international flights) also result in favorable
passenger delays for longer-haul flights. Difference in equity
is more pronounced for RBPax than the other two rationing
rules. (Note: Equity metrics are calculated over a long-term.
For the purposes of this case study, only one day of data is
used.)

Fig. 12 shows the total inequity as a result of all rationing
rules. Total inequity for a given rationing rule is calculated as
the sum of absolute differences between a category’s equity
and the “perfect” equity (1). Figure shows RBS clearly results
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in the smallest airline inequity compared to the other rules.
Passenger inequity is also smaller with RBS. However, the
favorable equity by RBS is achieved at the expense of 144,407
minutes more passenger delays. Passenger equity values are
very dependant on the airline scheduling choices and can be
improved by upgauging.

25 5

20

Total Inequity
@

=1

RBS

RBPax

RBAc

[minequity from Airlines' Perspective B Inequity from Passengers' Perspective

Figure 12: Inequity Comparison for RBS, RBPax and RBAc

V. CONCLUSION

The case study of GDP with alternate rationing rules at
EWR demonstrates the impact of GDP rationing rules on
passenger flow efficiency and on airline equity. Adjusting the
rationing rules to maximize the flow of passengers (and cargo)
results in significant reductions in overall passenger trip
delays. These delays are achieved with small changes in
overall flight delay. Airline equity is adjusted in favor of
larger airlines. Addressing this issue is an area of future work.

The results of the case study at Newark Liberty
International Airport (EWR) are as follows:

o All three GDP rationing rules resulted in the different
trade-offs between airlines and passengers.

e Ration-by-Aircraft size (RBAc) decreased the total
passenger delay by 10% compared to RBS with a 0.4%
increase in total flight delay.

e Ration-by-Passengers (RBPax) decreased total passenger
delay by 22% compared to RBS with 1.1% increase in
total flight delay.

o Ration-by-Passengers (RBPax) results in the minimum
disutility for the air transportation system when both
airlines and passengers are concerned. RBS is preferred
choice only if airlines are the main focus of the system.

e Ration-by-Schedule (RBS) results in the minimum total
inequity for both airlines and passengers. However, this is
achieved at the expense of a large efficiency loss due to
high passenger delays.

The application of alternate GDP rationing rules has
broader implications. In principle, GDP rationing rules create
priority queues which give preference to the compliant flights.
As a consequence the rationing rules incentivize airline
behavior. For example, the Ration-by-Passengers rule could,
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in the long-run, result in the migration of airline fleets to
larger sized aircraft that would increase the passenger flow
capacity. This would improve the efficiency of the air
transportation system. This incentive does not directly result in
reduced frequency, but reduced frequency may be a by-
product of upgauging.

Results presented here are the outputs of the GDP Planner
with substitution strategy 1. For future work, these results will
be compared against the results of GDP Flight Simulator to
see the differences between planned and actual metrics.
Results can be further improved by comparing airport metrics
to airline and passenger metrics.
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Abstract—Passenger trip time performance is positively

correlated with passenger satisfaction, airfare elasticity, and
airline profits. Researchers have demonstrated that flight metrics
are a poor proxy for passenger trip experience. Trip delays
experienced by passengers due to missed connections and
cancelled flights are not negligible.

This paper describes a passenger flow simulation which captures
the asymmetric and unique passenger trip on-time performance
and reflects the complexity and significance of the impact of a
small set of cancelled flights and missed connections on passenger
trip delays. It measures system performance from the flying
public’s view. Furthermore, it enables researchers to conduct
experiments outside the range of historical data.

The results of this research provide decision makers with
improved metrics for future investment decisions and better tools
to manage the system. The passenger flow simulation model also
provides the means to perform analysis for proposed changes to
the system.

Keywords—on-time performance; passenger flow; performance
metrics; passenger trip time

1. INTRODUCTION

The purpose of the Air Transportation System (ATS) is to
provide safe and efficient transportation service of passengers
and cargo. The on-time performance of a passenger’s trip is a
critical performance measurement of the Quality of Service
(QoS) provided by any Air Transportation System. QoS has
been correlated with airline profitability, productivity,
customer loyalty, and customer satisfaction [1].

Bratu et al. have shown that official government and airline
on-time performance metrics (i.e. flight-centric measures of air
transportation) fail to accurately reflect the passenger
experience and underestimate the disruption on passenger trip
time caused by cancelled flights and missed connections [2] [3]
[4]. Flight-based metrics do not include the trip delays accrued
by passengers who were re-booked due to cancelled flights or
missed connections. Also, flight-based metrics do not quantify
the magnitude of the delay (only the likelihood) and thus fail to
provide the consumer with a useful assessment of the impact of
a delay [5].

Research on passenger trip delay is limited because of the
unavailability of proprietary airline data, which is also
protected by anti-trust collusion concerns and civil liberty
privacy restrictions. Wang et al. developed a set of algorithms
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designed to compute estimated passenger trip delay (EPTD)
based on publicly available databases [6] [7] [8]. Results show
disproportionately high passenger trip delays generated by
cancelled flights. Cancelled flights accounted for only 1.4% of
total scheduled flights in 2006, but they generated 39% of total
EPTD. On average, passengers scheduled on cancelled flights
in 2006 experienced 607 minutes of delay, while passengers
scheduled on delayed flights experienced a much lower delay
of 56 minutes. Except for the disproportionately high EPTD
due to cancelled flights, Wang et al. proved passenger trip
delay is a stochastic phenomenon that has asymmetric
performance in terms of routes, airports, and time of year. Half
of the total EPTD is generated by a smaller portion of routes
(17%), airports (26%), and months (42%). Altogether,
passenger behavior in the passenger tier of the air
transportation system differs from flight behavior in the vehicle
tier of the system.

Wang et al. designed the algorithm based on segment data,
which doesn’t contain flight connection information. As a
consequence, the analysis does not include the passenger trip
delay caused by missed connections. Moreover, expansion of
the air transportation system is trending out of the historical
operation range with record high load factors, operations, and
enplanements. This trend prohibits using historical data for
analysis, since historical data cannot predict the impact of
future policy changes on passenger trip time. In this paper, a
passenger flow simulation (PFS) is developed to perform
“future option design evaluation.” The PFS enables researchers
to conduct experiments outside the range of historical data and
estimates passenger trip delay not only due to delayed and
cancelled flights, but also due to missed connections.

Section II of the paper describes the underlying concepts of
the passenger flow simulation, PFS hierarchy, structure,
algorithm, and results. Section III describes the experimental
design for the PFS to identify significant factors for passenger
trip performance and to perform sensitivity analysis.

IL.

The operational evolution plan (OEP) 35 airports are the
nation’s busiest airports defined by the FAA [9]. They have the
greatest number of operations and account for 73% of total
enplanements and 79% of total operations in the air
transportation system [10]. The passenger flow simulation is a
closed network formed by 34 of the OEP-35 airports. Honolulu
International Airport (HNL) is excluded due to its geographic
location and negligible impact on the network.

PASSENGER FLOW SIMULATION

ISBN: 978-0-615-20720-9



THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION

FAIRFAX, VA, JUNE 1-4 2008

A.  The Underlying Concept

Air transportation simulations of flight movement do not
capture the passenger flow and connecting process. In the air
transportation network, passengers cluster together into groups
to fly from one airport to another. After arrival at the
destination airport, this group of passengers breaks up: nonstop
passengers make connections to ground transportation, and
connecting passengers continue their trips by re-clustering with
other passengers. Compared with flight movement, passenger
movement

e  Simulates behavior

behavior;

passenger instead of flight

e Converts flight information, such as arrival time and
origin and destination airports, into attributes of
passengers or groups of passengers;

e  Converts flight schedules into clustering and scattering
rules followed by passengers.

The passenger flow simulation is built to simulate this
dynamic clustering and scattering process of passenger flow in
the system. Air transportation simulations of flight movement
do not capture the passenger flow and connecting process.

B. Colored Petri Net Modeling Tool

A Petri Net is a graphical and mathematical modeling tool.
It is well-suited to modeling public transportation networks
[11] and has been used to model the passenger connecting
process in a public bus transportation system [12].

For accurate modeling of a complex transportation system
like the air transportation system, a more complicated
extension of Petri Net is required. In this paper, a hierarchical,
timed, Colored Petri Net (CPN) is built using CPN Tools to

simulate passenger flow and connecting processes in the
system. CPN Tools is a graphical user interface for editing,
simulating, and analyzing Colored Petri Nets [13]. CPN Tools
can model the complex level of interactions in the air
transportation system visually by creating nodes, transitions,
and arcs in the model environment. This visual modeling
environment allows users to track and understand the behavior
of each passenger easily.

The concept of “color” distinguishes tokens (or resources)
in the net. “PaxGroup” is defined as a color in PFS:

Color: PaxGroup = (Origin) * (Dest) * (# of Pax
Loaded) * (Aircraft Size) * (SchDeptime) * (SchArrTime) *
(Carrier) * (FlightIndex) * (# of Local Pax) timed;

For example, the PaxGroup (DCA, ORD, 165, 200, 730,
850, 13, 45, 165)@+750 in Figure 1 represents a group of 165
passengers, loaded on United Airlines flight 45 with 200 seats,
scheduled to depart from DCA at system time 730, and arrived
at ORD at system time 850. However, this flight actually
departed at system time 750, which is 20 minutes later than
scheduled.

Tokens in places (circles) represent available resources to
enable a transition (rectangle). The left part of Figure 1 shows
one group of passengers in place “local pax”' and two groups
of connecting passengers in place “conn pax”. The first group
of 20 connecting passengers arrived at the gate at time 715, and
the second group of 15 connecting passengers arrived at the
gate at 770. When the flight departed at time 750, the first
group of 20 connecting passengers were loaded on time,
whereas the second group of 15 connecting passengers missed
their connections, since they arrived at the gate after the flight
departed. The departing flight was scheduled to load 35
connecting passengers and depart with 200 total passengers at
system time 730, but it actually loaded 20 connecting

When system clock reaches 750

1 (DCA, ORD, 20, x, X, X, 13, X, \)@+715
1 (DCA, ORD, 15, X, X, X, 13, X, )@+770

a5 ~,
Comn/ @

|
Pax\ @® }\‘
¥ R

1{DCA, ORD, 15, x, X, x, 13, X, )@*+770
e 1 (DCA, ORD, 185, 200,
Comnfe 730, 850, 13, 45, 165)@+750

P \ J
Load A9 l:::> S Load e
» | / Y
Passengers Ao _//J Passengers —t 8 )
Local/ e = Local N A
Pax Departing Pax Departing
Flight Flight

1 (DCA, ORD, 165, 200, 730, 350, 13, 45, 165)@+750

v
For PaxGroup (DCA, ORD, 165, 200, 730, 350

e

13

. e

{X represents infonmation not relevant to this example)

45 165@+ 75

Origin, Dest, Pax, Seais, SchDepTime, SchArrTime, Carrier, FLIndex, LocalPax, AciDepTime

Figure 1 Example: passenger loading process in CPN
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" Local passengers are passengers who have just appeared in
the air transportation system. They could either be nonstop
passengers from DCA to ORD or connecting passengers
whose first leg flight is from DCA to ORD.
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Figure 2. Big Picture: Correlation between Algorithms and PFS

passengers and departed at system time 750 with 185 total
passengers. The right part of Figure 10 shows the CPN after the
transition: one group of 15 connecting passengers missed their
connecting flight, and a group of 185 passengers (165 local +
20 connecting) were ready to gate out.

C. PFS Overview

Figure 2 depicts the correlations between algorithms and
PFS. The algorithm section above the dotted line targets the
“historical analysis.” In this section, different algorithms are
designed to manipulate the data in different data processing
phases. The “historical analysis” section sets the stage for
“future option design evaluation.” As shown in Figure 2,
processed data, algorithms, and the analysis report are
embedded into the passenger flow simulation model as
parameters, logical structure, and initial tokens. In other words,
the parameter setting and passenger flow control in the PFS are
based on historical statistics calculated by algorithms.

TABLEl OVERVIEW OF PASSENGER FLOW SIMULATION (PFS) STRUCTURE
Aspects Description
Airports OEP-34 airports (excluding HNL)
Routes 1,030 routes formed by OEP-34 airports
Carriers 17 major carriers
Daily Flights 8,500
Daily Enplanements 900,000
PFS Modes Deterministic and Stochastic
Hierarchy 3-level
Places 580
Transitions 343
Initial Tokens 20,000
Functions 42

The network structure of PFS is formed by 34 of the OEP-
35 airports and the 1030 routes between pairs of these
airports2. Passengers flow from one airport to another through
the existing routes. Table 1 gives an overview of the PFS
structure.

The PFS has two modes: deterministic and stochastic. They
share the same PFS structure but use different functions and
parameter values. In the deterministic PFS, passengers
scheduled on a specific flight (e.g. UAL123 on route ORD and
PFS DCA) will arrive at the actual arrival time (e.g. 1145). But
in the stochastic PFS, the flight time is determined by a set of -

Top Level

e En route
= [ Substitute
) Transition

Airport
Substitute
Transition

Figure 3. Big Picture: Correlation between Algorithms

? Not all of the 1122 possible city pairs are served by direct
flights.
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random number generators with specific means and standard
deviations (e.g. flight time for UAL flights on route ORD-DCA
is a normal random variable with p=100 minutes and o=15
minutes). Thus the arrival time for flight UALI123 is a
stochastic value generated as “DepTime + NormRNG (p=100,
0=15)". In summary, the deterministic PFS is a pure
conversion between flight performance and passenger
performance, whereas the stochastic PFS allows flexibility and
is more suitable for future option design evaluation.

D. PFS Hierarchy

The PFS has three levels, as shown in Figure 3. Airport and
En Route subnets are represented as substitute transitions in the
top-level net of PFS. These figures will be decomposed and
described in the following paragraphs. Locations of the
zoomed-in subfigures are labeled in Figure 3 (Figure 3.1 ~ 3.6).
In addition, large figures showing the top-level, second-level
and the third-level nets are available in Appendix A.

As shown in Figure 3.1, the top-level page depicts 34
airport substitute transitions, a single en route substitute
transition, and the 68 ports connecting them. The zoomed-in
inset shows an aggregated departure gate and an aggregated
arrival gate for Washington-National Airport (DCA); there is
one of these for each airport. An airport substitution transition
is directionally connected to and from en route substitution
through two ports, one representing an arrival gate and the
other representing a departure gate (Zoomed-in figure is
available in Appendix A).

Oeparture
from DCA,

Figure 3.1 PFS Hierarchy, Top Level

In the second-level airport subnet, the flow process of
passengers inside the airport boundary is divided into three
steps: (1) splitting PaxGroup, (2) re-clustering of PaxGroup
and (3) loading PaxGroup. In step 1, a PaxGroup arriving at the
airport is split into two subgroups. The group of connecting
passengers use the airport as a connecting hub, whereas the
group of non-connecting passengers terminate their itineraries
and leave the system at the airport. Different routes have
different splitting rates for connecting and non-connecting
passengers. In the example shown in Figure 3.2, 22% of
passengers coming from ATL to ORD connect to another flight
at ORD, while 78% terminate their trips at ORD.
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Figure 3.2 PFS Hierarchy, 2™ Level, Airport Subnet, Step 1

In step 2 (Figure 3.3), connecting passengers are re-
clustered to form a new group for the second-leg flights. There
are two functions involved in the simulation code. One of the
functions returns the minimal connecting time (MCT) required
for passengers between gates. The other function divides a
group of connecting passengers into several subgroups and
sends them to different gates [6].

PaxGroup

.n.f.m. t=MCT
1°(p2,s0,5d0,520, 0.t
i0,f0,Mtime[}+t,pp0) Distrbute

i toLGa ) Conn Pax
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(tomen + which gate to go?
PaxGroup

Figure 3.3 PFS Hierarchy, 2™ Level, Airport Subnet, Step 2

Finally, the newly formed PaxGroup is loaded onto their
flights and ready to gate-out (Figure 3.4). The detailed loading
process, which is the 3rd level subnet, will be explained in
Figure 3.6.
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Figure 3.4 PFS Hierarchy, 2™ Level, Airport Subnet, Step 3
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Figure 3.5 PFS Hierarchy, 2™ Level, Enroute Subnet

All the functions, statistics, and ratios written in the
transition code segment and on the arcs are responsible for
guiding the passenger flow according to historical statistics. In
this specific PFS, all the statistics are obtained from 2006
historical data provided by BTS. There are three BTS databases
involved: AOTP, T-100 and DB1B. A detailed explanation of
how to calculate the statistics is available in reference papers
[6] and [8].

In the second-level en route subnet, each PaxGroup goes
through taxi-out, air time, taxi-in, and finally reaches the
arriving gate at destination airports (Figure 3.5). Functions in
this subnet are responsible for reading attributes of PaxGroup,
transporting passengers on the correct route (gate-to-gate), and
assigning correct taxi-out, en route, and taxi-in times to the

PaxGroup. The taxi-out time, air time, and taxi-in time are
generated by random number generators, following some
distributions with specific means and standard deviations
calculated using 2006 data.

In the third-level passenger loading subnet (Figure 3.6),
general connecting passengers flow to the upper branch and
then are loaded onto the scheduled flights, while disrupted
passengers (due to missed connections and cancels), flow to the
lower branch and wait to be re-booked. Flights finished loading
general connecting passengers will check for disrupted
passengers before they depart. If disrupted passengers are
detected, flights with available empty seats will load them until
either no more seats are available or there are no more
disrupted passengers. The general connecting passengers
(upper branch) have higher priority than cancelled or missed
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Figure 3.6 PFS Hierarchy, 3" Level, Passenger Loading Subnet
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connection passengers (lower branch). Passengers on both
branches are sorted into first-come-first-serve airline queues to
ensure passengers will be loaded on the correct flights
(purchased flights) or will be re-booked by the same airline if
disrupted (Appendix A Figure A.6).

E. Passenger Missed Connection Algorithm in PFS

Each experiment of PFS has two scenarios, the base
scenario and the experimental scenario. The base scenario
simulates passenger flow in an ideal environment without
disruptions such as flight delays or cancellations. The goal of
running the base scenario is to obtain passenger connecting
information given a flight schedule. Passenger connecting
information is then fed to the experimental scenario, which
simulates delays, cancellations, and missed connections. As
shown in Figure 4, passenger connecting information provided
by the base scenario enables us to conduct research on missed
connections in the experimental scenario. The simulation
results of the experimental scenario estimate EPTD not only
due to delayed and cancelled flights but also due to missed
connections.

Tdeal Circumstance {Schedule) Experimental World (Performance)

Result:

[

Result: !
* Delay !
1

1

1

= No Delay '
+ No Cancellation !
= Conn Info '

1]

Tdeal
Scenario

| Experimental
! Scenario

+ Cancellation
+ Miss Connection

Y
Estimated Passenger Trip Time (EPTDY
* Total EFTD
» EPTD due to Delayed Flights
* EFTD due to Cancelled Flights
* EPTD due to Miss-Connection

Figure 4. Passenger Missed Connection Algorithm in PFS

F.  PFS Sample Results

July 6, 2005 is a randomly chosen weekday in summer
2005. Flight performance on July 6, 2005 was as follows:

e Scheduled Flights = 8,540;
e Delayed Flights = 1,764 = 21% of Scheduled Flights;
e  Cancelled Flights = 176 = 2% of Scheduled Flights.

1% Missed- 2% Cancelled Pax

100% | P.
| Conn Pax 98,000 hours
W% | 21% Dalayed Pax |- ~_ | (30%) PaxDalay
oos || . dueto C
| : \ Pax
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& son | " (15%) PaxDelay
% 50% | SN due to Miss-
£ sow | 16% Ori-Time Pax {463,000 hotrsa| """ !'on P2 |
& (55%) PaxDelay
due to Delayed
0% | . Pax
0% |
Passengers Passenger Delay
Total EPTD
Causes % Pax Avg. EPTD
L hrs % of Total EPTD
Cancelled 2% 98,000 hrs 30% 403 min
Missed-Conn 1% 50.000 hrs 15% 341 min
Delayed 21% | 183,000 hrs 55% 64 min

Figure 5. PFS Simulation Result for July 6, 2005
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We used PFS to simulate passenger flow and calculate
passenger trip delay on July 6, 2005. As shown in Figure 5, 2%
of cancelled passengers generated 30% of total EPTD, 1% of
missed connection passengers generated 15% of total EPTD,
and 21% of delayed passengers generated 55% of total EPTD.
On average, passengers scheduled on cancelled flights
experienced 403 minutes of delay, missed connection
passengers experienced 341 minutes of delay, and passengers
scheduled on delayed flights experienced 64 minutes of delay.

II1.

The purpose of the experiment design is to identify and
rank the significant factors that have strong impacts on
passenger trip time and to analyze the sensitivity of EPTD
given changes in these factors.

EXPERIMENTAL DESIGN FOR PFS

Based on experience and literature, six items are chosen as
initial significant factors. These factors are shown in Table 2.
Results of the experiments will prove how good the initial
“guess” of significant factors is, and at what level they affect
the passenger trip delay. A full factorial design for six factors,
assuming a linear response function, needs 26 = 64 total runs,
and each run requires two PFS scenarios (base and
experimental scenarios). In total, 128 PFS models need to be
built and executed for a full factorial design. Concerned about
time, we performed a fractional factorial design with six
factors, two levels (high and low) and 1/8 fraction. Table 2 lists
the six factors and their high and low levels.

TABLE 2 HIGH AND LOW LEVEL SETTINGS FOR FACTORS

Factors High Low

# Passengers Loaded Increased by 5% Decreased by 15%
Aircraft Size (# of seats) Increased by 15% Decreased by 5%
Airline Cooperation Policy | Y N

Flight Delay + 15 minutes - 15 minutes

Remain the same
cancellation time
- 15 minutes

Cancelled four hours
earlier
+ 15 minutes

Cancellation Time

Minimal Connecting Time

The high and low levels of “# of passengers” and “aircraft
size” are designed to keep load factor in the range of [61%,
92%]. The highest value of load factor (92%) occurs in
experiments with “# pax”=H and “aircraft size”=L, while the
lowest value of load factor (61%) occurs in experiments with
“# pax”=L and “aircraft size”=H. Airline cooperation policy
indicates whether airlines on the same route cooperate with
each other on re-booking disrupted passengers. If not, disrupted
passengers must stick with the same airline for re-booking.

The rank order of significant factors in terms of the
absolute value of coefficients for NAS-wide total EPTD is
depicted in Figure 6. The most significant factor to total EPTD
is flight delay, which is obvious, since more than half of the
total EPTD is due to delayed flights. Along with flight delay,
number of passengers, flight cancellation time, and airline
cooperation policy also have significant impacts on total
EPTD.
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Rank Order Absolute Value of Coefficients
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Figure 6. Rank Order of Factors for Total EPTD (Delay+Cancel+MissConn)

The rank order changes from case to case. For example, the
rank order of factors in terms of EPTD due to cancelled flights
is: airline cooperation policy, aircraft size and number of
passengers (or load factor), flight cancellation time, as shown
in Figure 7. These three factors have stronger impacts on
EPTD due to cancelled flights than any other factors, since they
are directly related to re-booking flexibility and resource
availability.

Rank Order Absolute Value of Coefficients
for Total EPTD due to Cancelled Flights

Pax
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FLDelay ]
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Time

Coefficients
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-
=

15
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Total EPTD = 62651 — 13099* AirlineCooper — 10755*Size + 8176 *FLCancelTime
+4929*Pax + 1511*MCT +497*FLDelay — 247*Pax*MCT

Figure 7. Rank Order of Factors for EPTD due to Cancelled Flights

As shown in Figure 8, the rank order changes for total
EPTD due to missed connections. The most significant factors
affecting total EPTD due to missed connections are: flight
delay, cancellation time, and minimal connecting time. The
risk of missing a connecting flight increases if a previous flight
leg is delayed. Affected passengers, whether due to flight
cancellation or missed connections, compete for limited
resources. As a consequence, cancellation time has a strong
impact on EPTD due to missed connections. If the airport is
poorly designed, connecting passengers may need longer
minimal connecting time to travel from one gate to another,
and this may result in missing connecting flights.
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Figure 8. Rank Order of Factors for EPTD due to Missed Connections

In summary, the significant factors for different cases are as
follows:

e To reduce total EPTD: decrease flight delay, encourage
airline cooperation, earlier cancellation time, and lower

load factor

To reduce EPTD due to cancelled flights: encourage
airline cooperation, lower load factor, and -earlier
cancellation time

To reduce EPTD due to missed connections: decrease
flight delay, decrease minimal connecting time
required and encourage earlier cancellation time

To reduce EPTD due to delayed flights: less flight
delay and fewer passengers loaded.

A simple sensitivity analysis is done for a better
understanding of the impact of factors on EPTD. As shown in
Table 3, change in a single factor can result in 8% to 24% less
total EPTD, thereby saving millions of dollars per day.

TABLE 3 SENSITIVITY OF THE TOTAL EPTD
(DELAY+CANCEL+MISSCONN) TO CHANGES IN FACTORS

Compared with Total EPTD on July 6, 2005

Passenger Value of Time
Saved (million $ per day)

Changes in a
single factor

Decrease in total
EPTD (hours per day)

Decreased by 24%

Reduce flight delay
by 15 minutes
Encourage airline
cooperation

Cancel flights 4 hrs
earlier

Reduce load factor
from 83% to 70%

Save $2.3 million

Decreased by 12% Save $1.1 million

Decreased by 10% Save $0.9 million

Save $0.7 million

Decreased by 8%

Officials, operators, and service providers should consider
the combined effect of factors on EPTD, which helps to
achieve the strategic goals with minimal changes or costs.
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IV. CONCLUSIONS

The goal of air transportation service is to provide safe,
affordable, and convenient transport for passengers and cargo.
As a consequence, the top level performance measures of the
ATS should include the trip delays experienced by airline
passengers. Passenger-based metrics, together with flight-based
metrics, can give a more accurate and complete description of
the ATS performance.

The passenger flow simulation captures the asymmetric and
unique passenger trip on-time performance and reflects the
complexity and significance of the impact of a small set of
cancelled flights and missed connections on passenger trip
delays. Major findings of this research are listed as follows:

1) High passenger trip delays are disproportionately
generated by cancelled flights and missed connections.

2) Passenger-based metrics are needed to capture the
passenger travel experience, since flight-based metrics can
unintentionally distort the actual performance of the system
and effectively “hide” explanatory and diagnostic system
behavior.

3) Congestion flight delay, load factor, flight
cancellation time, and airline cooperation policy are the most
significant factors affecting total EPTD in the system. The
combined effect of multiple factors should be investigated and
used to support the decisions made by officials, policymakers,
and researchers.

4) Passengers should treat trip time as a stochastic
phenomenon that can be assigned a probability of occurrence
but cannot be avoided entirely in any systematic manner.
Simple strategies can be used by passengers to reduce the
probability of occurrence, such as choice of departure airport
and route. For example, for a trip from Washington, D.C. to
Chicago, flights from DCA to MDW had a 5% probability of
more than one hour delay, whereas flights from DCA to ORD
had 12% probability of more than one hour delay.
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Abstract— Variation in airport runway capacity, including
arrival and departure is one of the main causes of operational
disruptions such as flight delays and cancellation. In the ideal
situation, we will know the exact timing and magnitude of such
variations and plan accordingly to minimize such impacts. In
reality however, capacity evolution process is probabilistic and
determined by numerous factors. Capacity scenarios are the
probabilistic representation of capacity variation at daily level.
Scenarios provide probabilistic representation of capacity
profiles to reduce modeling complexity of capacity prediction
model. There are two data domains one can use to generate
capacity scenarios; historical data, and day-of-operation
information. While historical data provide long-term trend of
capacity variation at an airport, day-of-operation information
can increase the accuracy of the likelihood of each scenario on a
given day. In this paper, we explore various Data Mining (DM)
approaches to understand the historical trend of Airport
Acceptance Rate (AAR) at San Francisco International Airport
(SFO). We revisit earlier research based on k-means clustering.
Among other shortcomings of k-means application, it lacks the
sequential and time-dependent nature of AAR evolution. We first
construct the Directed Acyclic Graph of AAR evolution to
understand the conditional dependency among different time
periods. Based on our observation that AAR change is mostly
Markovian, we apply Sequence Clustering to properly address
sequential nature of AAR evolution. In the later section, we
include the preliminary result of Bayesian approach that utilizes
weather information. In the last section we discuss the
applicability of Data Mining concepts in aviation research, and
future directions of our runway capacity modeling research.

Keywor ds-component; terminal capacity; data mining; bayesian
learning; capacity prediction; AAR; scenario generation

l. INTRODUCTION

Variation in airport arrival and departure capacity,
including arrival and departure, is one of the main causes of
numerous operation disruptions, such as flight delays and

This project is sponsored by NASA Ames Research Center
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cancellations, as well as crew and aircraft rescheduling. In the
perfect world, we will exactly know when and how such
variation will occur, and be able to plan accordingly to reduce
such disruptions. In reality however, capacity evolution process
is probabilistic, which makes it harder to predict.

Capacity scenarios represent the probabilistic variation of
airport terminal capacity at daily level. A good set of scenarios
significantly reduces the modeling complexity that a capacity
prediction model needs to handle, without compromising the
integrity of original data. There are two data domains one can
use in scenario generation: (1) historical data of capacity
variation, and (2) day-of-operation information such as weather
forecast of the day. While historical data provide information
about the long-term trend at an airport, day-of-operation data
can increase the accuracy of the likelihood of each scenario. In
earlier models, scenario probabilities were based upon
historical ~ frequencies alone. While day-of-operation
information, such as weather conditions and forecasts, is
clearly relevant to predicting how capacity will evolve, our
ability to harness this information is lacking.

Our main goal in this research is to understand the daily
AAR evolution process, and to establish a Bayesian learning
model. The main advantage of Bayesian approach is that
capacity prediction is made not only based on the historical
data, but also on day-of-operation information as the day
unfolds. For example, if Air Traffic Control personnel are to
make a decision on AAR changes at noon, Bayesian model
utilizes realized AARs until noon, to make AAR prediction for
the rest of the day. We consider several types of day-of-
operation information; (1) realized AAR of the day, (2)
weather forecasts, and (3) physical and other operational
constraints at the airport.

We also identified two major factors that have to be
captured in scenario generation; (1) the sequential and time
dependent nature of capacity and forecast data, and (2) the
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input-output relationship between the weather factors and
capacity. Although intuitively natural, establishing a systematic
way to capture such relationships is not an easy task. Data are,
if available, are scattered in many sources, and the size and
complexity of data available today are certainly beyond simple
statistical interpretation. In addition, capacity variation is
determined not just by weather factors, but also by numerous
other factors, including human experience.

In this paper, we first review several Data Mining concepts
in chapter Il. The data collection and representation is
explained in chapter I11. In chapter IV, we revisit the evaluation
result of earlier research based on k-means clustering, and
discuss the challenges of this distance-based partitioning
algorithm. We then present Graphical Model of historical
AAR, and Sequence Clustering based on the homogeneous
first-order Markov Chain. Graphical Model shows the
complete hierarchy of conditional dependency of AARs.
Sequence Clustering effectively captures sequential and time-
dependent nature of AAR evolution. Finally Bayesian Network
model is presented, in order to study the potential role of
weather information in airport runway capacity forecasting,
and how we can extend our model to incorporate such
information.

II.  METHODOLOGY

In this chapter, we will briefly review several Data Mining
(DM) concepts used in our study, including; (1) Graphical
Model, (2) k-means clustering, (3) Sequence clustering, and (4)
Bayesian Network.

A. Graphical Model

Graphical Model, or graph theory, is a mathematical
representation of conditional dependency of data objects. A
graphical model consists of nodes and edges. Each node in a
graphical model corresponds to a random variable, and
contains a family of probability distributions associated with
the node. Each edge, whether directed or undirected, represents
conditional relationships between nodes it connects.

When applied to the historical airport capacity data,
Graphical Model gives us a complete hierarchy of condition
dependency of capacity evolution over time. Given only
historical AAR values, we can still make a relatively sound
prediction based on conditional dependency and probability
distributions found in our Graphical Model. Although a very
powerful way to understand data and make predictions,
Graphical Model in general has a complexity that is
exponential to the number of nodes. If we want to include
additional factors such as weather to the model therefore, it will
further increase computational complexity.

B. k-means Clustering

k-means clustering is one of the most widely available and
used data mining concepts. k-means clustering is a partitioning
method, which construct partitions of given dataset. It is an
unsupervised data mining task, as each data point is not used in
training process but treated equally. K-means clustering
partitions objects into k nonempty subsets. Iterative assigning
process puts each object to the cluster with nearest centeroid,
until no more new assignment is possible.
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The main draw of K-means is that it is relatively efficient,
and the solution is readily available in conventional statistics
packages, such as SAS, SPSS. On the other hand, k-means
requires to preset the number of cluster, k, and unable to handle
non-numerical data, and outliers. It is also not suitable to
analyze high-dimension data and often terminates at a local
optimum. There are several variations of k-means to address
some of shortcomings mentioned above.

C. Sequence Clustering

Sequence clustering constructs clusters based on the
transitional behavior of sequential data. It analyzes the state
transitions in a sequence, and partitions data based on the
similar transitional behaviors. Sequence analysis, including
sequence clustering and sequence pattern recognition, is a
relatively new data mining concept, which is becoming more
and more important in areas such as web-log analysis and DNA
analysis. We found this concept applicable to capacity
evolution data, to address the sequential and time-dependent
nature of capacity and weather data.

Among several algorithm choices, we adopted the model
utilizing first-order Markov chains to capture transition
behaviors among states. The algorithm works in a similar way
to k-means clustering. The model starts with a specified of
clusters, which can be preset or optimized, and then assigns
each observation to one of the clusters. Instead of evaluating
the centeroids and distance between the centeroids and data
objects, Sequence Analysis model learns and updates the
transition probability of Markov chains in each cluster. This is
one of the soft clustering algorithms, yielding more flexibility
in making predictions.

D. Bayesian Network (Bayesian Inference)

Bayesian Inference utilizes a combination of conditional and
unconditional probabilities of evidence, along with the
hypothesis one is interested. It is a straightforward and
powerful classification data mining method, applicable to risk
management, decision analysis, and many other areas.
Classification data mining method such as Bayesian Inference
and Neural Network requires specifying input and output to the
model, which suits our need to establish the relationship
between weather factors and airport capacity in a systematic
manner.

Data collection covers three domains; (1) airport
operational data, (2) airport weather observations, and (3)
airport weather forecasts. In addition, considering the fact that
decisions on capacity changes are a human-driven process, we
conducted a series of interviews and meetings with a Traffic
Management Coordinator at SFO Air Traffic Control Tower,
Air Traffic Management Officers at Oakland ARTCC, and
Northern California TRACON, to understand the human
factors in the decision process, and how these data affect final
decision.

DATA
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A. Airport Terminal Operational Data

Our main source of airport operational data is the Aviation
System Performance Metrics (ASPM), published by FAA.
ASPM contains a wide range of data including, but not limited
to, Airport Acceptance Rate (AAR), Airport Departure Rate
(ADR), ceiling, visibility, wind speed, wind angle, and runway
configuration. Each data field can be retrieved in quarter-
hourly or hourly level. Although arguably the most extensive
and complete source of airport operational data, ASPM has its
limitations. Since it reports data values in fixed time intervals,
the actual times of operational changes are missing, and some
numeric values are divided or summed over user-specific
reporting intervals. For example, if AAR was 30 at noon, and
then changed to 60 at 12:39, the 15 minutes report of AARs
from ASPM between 12:00 and 1:00 looks as follows; 7@
12:00, 8@ 12:15, 15@ 12:30, and 15@ 12:45. Rates such as 7,
8, or 15 are not real, as Air Traffic Controllers will never call
rates on quarter-hourly basis, and change rates whenever
necessary, not quarter-hourly. There are also instances of
missing data in the data fields, and some hours are not reported
at all. In our research, we retrieved operational data every 15
minutes, and post-processed them to be suitable for our needs.
Format and unit conversion, and aggregation over multiple
periods were necessary in most cases.

B. Airport Terminal Weather Observation Data

Our main source of airport terminal weather observations is
the Hourly Surface Observations Summary, published by
National Oceanic and Atmospheric Administration (NOAA).
This observation data includes a wide range of aviation-related
weather factors, such as sky condition, visibility, wind
direction, wind speed, as well as more common factors such as
temperature and precipitation. Surface observations are mostly
automatic, and recorded every hour, unless there are significant
changes that potentially affect aviation, such as ceiling
reduction.

C. Airport Terminal Weather Forecast Data

Our main source of terminal weather forecast data is
Terminal Aerodrome Forecast (TAF), published by National
Oceanic and Atmospheric Administration (NOAA). According
to National Weather Service Aviation Weather Center,
“Terminal Aerodrome Forecast (TAF) is a concise statement of
expected meteorological conditions at an airport during a
specified period, usually 24 hours.” TAF is generated by
human forecaster, and considered to be more accurate than
model-generated weather forecasts. TAFs are produced four
times a day starting at approximately 30 minutes before each
main synoptic hour (00Z, 06Z, 12Z, and 18Z), and is valid as
designated in each forecast. There are also cases when
amendment is necessary to report temporary weather changes
that affect airport operational condition.

TAF is a detailed forecast, covering various factors
affecting airport operational condition. Meteorological
condition includes wind — visibility — weather - sky condition —
and other optional data. Wind, visibility, and sky condition are
mandatory field in any forecast, while other conditions are
included only when significant. TAF is only available in text
format, and contains specific keywords for different weather
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factors. We developed our custom parsing tool TAFparser to
import text TAFs into our database.

D. Data Manipulation and Representation

Finding the right representation of collected data is the first
step in any data analysis, and in many cases, it is directly
related to modeling choice. In the data preparation step, we
converted quarter hourly AARs of ASPM, to hourly AARs,
while maintaining the quarter hourly intervals. This gives us a
better idea of how AAR evolves during the day. Also, we
prepared two different representations of daily variation of
AARs: one at a fixed time interval, and another as a sequence
of changes, as shown in Figure 1.

Fixed time interval data representations are preferred in
earlier researches, as they are readily available from ASPM,
and easy to read and apply readily available statistical
packages. However, it has certain limitations. First of all, fixed
time interval representation emphasizes the continuation of one
rate, rather than the changes in rates. Quarter hourly data gives
a point in 96 dimensional space, and each point has the same
degree of importance. Due to this fact, some of our early data
analysis results suggested that the AARs tend not to change
over time, and changes are pretty rare. Although this is an
important fact, it is the main one we want to capture in our
modeling.

Our goal of capturing the cause and trend of rate changes
are better represented in a different format, value-and-duration
representation. Value-and-duration representation shows daily
AAR profile in a vector form. With this representation, we can
more effectively detect the patterns of rate changes, as shown
in the second table of Figure 1. This table shows for each day,
what the total number of different rates called was, and what
their sequence and duration were.

Figure 1. Two representations of one day AAR changes

AAR and weather variables at SFO, 2006

One day data profile as quarter hourly data sequence

1 day profile € R*

[ pate J1]z]3]4]s]8]7]
20060126 30/ 30 30 30/ 30 30 30
20060127 30/30 30 30/ 30/ 30 30

[51]52]53]54]s55]
vea60 36363030 4.4
30/ 30|45, 45/ 45

[a8]83] a0]31]92] 23] 24 ] 3c] 36
52|30 30 30 30 30 30/ 30 30
52|30 30 30 30 30 30/ 30 30

One day data profile as Value-and-Duration sequence

Duration Sequence
28

1
200601010701 29 27| 4 2
200601010801 33 33 8 3
200601011001 41 27| 56) 4

1
2]

YYYYMMDDHHQQ| Qtrs6 |AAR HR
200601010001 1 30

200601020001 1 27| 39
200601020304 40 30 57|

IV. DATA MINING APPLICATIONS

The focus of this chapter is studying AAR evolution
process itself using several Data Mining (DM) methods.
Studying historical AARs has two advantages. First, we can
compare the several DM models to understand the advantage
and disadvantages of different DM algorithms. Secondly, better
understanding of capacity evolution process itself would give
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us clues how and which additional information is crucial in
generating representative scenarios, and making accurate
prediction.

A. Graphical Model

The daily evolution of AAR can be represented as a
Directed Acyclic Graph (DAG). Each node represents AAR at
certain time period, and contains the family of probability
distributions AARs at a given time. This graph provides
complete information of conditional dependency of AAR at
each time period. Figure 2 shows selected node-edge
representation from the model output. One of the major finding
is that most time periods exhibits Markovian property. For
example, AAR of time period 42, or between 10:15am and
10:30 am, is only dependent on AAR of the previous time
period 41. There were a few cases like time period 44, which
exhibits second-order Markovian property, as it depends both
on 42 and 43. This confirms our postulation that AAR
evolution process is mostly Markovian. There are however,
special cases such as time period 82 to 96, or last four hours of
the day, which only depend on time period 81, or 8:00pm-
8:15pm. This reflects an operational constraint specific to SFO,
where AAR is lowered to the minimum 30 after 8:00 pm (9:00
pm during daylight saving), on most days.

Figure 2. Bayesian Network of AAR evolution at SFO

B. k-meansClustering

k-means Cluster analysis is a powerful and widely used
data mining technique. Liu and Hansen (2006) applied this
method to capacity scenario generation, by representing one
day capacity profile as a point in 96-dimension space, and
applied the K-means algorithm based on Euclidean distance.
The result is shown in Figure 3.

As desired, the result appears to represent typical days for
SFO. For example, cluster3 may represent days where the fog
never burns off all day, and AAR remained at the minimum of
30 per hour.

Figure 3. k-means clustering of 15 minute AAR evolution
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Although this is a reasonable approach, it may suffer from
the general shortcomings of k-means clustering. First of all,
given AARs every 15 minute, and thus 96 data points per day,
K-means clustering treats one day capacity profile as a single
point in the 96-dimension space. This has two potential
problems: (1) it ignores the sequential and time-dependent
nature of AAR; and (2) k-means clustering is subject to the
Curse of Dimensionality. AAR at one time period is likely to
be highly correlated with the previous and following ones. In
addition, as we expand the dimensions of data, they become
less concentrated and sparser, and the distance measure, which
is the foundation of k-means clustering, becomes less
meaningful. SFO airport capacity case, it is reasonable to
assume the data points are well concentrated in certain regions,
and dimensionality issue is not evident for certain clusters.
However, it is desirable to develop a more robust solution that
can be applied in the general case.

C. Sequence Clustering

Sequence clustering is a relatively new area in data mining,
which captures the strength of partition-based clustering such
as k-means, and applies it to sequential data. Sequence is a
series of discrete events, or states, which are usually finite.
Sequence data is ubiquitous in our everyday life. A series of
book purchase you made at Amazon.com, the sequence of web
sites you visited yesterday, the hourly temperature changes in
San Francisco, and DNA sequences in gene expression. If the
sequence is stochastic and has a Markovian property, then such
characteristics are well modeled in Sequence clustering using
Markov Chains.

Sequence clustering combines the strength of two
techniques, by assigning each data object to specific cluster(s)
with certain probabilities, while each cluster is characterized by
a unique Markov chain.  To determine which data object
belongs to which cluster(s), Sequence clustering uses a
probability measure, unlike distance measure of k-means
clustering. Probability and likelihood of data objects are then
calculated based on the transition matrix of each cluster. As
data objects are added to clusters, transition probabilities are
adjusted reflecting the new data members.

In our research, we can apply Sequence clustering to
capture the time-dependant and sequential nature of daily
airport capacity variation. Figure 4.1 is the cluster diagram we
obtained with SFO 2006 data. Each cluster contains its own
Markov chain that characterizes the cluster. Figure 4.2 shows
Markov chain of Cluster 1. It is also extendable to higher-order
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Markov Chains or Hidden Markov Chains, depending on the
data characteristics.

Figure 4. Sequence Clustering Result
Figure 4.1. Cluster Diagram

Each node represents one cluster. Node with darker shades
contains more data objects than lighter ones. Similar clusters
(clusters with similar transition probabilities) are closer to each
other, and the degrees of similarities are represented as edges
connecting cluster. In this figure, cluster 5 has a rather unique
transition behavior than other cluster, while cluster 2, 3, 4 share
strong similarities.

Uustull

Figure 4.2. Markov Chain Associated with Cluster 2

Transition matrix associated with Cluster 2 is shown below.
Cluster 2 contains AAR 20, 40, 45, 52, and 60. Days in
Cluster 2 starts operation with AAR 30 with probability of
1. Once the rate is set, the rate tends to persist as high
transition probability from one rate to the same rate
suggests. Some of the characteristics of Cluster 2 include;
(1) transition to rate 52 only occurs when the previous rate
is 52, or 60; (2) rate 40 tends to make a transition to other
rates, more than any other rate, suggesting that AAR 40 is
used for short period of time; and (3) rate 60 tends to persist
once the rate is set, with possibility to get reduced to 52.

Transition Matrix of Cluster 2
a0 40 45 52 B0 EQD
BOD 1
20 | 0.95 0.02] 0.03
40 | 006|070 0.06 018
45 0,257 012
52 | 0.08 0.92
B0 0,02 0,97
BOL: Beginning Of Day
EQD: End OF Day

D. Distribution of Rate Changes

During the course of our DM applications, we observed that
at SFO, there are handful of time windows and rates that are
crucial in answering the question of when and what is the rate
change going to be. For example, first rate change of the day is
very likely to occur around 8:00 am, to decide whether to
increase AAR from the early morning minimum rate of 30.
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Also around 5:00pm, AAR is to be lowered to 52, even if
weather permits the full capacity of 60, due to operational
restriction such as noise abatement. Also, timing of recovery
the full capacity of 60 depends on fog burn-off time, which is
likely to burn off around 9:00-10:00, or 13:00-14:00. To
investigate our observations further, we plotted probability
distribution of AAR changes by absolute and relative
frequency of time of such changes, as shown in Figure 5. It is
also observed that first rate change mostly occurs at 8:00am,
when the air traffic control personnel decide which rate they
will start the day with.

From the probability distribution of time of change given
AAR value (Figure 5.1), we can observe that the full capacity
of 60 AAR per hour is most likely to kick in at the start of the
operation at 8:00 am, followed by between 9:00 and 10:00
when early morning fog burns off, followed by between 13:00
and 14:00 when morning fog persists until afternoon and burns
off late in the afternoon. Also, AAR change to 52 mostly
happens between 17:00 and 21:00, as this rate is mandatory
change during evening time, partly due to noise abatement
issues.

An insight this observation provides us is that not all time
periods are equal, and there are set of critical time periods that
we want to model more accurately. For example, we might
want to use most recent and accurate weather forecast available
to predict capacity at 8:00 am. An interesting flip side of this
observation is that AAR change might not be as dynamic as the
weather change, and managed in a rather conservative manner.

Figure 5. Distribution of Rate Change

Figure 5.1. Probability Distribution of Time of AAR Changes,
given AAR

This chart shows the relative frequency of time of change to a
specific rate, or Probability(Time of Change|]AAR). For
example, change to AAR 60 is most likely to occur at time
8:00 am, followed by 10:00 am, and 2:00 pm.

Distribution of Time of Rate Change
Prob(Time of Change | AAR)

Figure 5.2. Relative Frequency of Rate Changes, given time of the
day

This chart shows the relative frequency of different AARs at a
specific time of the day, or Probability(AAR|Time of Change).
For example, rate change at 8:00am is most likely to be 60,
followed by 30.
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E. Bayesian Network

There has been recognition that it is necessary and possible
to calibrate and extend the existing model, by incorporating
weather information. By adding weather forecast information
as additional model parameter, we might be able to obtain
more accurate understanding, hence prediction, of airport
capacity. Figure 6 shows the ideal modeling structure,
incorporating weather information as well as historical AAR
evolution process. In the ‘Prediction Model’ arrow, we model
historical AAR, weather observations, and weather forecast
data, as well as day-of-operation weather forecast, to generate
day-of-operation capacity profiles.

Figure 6. Capacity Prediction Modeling Structure
Day-Of-Operation

Prediction Modst > Capacity Profile

““Maximum

sector Count.-

P )
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Bayesian Network is a simple yet powerful way to explore
and understand input-output relationship of data with
prediction ability. It is also powerful tool to analyze
relationships among attributes when making a prediction, using
conditional probability of observed events. Bayesian Network
can be used as a preprocessing step to identify critical variables
in predicting the variable of interest.

The implementation of Bayesian Inference is pretty much
standard across different data mining platforms. Dependency
Network from model output is shown in Figure 7. This figure
illustrates the degree of dependency and predictability. Form
this diagram, we can see that AAR at SFO is most dependent
on Runway Configuration, Ceiling, Wind Angle, Wind Speed,
and Visibility in that order. It corresponds to widely recognized
belief that Ceiling and Wind Angle have the biggest impact on
airport capacity. Runway Configuration for SFO, obviously
affects maximum AAR.

Figure 7. Dependency Network of Weather Factors and
AAR
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V.  CONCLUSIONS AND FUTURE STUDIES

In this paper, several Data Mining concepts are introduced
and applied to runway capacity scenarios generation. Data
Mining concepts, while still at early stage of research and
development, showed strong possibility to significantly
contribute to aviation research, where complexity and size of
available data are beyond the application of simple statistical
methods.

Earlier research based on k-means clustering provided a
reasonable mean to classify days with similar characteristics.
We revisited k-means clustering and came to a conclusion that
it lacks the sequential nature of AAR evolution, and is prone to
dimensionality problem of k-means clustering. This review
process also led us to explore different representation of daily
AAR variation, such as in quarter hourly rate, hourly rate, and
value-and-duration representation. Outcome of statistical
analysis is heavily depends on how data is organized, and it is
desirable to choose most suitable representation for each
method. It is also observed that there is prevailing trend in the
time and magnitude of the rate change at SFO, which may
suggest that the rate change is not as dynamic as the weather
change.

We first construct full Directed Acyclic Graph (DAG) of
AAR change, to understand conditional dependency of AAR at
each time period. At SFO, we found that AARs are mostly
Markovian, which supports applications of algorithms such as
Sequence clustering. We also observed that there are certain
operational restrictions, not related to weather or previous
AAR, such as mandatory rate reduction in the evening.
Although providing complete hierarchy of conditional
dependency among time periods, DAG has complexity that is
exponential in the number of nodes, which makes it less
attractive in making predictions.

To address the time dependent, sequential nature of AARS,
Sequence Clustering with first-order Markov Chain is applied.
This clustering method soft-partitions days based on
transitional behaviors, which are captured in the transition
matrix. The algorithm effectively captures the nearly
Markovian property of AAR changes, as well as time of the
day effect. Another advantage is that the analysis result
represented in Markov Chain fits well as an input to stochastic
optimization model.
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Bayesian Network is applied to understand the relationship
of different weather factors and AAR. Dependency Network
confirms our prior belief at SFO, that runway configuration,
ceiling, and wind conditions are most influential factors in
AAR determination. Knowledge from Bayesian Network,
combined with day-of-operation weather forecast can increase
the accuracy and reliability of capacity prediction result.

As an extension of this study, authors continue focusing on
relationship between AAR and weather factors, and on how to
model such relationship.
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Abstract - This paper introduces an empirically driven, non-
parametric method to isolate and estimate the effects of demand
and throughput changes to observed changes in flight delay.
Classical queuing model concepts were used to develop a method
by which an intermediate queuing scenario could be constructed,
in order to isolate the delay effects due to shifts in demand and
throughput. This method includes the development of a
stochastic throughput function that is based entirely on data and
as a result has two advantages: it uses non-parametric,
empirically-based probability distributions, and capacity need
not be estimated explicitly. The method was applied to a case
study of the three major New York airports of LaGuardia
(LGA), John F. Kennedy (JFK), and Newark Liberty (EWR), for
the peak summer travel seasons of 2006 and 2007, using data
extracted from ASPM. This case study was of particular interest
given that these airports experienced record levels of delay in
2007. The simulation results were consistent with both OPSNET
and ASPM data, and were successful in quantifying the delay
effects of demand and throughput changes from 2006 to 2007.

Keywords - delay; demand; throughput; capacity; runway
operations; New York airports; simulation; probability; ASPM;
OPSNET.

I.  INTRODUCTION

This paper introduces a method for estimating the effects of
demand and throughput changes to observed changes in flight
delay. As the delay observed over days, weeks or years
changes from one time period to the next, we would like to
know how much its evolvement can be attributed to demand
and throughput changes. As a result, the motivation for this
work is to address the following question: how can we isolate
and measure shifts in delay caused by changes in demand and
throughput when both are changing simultaneously?

There is an extensive body of literature and knowledge on
methods to predict airport capacity and delay, both analytically
[1] and through simulation. The purpose of this work is not to
estimate the expected capacity outright [2], but to use empirical
data that implicitly contains information about capacity to
quantify how simultaneous changes in demand and throughput
affect delay.

A new, empirically driven simulation procedure was
developed from classical queuing concepts to address the
question posed above. The main engine of this new procedure
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is a stochastic throughput function that was developed to have
two key advantages. Firstly, this throughput function is driven
by non-parametric probability distributions of throughput
constructed from available data. Secondly, capacity need not be
explicitly estimated, as the capacity of the operation under
analysis is implicitly included in the probability distributions.
This is advantageous because operational capacity is subject to
a wide variety of factors and can be quite difficult to estimate
well.

The simulation method is then applied to a case study of
flight delay at the three major New York area airports:
LaGuardia (LGA), John F. Kennedy (JFK), and Newark
Liberty (EWR). Specifically, the arrival and departure
operations at these airports were analyzed in order to determine
how demand and throughput affected the delay changes
observed between the 2006 and 2007 summer travel seasons.

The main goal in applying this new procedure is to provide
information about the causes of delay shifts at one greater level
of detail. The ability to isolate individual contributions of
demand and throughput mechanisms to delay could be helpful
in creating more focused, effective strategies and policies to
address the delay problem.

IL.

During the summer of 2007, flight delays reached record
high levels throughout the National Airspace System (NAS)
and beyond. National and international headlines reported story
after story describing the extreme wait times and missed
connections that air travelers were subject to during this peak
travel season. The three airports of the New York area
experienced some of the highest delays within the NAS, with
travelers spending 3.9 million more hours waiting for their
aircraft to take off after leaving their gates in 2007 as compared
to a decade earlier [3]. The increase in total operations from
2006 to 2007 at these airports was approximately 3-4%, but the
increase in delay was in the order of about 28% [4]. In
addition, in 2007 the New York airports accounted for about
40% of all delay in the NAS; in 2004 they accounted for only
15% [5].

Delay metrics can be found and/or calculated with relative
ease from several data sources. One such source is OPSNET,
which is the official source of historical NAS air traffic delays
and operations. In OPSNET, an airport picks up a delay each

BACKGROUND
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time a flight is held up 15 or more minutes due to runway
congestion, weather, air holding, traffic flow restrictions, or
other event that would cause a flight’s realized schedule to
deviate from its flight plan. Table 1 contains the results of
OPSNET airport delay data extracted for LGA, EWR, and JFK
for May through September of 2006 and 2007. The first half of
the table indicates that the total number of operations have
decreased at LGA and EWR, but have increased significantly
at JFK. The second half of the table shows the number of
flights that were delayed more than 15 minutes from their flight
plans; it can be observed that the number of delayed flights has
almost doubled at JFK from 2006 to 2007.

TABLE L. OPSNET DATA

Total Number of Arrival and Departure Operations

May-Sept 2006 May-Sept 2007 % Change
LGA 172,142 168,616 -2.0%
EWR 191,531 188,211 -1.7%
JFK 169,957 197,626 +16.3%

Total Number of Flights Delayed >15 Minutes

May-Sept 2006 May-Sept 2007 % Change
LGA 14,119 15,810 +12.0%
EWR 21,707 19,809 -8.7%
JFK 8,276 15,065 +82.0%
III. METHODOLOGY

Delay can be estimated using the traditional queuing model,
where a queuing scenario is constructed from a cumulative
demand curve and cumulative throughput curve [6]. An
example of a simplified fictional queuing scenario is shown in
Figure 1. The demand and throughput curves are actually step
functions because customers (or vehicles, aircraft, etc.) are
discrete entities. However, demand and throughput can be
approximated as continuous functions (smoothed curves) over
sufficiently long periods of time, which simplifies calculations.
Under a classical deterministic approach, the throughput
function at some time 7 can be determined as follows:

Q1 =d) ifd1y)<c (D
=c ifdt) >c
Where (%) is the throughput at time t
d() isthe demand at time t
c is the fixed service capacity, constant
over all t
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Figure 1. Queuing Scenario under Year 1 Demand and Year 1 Throughput

Note that in Figure 1 cumulative Q(#) and d(?) are shown to
vary linearly with time. However, this is a simplification in that
these quantities are most often non-linear, time-dependent
functions.

Assuming first-in first-out (FIFO) conditions, the delay
experienced by an arbitrary customer » is the difference
between n’s desired service time (7,,) and actual service time
(t,). This is also the horizontal distance between the two
curves. The number of customers queued for service at time ¢ is
the vertical distance between the curves at 7. Where the demand
and throughput curves meet, customers are being served
without any delay and as a result there are no standing queues
for service; when the curves are apart, customers must queue
for service. The throughput curve cannot cross the demand
curve as per Equation (1) because customers cannot be served
until they demand service. The area between the demand and
throughput curves is the total delay experienced by customers
over the total observation time 7 (we assume that our
observations begin at time 0):

o= [ 100 - d(o)dt ~ dr* 3 [d() - 0] @

1

Where 1 is total delay over time period (0,T)
QO(t) s the throughput function at time t
d(t) is demand at time t
T is total observation time
dt is the duration of a small time slice

j is the number of time slices over time
T, from j=1 to j=J

An average delay per customer can then be determined by
dividing this total delay by the total number of customers N
that requested service over the observation time 7. In these
queuing diagrams, T could represent one day.

Figures 1 & 3 depict fictional queuing scenarios for an
average day in an arbitrary year (Year 1) and the following
year (Year 2), respectively. The areas between the demand and
throughput curves represent the total delays in Year 1 and in
Year 2. The change in total delay from Year 1 to Year 2 is the
difference of the two areas; however, this difference could be
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caused by changes in demand, changes in throughput, or both.
In order to isolate the change in delay caused solely by a
change in demand, we can construct a “counterfactual”
scenario where the Year 2 demands are served using the Year 1
throughput function. The counterfactual scenario is represented
in Figure 2, and the resulting delay is represented by the total
area between the demand and throughput curves. The
difference between the resulting counterfactual delay and the
Year 1 delay (solid area in Figures 1 and 2) is the change in
total delay due to the demand shift from Year 1 to Year 2
(depicted in cross-hatch). The Year 2 delay (total area between
the curves in Figure 3) minus the counterfactual delay and Year
1 delay is the change in total delay due to the throughput shift
from Year 1 to 2 (depicted by the unfilled area in Figure 3).

n

Demand, /.
DelaYCountcr

Throughput,

18

Figure 2. Queuing Scenario under Year 2 Demand and Year 1 Throughput
(Counterfactual)

{

Demand, -«

Throughput,

U

Figure 3. Queuing Scenario under Year 2 Demand and Year 2 Throughput

The figures show an increase in demand and a decrease in
throughput from Year 1 to 2, but this trend was chosen for
illustrative purposes only. The entire process is summarized in
Table II.

TABLE II. DEMAND AND THROUGHPUT SCENARIOS
Demand | Throughput | Total Delay A in Total Delay
for an average day in...

Year 1 Year 1 (1) Year 1 n/a
(2)-(1); due to
Year 2 Year 1 (2) Counterfactual demand shift
(3)-(2); due to
Year 2 Year 2 (3) Year 2 throughput shift

The Year 1 and Year 2 queuing scenarios can easily be
constructed from available data (which will be discussed in
detail later on), but the counterfactual scenario, because it does
not actually exist, must be generated through simulation. The
simulation is an iterative process that takes the demand in each
time interval and, using a throughput function, assigns a
throughput value. All aircraft not served in a time interval
comprise the queue in that time interval, and from this a delay
calculation can be made.

The classic definition of a deterministic throughput
function was introduced in Equation (1). Based on available
data sets that include arrival and departure demand, arrival and
departure throughput counts, and weather information, we can
construct a deterministic throughput function as follows:

Go(t)=min[d,(1),c,(w(1))] 3)
Where ¢,(?) is the actual recorded throughput for
operation type o in time interval ¢
d,(t) 1is the actual demand for operation o in

time interval ¢
Co is the fixed capacity for operation o
w(t) is the weather condition at time ¢

Weather enters into the model as either visual or instrument
flight rules (VFR or IFR), and is included as a factor in the
model because of the significant impact it has on operational
capacity. The operation types are either arrivals or departures.

The deterministic throughput function is an idealized
situation and as such does not represent actual operations very
well. ¢, is a critical input to the function and several major
assumptions are needed to determine its value(s). The
alternative to the deterministic throughput function is a
stochastic model that incorporates some levels of uncertainty.
Based on the available data, a stochastic model that preserves
the dependence of throughput on demand and weather can be
constructed as follows:

P(Qo(1)=q0(1)|do(1), W(1)) = Jo(qoldoW) “)

Where @, isarandom variable representing

throughput
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Jo

is the conditional probability
distribution function for throughput

The probability that Q, takes some throughput value g,,
conditional on the demand and weather in time interval ¢, is
taken from f,. It was necessary to include capacity as an
explicit input to the deterministic model; however, in the
stochastic throughput function it is implicitly captured in fy. fo
can be constructed entirely from an appropriate data set without
having to make assumptions about its shape and parameters. In
fact, the non-parametric nature of f, is one of the main
advantages of this model.

The counterfactual scenario discussed earlier was modeled
using approximations of the stochastic throughput function, as
described in Figure 4. The deterministic approximation uses
mean throughput values conditional on demand, weather, and
other known factors to simulate the counterfactual scenario.
The stochastic approximation uses random number generation
to simulate throughput values. For the purposes of the New
York airports delay analysis, Year 1 will correspond to the time
period of May through September 2006, while Year 2
represents that of the same months in 2007. Modeling the
counterfactual scenario involves assigning simulated 2007
(Year 2) demand and 2006 (Year 1) throughput, calculating
queue lengths in each time interval, and then calculating the
average delay per flight over all time intervals from May
through September. The following is the iterative procedure
that was followed.

Deterministic Stochastic
qo(t) = P[Qqo(t)=qo(1)|do(t),W(1)]
min[dy(t),co(W(t))] = fo(qoldo, W)
Deterministic Stochastic
Approximation || Approximation

Figure 4. Specifications for the Throughput Function

1) Attime interval t=1, initialize

D7 (1) =D o7(1) %)

Where 150907 () is the simulated total (new &

queued) 2007 demand for operation
o in time interval ¢

D’,07(2) 1is the “new” 2007 demand for
operation type o in time interval 7.

2) Find 0, (1) conditional on D, (1), Qoor(t), & W,
where O, o (1) is the simulated 2006 throughput for operation
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type o in time interval t. QAU’06 (t) is determined using a
stochastic throughput function.

3) Ift=T, go to Step 4. Otherwise,
a) Set
Dy 97(0=D'y g70+[Dy g7(t=1)=0, gs(t=11  (6)
Where ]50,07 (t) is comprised of the “new” demand of the

current interval t in addition to the queued aircraft (those
that are still waiting for service) from the previous time
interval (t-1).

b) Update t=t+1.

¢) Repeat Step 2.

4) Calculate the average delay per flight for operation o
for the simulated counterfactual scenario.

T . “
At * D —
. ! El[ 0707(0 Q0’06(f)] ™
0

T -
29,060

Where 7

" is the simulated average delay per
flight for operation type o, from t=1 to
t=T, in minutes
At is the length of one time interval

The above procedure must be able to reproduce 2006 and
2007 operations as shown in the data such that when the
counterfactual scenario is simulated using the same procedure,
we can be confident of the results. In other words, the
simulation method must produce good agreement between the
actual and simulated baselines, which entirely depends on the
specifications of the throughput function applied in Step 2.
Deterministic approximations to the stochastic throughput
function were first tested. These consisted of mean counts
conditional on demand and weather, in addition to time of day
effects and queue presence indicators, were first tested.
Stochastic approximations of the throughput function, which
involved randomly drawing from probability distributions of
throughput conditional on demand and weather, were also
tested. The methods above did not satisfactorily reproduce
2006 and 2007 operations, most likely due to underlying
mechanisms not controlled for in the simulation. These
phenomena might include serial correlation of demand and
throughput between the quarter-hour intervals, arrival &
departure interaction effects, and more. Finally, a stochastic
approximation method that compares probability distributions
of 2006 and 2007 counts, conditional on demand and weather,
was tested. This approach, herein referred to as the “compared
distribution” method, is able to, by design, identically
replicates the baseline scenarios. As such the compared
distribution method was chosen for use here.

In the compared distribution method, Qo’()g(t) is simulated

in the following manner by starting with the 2007 (Year 2)
data. All steps below are “substeps” of Step (2) from above.
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The compared distribution method was used to generate the
counterfactual scenarios for all New York airports under
analysis. Note that the compared distribution method (as well
the other stochastic approximation method) preserves time of
day, day of week, and monthly effects from one year to the
next, because the simulation is run time sequentially from t=1
to T in both 2006 and 2007.

1) Construct cumulative probability distributions (cdf) of
counts conditional on demand and weather, F(Q,,¢7|D,.07Wo7),
for 2006 and 2007.

2) Find the cumulative probability of the empirical 2007
count for operation type o, conditional on 2007 demand and
2007 weather condition for some time interval t,
F(QO,M\DO,M,WM). .

3) Based on the simulated 2007 demand,D,,,, find the
interval in the 2006 count cdf that the 2007 probability found
in the previous step falls into. From this, lower and upper
bounds  (FL(Qo06l Dooy wos)  and  Fy(Qo0sl Do oy, Wos)s
respectively) of the 2006 cdf and corresponding 2006
simulated count values (Q,.5; and Q, 60, respectively) are
obtained.

4) Construct a probability value, f{x), for the simulated
2006 count based on the 2007 count cdf’s position between
the lower and upper bounds of the 2006 cdf interval:

169=Pr(Q, o5 =2y 06,

) )
_ Fu(@o,06 1P0,07-06 )~ Q0,07 | Po,07- W07
Fy(©y06 120,07 %06 )~ FLCo,06 1 Po,07 Y06 )
Pr(Qy, 05 = Qo 06u) = 1- 19 )

5) Generate random number #. If n < f{x), set count to
lower bound 2006 count O, ¢s; otherwise set count to upper
bound Qa,06, U-

There are fewer count data recorded at very high demand
values, and as a result the cumulative probability distributions
of counts conditional on high demands are often based on small
and incomplete data sets. To avoid reliance on probability
distributions constructed using sparse data, all counts recorded
with demands beyond the capacity threshold were combined
into a single truncating probability distribution at the cut-off
demand. For all simulated demands higher than that of the
demand truncation point, this combined probability distribution
is used for count simulation.

IV. DESCRIPTION OF DATA

The Aviation System Performance Metrics (ASPM)
database is part of the Federal Aviation Administration’s
(FAA’s) Operations and Performance Data system. Data from
the “Download/Airport” section of the ASPM database was
used for this analysis. The data includes hourly as well as
quarter-hourly arrival and departure counts, demands, and
visibility conditions (either visual (VFR) or instrument (IFR)
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flight rules). The data is available for 77 major airports in the
United States.

ASPM count data are based on individual aircraft landing
and take-off times as supplied through Airline Service Quality
Performance (ASQP) data or Enhanced Traffic Management
System (ETMS) messages.

ASPM provides the perfect data set to construct the
counterfactual scenarios described in the previous section;
however, some particular characteristics of the ASPM demand
data selected for this analysis must be noted. Firstly, the
demand data used here is based on the updated flight plan just
before a flight is due to take off at the origin airport; it does not
reflect demand as defined by airline schedules. As a result, for
flights arriving at a given airport, the delay calculated in this
analysis includes all delays that occur between the filed flight
plan take-off time (demand) and actual landing time (count),
but does not include the delays between scheduled and flight
plan take-off times (although this information can also be
found in the ASPM dataset). For flights departing the airport,
the delay calculated in this analysis includes the delay incurred
between the time that the flight was scheduled to depart
according to the flight plan, and the time that it actually does
depart. As a result, the calculated delay will not include the
effects of ground delay programs (GDP), the effects of air
traffic management (ATM), plus other mechanisms that would
cause a flight to deviate from its schedule. Secondly, the
reported demand represents the total number of aircraft that
were available for operation o (arrival or departure) in time
interval 7. An aircraft will count towards demand in each and
every time interval starting in the one when it was first
available to land/depart until the time interval when it is
actually able to do so. As a result, the demand D,(?), reported in
t includes the “new” demand D’,(?), plus the queued (unserved)
aircraft from the previous time interval [D,(#-1)-Q,(t-1)]. D 5(2)
for each 15-minute interval is easily calculated from the ASPM
dataset, and is used for input to the simulation.

D' ()=Dy(t)=[Dyp(1=1)=0p(t=1)] (10)
Where D’,(?) isthe “new” demand for operation
type o in time interval ¢
At is the length of one time interval
D,(t) is the total demand for operation
o in time interval ¢
0,(t-1) is the throughput for operation o in
time interval #-1.

If an aircraft’s demand and service times fall within the
same or adjacent intervals, its delay is recorded to be zero. For
instance, if time intervals are 15 minutes in length, an aircraft
will not be counted towards delay if its demand and actual
service times are, for instance, 1 minute and 14 minutes into
the interval respectively. Also, ASPM counts will never exceed
the total demand in any given time interval, meaning that
operations which occur earlier than scheduled are not counted
as negative delay or a delay savings.
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Data from LGA, EWR, and JFK were obtained for May 1
through September 30 2006, and May 1 through September 30
2007. From the data, we can derive the following information
about demands, throughput, and delay. Figure 5 displays
cumulative arrival demands by hour averaged over all days
from May 1 through September 30. It can be observed that the
total daily demand (averaged over all days) at LGA and EWR
has decreased (between 2% and 3%) from 2006 to 2007 while
it has increased significantly (by approximately 18%) at JFK.
As expected, departure demands exhibit very similar trends and
as a result are not displayed here. Figure 6 displays the average
arrival count recorded during VFR conditions plotted against
demand. The average arrival count per demand was calculated
by averaging all counts recorded at each demand level from 0
to 70+. Observe that the arrival counts match arrival demands
up to a certain point, after which this trend stops as the facility
cannot serve at the demanded rate any longer. After this peak
count level, arrival counts remain steady or begin to decrease
until the slope of the curve flattens out. Also beyond the peak,
all demand cannot fully be served within the same time period
any longer. The peak arrival count is the realized arrival
capacity for a given airport [7]. Based on this simple yet
reliable capacity estimation, Figure 6 suggests that the arrival
capacities of all three airports have decreased from 2006 to
2007. One can also observe that higher arrival demands were
reported at LGA and JFK in 2007, which suggests that there
were longer queues, which in turn suggests that aircraft waited
longer for service and therefore experienced greater delay in
2007. The same phenomenon, however, was not recorded at
EWR. A similar analysis can be applied to the averaged
departure counts in Figure 7, which implies that departure
capacities have dropped at LGA and EWR but have increased
at JFK from 2006 to 2007. However, much higher demands
(and therefore queuing) were reported at JFK in 2007, which
may be the result of increased demand and/or more severe
demand peaking effects, as the data does not seem to suggest
that capacity has decreased.
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Figure 5. Cumulative Arrival Demands (Average Day of Ops), by Hour
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The average delay per flight was also calculated for arrival
and departure operations at each airport from May through
September of 2006 and 2007 as per Equation (7). Recall that
delay is calculated against flight plan demand, and the data is
tabulated in 15-minute intervals (such that At=15 min). The
data set contains T=14,688 quarter-hour intervals.

The delay results are summarized in Table II1.

TABLE III. AVERAGE DELAY PER FLIGHT, MAY-SEPT 2006 & 2007
Average delay per flight (min) Change

(from 2006 to
2006 2007 2007)
LGA Departure 8.56 10.72 +2.16
Arrival 8.85 10.7 +1.85
EWR Departure 11.53 9.95 -1.58
Arrival 11.46 12.06 +0.60
JFK Departure 12.06 14.38 +2.32
Arrival 3.23 8.11 +4.88

The average delay per flight increased at both LGA and
JFK between 2006 and 2007, and significantly so for JFK
arrivals. Average delay has decreased by about 1.6 minutes per
departing flight at EWR, and for arrival flights it has increased
0.6 minutes. These results from ASPM are consistent with the
OPSNET data discussed previously.

Modeling the counterfactual scenarios involves recreating
the structure of the ASPM demand and count data by assigning
simulated 2007 demand and 2007 throughput values, and then
calculating queue lengths and average delay in the same
manner as was done for the data shown in Table III.

V. RESULTS

The simulation results are summarized in Table IV. The
reported counterfactual delays are the average of 10 simulation
runs for each scenario. The standard deviations of the 10 runs
are also reported.
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TABLE IV. DELAY RESULTS TABLE V. DELAY RESULTS (COUNTERFACTUAL SCENARIO II)
Average Delay per A delay A delay Average Delay per A delay A delay
Flight (min) due to duetoA | ops Flight (min) due to ducto A | o
A demand throughput A demand throughput
2006 | CF* | 2007 (implies) (implies) 2006 | CF* | 2007 (implies) (implies)
LGA LGA
Departure | 8.56 | 6.49 | 10.72 -2.08 4.24 0.115 Departure | 8.56 | 13.08 | 10.72 4.52 -2.36 0.093
Demand has | Throughput has Throughput has| Demand has
decreased decreased decreased decreased
Arrival | 8.85 | 6.03 | 10.70 -2.82 4.67 0.097 Arrival 8.85 | 13.36 | 10.70 4.51 -2.66 0.287
Demand has |Throughput has Throughput has| Demand has
decreased decreased decreased decreased
EWR EWR
Departure| 1153 | 5.78 | 9.95 -5.76 418 0.064 Departure| 11.53 [ 20.33 | 9.95 8.80 1038 | 0.088
Demand has | Throughput has Throughput has| Demand has
decreased decreased decreased decreased
Arrival | 11.46 | 6.65 | 12.06 -4.81 5.41 0.097 Arrival 11.46 | 16.40 | 12.06 4.94 -4.34 0.351
Demand has | Throughput has Throughput has| Demand has
decreased decreased decreased decreased
JFK JFK
Departure | 12.06 | 19.09 | 14.38 7.03 -4.71 0.138 Departure | 12.06 | 9.10 | 14.38 -2.97 5.29 0.060
Demand has | Throughput has Throughput has| Demand has
increased increased increased increased
Arrival | 3.23 | 491 | 8.11 1.68 3.20 0.084 Arrival 323 | 6.52 8.11 3.29 1.59 0.084
Demand has |Throughput has Throughput has| Demand has
increased decreased decreased increased

* Counterfactual, referring to scenario with 2007 demand and 2006 throughput
** Standard deviation of counterfactual delay, for 10 simulation runs made

The results are consistent with the trends seen in the
OPSNET data, as well as the ASPM data presented in the
previous section and used for this simulation. At both LGA and
EWR, arrival and departure demand changes have results in
decreases in arrival and departure delay, implying that demand
has declined. In addition, delays attributed to changes in
throughput have increased, which would imply that throughput
has dropped as well. At JFK, arrival and departure delays have
increased due to changes in demand, suggesting that demands
have gone up (with the departure demands having caused
relatively significant increases in delay). However, increases in
departure throughput have caused departure delays to drop
while arrival throughput may have decreased and caused a
subsequent increase in arrival delay.

The counterfactual scenario can also be constructed by
swapping the demand and throughput years and simulating
2006 demand with 2007 throughput; in other words, using the
same procedure described above but with the years switched.
In this case, the difference between the counterfactual and 2006
base year delays can attributed solely to changes in throughput,
and the difference between the 2007 base year and
counterfactual scenario delays to changes in demand. Table V
contains the results of this simulation.
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* Counterfactual, referring to scenario with 2006 demand and 2007 throughput
** Standard deviation of counterfactual delay, for 10 simulation runs made

The delay trends in Tables IV and V are consistent with one
another. It also appears that the magnitudes of the changes in
delay are consistent between the two analyses at LGA, EWR
arrivals, and JFK, although there is greater discrepancy in the
departure results for EWR. Because demand, throughput and
delay are not necessarily related linearly, the “direction” in
which the counterfactual scenario is simulated could have a
significant effect on the delay results (of Tables IV and V).
However, the choice regarding which way to simulate the
counterfactual scenario is arbitrary, and consequently the two
sets of delay results may serve to validate the simulation
process. The differences between the two sets of results for
EWR departures may be due to other dependent effects not
accounted for or readily apparent in the simulation process.
Also, as demands increase, delays also increase at much faster
rates; conversely, when demands are lower an increase in
throughput can result in a significantly greater delay reduction
[2]. This may account for the fact that the Table V results for
EWR show much larger changes in delay between the two
years than Table IV.

We can make a few inferences based on the results in
Tables IV and V above. Firstly, of the three airports JFK has
experienced the largest overall increase in delay due to changes
in throughput and demand. In particular, a substantial growth
in arrival and departure demands has contributed to the large
increase in delay at JFK. Departure throughputs have not
similarly increased to offset this rise in demand, while the
problem in the arrival operations is further exacerbated by a
decrease in throughput. Decreased throughput does not
necessarily mean a drop in airport capacity. In fact, sources at
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the FAA believe that fleet mix changes in 2007 at JFK led to
higher minimum in-trail separations, which would certainly
reduce throughput. It has also been suggested that New York
airspace controllers had grown more conservative about
aircraft separations due to safety concerns. This would support
the findings of Figures 6 and 7, which suggest that capacities
have generally decreased (except for JFK departures) between
2006 and 2007. The drop in demand at LGA and EWR (Figure
5) occurred alongside a drop in throughput, and generally
resulted in an overall increase in delay at these airports.

VI

The New York airports experienced a very significant rise
in delays over the summer of 2007 compared to previous
periods, most specifically that of summer 2006. The purpose of
this work was to estimate how much of this change in delay
was due to demand changes and how much was due to
throughput changes. Because demand and throughput change
simultaneously, the purpose of this work was to quantify how
changes in each contribute to a change in delay, and ultimately
provide information about the causes of delay at one greater
level of detail. To do this, an empirically driven simulation
procedure was developed from classical queuing concepts, and
applied to a case study of the three major New York area
airports in summer 2006 and 2007. This procedure consists of a
stochastic throughput function whose main advantages are that
it uses non-parametric, empirically-based probability
distributions and that capacity need not be estimated explicitly.
The throughput function was used to recreate the structure of
the ASPM data and construct the intermediate “counterfactual”
scenario, by which the delay changes from 2006 to 2007 could
be attributed to either demand or throughput.

The simulation results confirmed the OPSNET and ASPM
data results. The counterfactual scenario was first constructed
with 2007 demand and 2006 throughput. At both LGA and
EWR, arrival and departure demand changes have results in
decreases in arrival and departure delay, implying that demand
has declined. In addition, delays attributed to changes in
throughput have increased, which would imply that throughput
has dropped as well. At JFK, arrival and departure delays have
increased due to changes in demand, suggesting that demands
have gone up. However, increases in departure throughput have
caused departure delays to drop while arrival throughput may
have decreased and caused a subsequent increase in arrival
delay. The counterfactual scenario was also constructed with
2006 demand and 2007 throughput, and the results of this
simulation served to validate the previous simulation results.

CONCLUSIONS
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VIL

This procedure is a starting point from which we can
further analyze and deconstruct the causes of operational delay
at airports in terms of demand and throughput. However,
knowing only the demand and throughput effects on delay has
limited importance; it would be beneficial to identify factors
other than flight rule conditions that influence demand and
throughput. This could, in turn, be used to re-specify the
throughput function to control for additional factors not yet
included in the model. Phenomenon yet uncontrolled for might
include fleet mix changes, and arrival/departure interaction
effects (the model as of yet assumes arrivals & departures to be
independent of one another). Another direction for future work
is to base delay calculations on a demand scenario other than
that of the flight plan, such as demand recorded at the time
flights are scheduled by the airlines to arrive or depart. Using
this, the effects of GDP as well as all the effects of ATM at
origin airports could be incorporated into the analysis.

FURTHER WORK
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Abstract—We analyze how large gaps between the planned
and realized number of aircraft into flight sectors propagate
through the European- and the Japanese Airspace. For this we
analyze the sample cross-correlation matrix of the most congested
part of the networks. Because of the motion of aircraft, gaps
propagate to neighboring sectors, expecting positive correlation
coefficients. The question in the analysis is whether there are
unexpected coefficients. Such coefficients would be caused by
traffic controllers or flow managers who compensate for strong
gaps by re-routings or speed adjustments. Such strategies would
often lead to negative correlation coefficients. Our results show
that meaningful correlations appear on two levels: (i) locally,
that is between a sector and its direct neighbors and (ii) globally
on ‘traffic highways’, that is between sectors that are connected
through a flight route with high traffic densities. This is true
for both, the European- and the Japanese Airspace. Moreover,
all correlations are positive and their time-lags correspond to
the average travel times. No unexpected correlations have been
found. We conclude that no systematic strategies to compensate
strong delays are applied by controllers. The results are useful
to justify predictive congestion models for future flow planning.
They also give a first insight into how controllers deal with their
workload, although a more detailed analysis is required to explore
this topic.

Index Terms—Flow analysis, correlation analysis

I. INTRODUCTION

Airspace is divided into geographical regions, called sectors.
A flight plan is a sequence (Si,t1),...,(Sn,tn) of sectors
S; and entry times t; in the sector. Due to uncertainties
(weather conditions, congestion etc.), aircraft can deviate from
their flight plans. [BLHMOS] classify the major sources of
uncertainty as

o Demand uncertainty: flights fail to meet planned depar-
ture, arrival or en-route travel times. Contributing factors
are mechanical problems, boarding passengers or weather
conditions.

o Capacity uncertainty: airport and airspace throughput
levels vary. Contributing factors are weather conditions
and changes in flight sequences that disturb scheduled
departure or arrival spacing.

o Flow control uncertainty: actions are taken by the traf-
fic controllers in response to demand and capacity un-
certainty. Examples are re-routing, re-sectorization and
temporary capacity limitations. The human element of

decision making adds another layer of uncertainty to the
whole system.
Deviations from flight plans lead to gaps between the planned
and the real number of aircraft entering flight sectors. For
example in the year 2004, 17.7 % of European flights
departed- and 18.5 % arrived more than 15 min behind their
schedule [EURO6].

Obviously, a gap between planned and real number
of entries in a sector S in time slot ¢ propagates to its
neighboring sectors in slot ¢ 4 1, because aircraft cannot stand
still. On the other hand, pilots and air traffic controllers can
compensate gaps by re-routing or speed adjustments of all
aircraft.

In this article we analyze past flight data to see how such
gaps propagate in reality through the airspace. Are there
strategies of controllers to compensate the gaps successfully?
We will look at (i) local propagation, that is propagation
between a sector and its direct neighborhood and (ii) global
propagation, i.e. between a sector and any other sector in
the system. Based on such knowledge flow planning can be
improved, because systematic gaps can be controlled, once
their mechanisms are understood.

The article is divided into two parts and a conclusion: in
the first part we explain the method and give some examples
from literature. In the second part we report our results. We
conclude with a critical comment and motivate future work.

II. METHOD AND RELATED WORK

We consider Z; = [Z1t,Z2ty s Zmt) s, Zit € Z as a
random process where Z; represents the gaps between
planned and realized number of aircraft entering sector i
in time slot ¢. Our aim is to study the correlation structure
of the process. Positive correlation between two sectors ¢
and j in time slots ¢; and ¢ has the meaning that gaps
above average in sector ¢ and slot ¢; are associated with
gaps above average in sector j and slot 5. As mentioned
above, we expect such correlations between neighboring
sectors. But we are more interested in unexpected correlations
in the real traffic data. For example, take a sector with a
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crossing of two routes. When a traffic peak on the first route
is predicted to arrive at the sector some time ahead, the
controllers could coordinate with sectors on the second route
to re-route aircraft for compensation. Such a strategy would
cause negative correlation between the sectors along the two
routes. Likewise, vanishing correlation between two sectors,
when conditioned on the value of other sectors, might help
reveal network effects.

Related work from the ATM domain can be found in the
analysis of flight data on a sector level: [WCGMO3] and
[WSZ105] analyze uncertainties in sector demand. One of
their observations is that flow control actions against con-
gestion are visible in the data, in cases that the predicted
peak counts are greater than some alert value displayed in the
Enhanced Traffic Management System (ETMS). [RSWBO06]
analyze radar data to identify traffic flows in the U.S. airspace.
They define a flow as a cluster of aircraft with similar
trajectory properties. A trajectory is a high-dimensional vector
of geographical components. They apply several clustering
techniques to the data. But even after enhancing the data set
with additional features (e.g. aircraft type), they conclude that
none of the algorithms provides satisfactory results for practi-
cal purposes. A correlation analysis of sector data, as proposed
in our article, has not been identified in literature review. This
might be due to the known difficulties in the interpretation
of auto- and cross correlation coefficients [Ken89], [Dig90].
On the other hand, correlation analysis is the first step in
an analysis of multiple time series, as for example applied
to highway traffic prediction in [KP0O3]. In what follows, we
analyze the risk of misleading coefficients in our data before
visualizing the most interesting correlation patterns. This is
exploratory work with the aim to generate new hypotheses
about the phenomenon.

A. Inference for cross-correlation matrices

In this part we define the sample correlation matrix func-
tion between multiple time series and derive bounds for the
variability of its coefficients.

1) Estimation: We use the standard estimators of lag-k
crosscorrelation

. B ij (k)
7o) = B0, 017
with sample crosscovariance elements

1
n—k

n—k
ij (k) = > (Zin = Z)(Zjsr — Z))
t=1

where N
- 1
Zi=— Z Zit
n
t=1

are the component-wise sample means of an observation
consisting of n time slots.

These estimators are asymptotically normally distributed
[Ken89]. Modifications exist to address issues of bias and
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Figure 1. Histogram of estimated correlation coefficients. Bold: empirical
distribution. Blue: empirical null distribution. Triangles: local false discovery
rate. Data: Japanese Airspace.

high-dimensionality [Ken89], [LW04] and [SS05]. A disad-
vantage of the latter approaches is that the sample properties
of their estimators are not known. Note also that the matrices
do not have to be invertible for our study.

2) Sample Variability: Our objective is to decide whether
the coefficients of the correlation matrix differ significantly
from 0. For this, the variance of the sample correlations has
to be known. For a large number 7 of independent observations
the variance of a single sample correlation coefficient under
the hypothesis that the true correlation is O is ﬁ [Sap06].
There are two reasons why this result cannot be used directly
in our analysis: (i) our observations are not independent and
(ii) there is a large number of hypotheses to be evaluated.

a) Bartlett: When observations are dependent, a result
from Bartlett gives insight into the problem [KSO83]. It shows
that when the stationary series Z;(t), Z;(t) are uncorrelated
and estimated from a single realization

1
n—=k

> piis)psi(s) (D

S§=—00

Vipi (k)] =

This means that even for large n, the variance of the
sample correlations depends on all correlations of the original
processes, which are generally unknown. Consequences are (i)
a risk of ‘spurious’ correlations and (ii) that it is impossible
to estimate these quantities directly from a finite sample.
In practice, approximations are often used, for example by
assuming that the individual series correspond to white noise
(for example after pre-whitening).
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Figure 2.
. Pmaz 1l 001 | 005 | 01 | 02
max
10 T.002 | 1.05 | 120 | I8
75 1.015 | 1375 | 2.50 | 7.0
100 1.02 | 150 | 3.00 | 9.0
150 1.03 | 175 | 4.00 | 13.0
Table I

VARIANCE INFLATION AS A FUNCTION OF SERIAL CORRELATION

To characterize the risk of spurious correlation in our
instance, we calculate the variance inflation for several depen-
dency structures compared to independent observations due
to Bartlett’s formula. Looking ahead to Figure 4 we used
scenarios with a low amount of constant dependency p.,ax
up to time-slot /,,,4, in order to obtain upper bounds for the
inflation. The dependency structures are the following:

s < lmaz
else

Pmazx

pite) =5t = { 4

Under this structure, equation 1 becomes

1 o 1
n—k Z Pz‘zi(s) = ni(l + 21"lﬂ1pfnam)

V(5 (k) < —

§=—00

Table I shows nV (p;;(1)) for different values of py,q, and
Imaz: For example, for a correlation of p,q, = 0.1 up to lag
lmaz = 10, an inflation of 20% would occur. For stronger
correlations, an explosion of the variance can be seen (bottom
right part of the table). Again, looking ahead to Figure 4,
we expect weak correlations in our series. We can expect
30 - 70 % increase of variance with respect to independent
realizations.

b) False discovery rates: The second problem is that of
the large number of coefficients to be evaluated. Classical
hypothesis tests would expect a large number of rejections

Airspaces. Left: European Central Airspace. Right: Japanese Airspace.

by their very nature [Efr04]. [ETSTO1] proposes a heuristic
method to identify a number of ‘interesting’ coefficients in
large-scale testing contexts. They define the local false dis-
covery rate

fdr(p) = fo(p)/f(p)

where fo(p) is the density of uninteresting coefficients and
f(p) the density of all coefficients. fdr is the expected
proportion of of null coefficients in a selection of coefficients
with value p. Interesting coefficients are those with
fdr(p) < ¢, a threshold value, comparable in meaning
with the significance level of classical tests.

Figure 1 shows the histogram of all 21*%21*%30 = 13230
cross-correlation coefficients in our matrix for the Japanese
Airspace (please see below for details on the selection of the
21 sectors). It has been estimated from 11 days of data, each
consisting of 288 observation intervals. The bold line (green)
is the empirical distribution, fitted by a polynomial of degree
3. The dotted blue line is the empirical null distribution,
fitted by Efron’s method. It is a normal distribution with
unknown variance. Both distributions look almost identical;
small differences can be seen at the peak and p ~ O0.1.
The triangles mark the interval, outside which the computed
fdr < 0.2. Finally, the pink bars represent the estimated
mass of non-null coefficients. The majority of their mass lies
inside the fdr interval. We obtain three results: (i), correlation
coefficients above 0.12 can be regarded as interesting, (ii), the
standard deviation of the empirical null distribution is 0.033,
which is & 86% larger than the null variance for independent
observations (for 11 days, each 288 observations). This is in
agreement with the results from the previous paragraph. And
(iii), a risk that interesting coefficients will be undetected
exists.

To summarize, we analyzed how dependent observations
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and a large number of variables affect statistical methods to
infer significant correlation coefficients. The first approach
showed that a variance inflation has to be expected and the
second that there is risk of leaving interesting coefficients
undetected. Both methods suggest a rather small critical value
for interesting coefficients. At this point we remind that we
wish to explore meaningful patterns of correlation rather than
single coefficients. Subjective judgement may prove useful in
this task.

III. RESULTS

We analyzed correlations in the European and in the
Japanese airspace. The left part of Figure 2 shows the most
congested part of the European Airspace. It comprises 31
sectors covering London, Zurich and Berlin, belonging to 9
control centers. The daily number of aircraft is about 8000
for this area. The yellow routes are from North to South and
the brown ones from South to North. Between London and
Frankfurt, one can see a bi-directional high density route.
The Japanese airspace can be seen in the right part of Figure
2. Our area of interest contains 21 sectors, covering Fukuoka
(south), Tokyo (center) and Sapporo (north). These sectors
belong to 3 control centers. For these sectors, more than
85 % of the entry-times of the aircraft could be determined
accurately. About 4000 aircraft use this part of the airspace
every day. One can see high traffic routes from/to Tokyo
(yellow, blue) as well an important number of over-flights
(pink).

More formally, we consider the vector of random processes
GAP,; = PLN,; — REAL;,t € R, where the ith component
GAP;y = PLN,;; — REAL;, represents the gaps between
the planned and realized number of entries in sector i. The
process is observed in 5 minutes time intervals, leading to
288 samples per day. For the European Airspace, 91 week-
days are available (Mon-Thu) in the summer period May, 13
- Sept. 29. 2004. For the Japanese Airspace, 11 days from
August and November in the Year 2006 are available.

c) Time-Plots: Typical time plots of one component
process GAP;; can be seen in Figure 3. The top panel
shows a sector from the European Airspace, the bottom
shows an example from the Japanese Airspace. In both, the
gaps fluctuate around 0, the variance looks constant during
the day (7-19h). The marginal distributions of the processes
turned out to be symmetric, as expected (not shown). In
the following, we assume that the component processes are
second-order stationary during the day.

d) Cross-correlation plots: We now analyze in more
detail cross-correlations between local neighbors (local
correlation) and between far lying sectors (non-local
correlation). Figure 4 shows typical cross-correlation matrices.
In the left panel, the 2x2-matrix from the two neighboring
sectors TO1 and T27 from the Japanese airspace are shown.
The diagonal elements correspond to the autocorrelation
functions (acf) up to lag 30, corresponding to 2h30. Both

[ Airspace | Type [[ avg [ max ]
Eurone local 0.19 | 0.34
P non-local || 0.16 | 0.24
Japan local 0.24 | 0.28
P non-local 0.23 | 0.36
Table II

SUMMARY STATISTICS FOR CORRELATION COEFFICIENTS. TOP:
EUROPEAN AIRSPACE. BOTTOM: JAPANESE AIRSPACE.

[ Airspace | Type [[ # coeffs | lag-range |
E local 1.29 [-4, 3]
WOPE 1 hon-local || 1.09 [-6, 6]
Japan Tocal 43 [-4, 2]
P non-local || 5.2 [-8, 8]
Table III

SUMMARY STATISTICS FOR CORRELATED SECTORS. TOP: EUROPEAN
AIRSPACE. BOTTOM: JAPANESE AIRSPACE.

show no peaks. The off-diagonal elements display the
cross-correlations for positive lags in the upper diagonal
p(GAP;;, GAP; 1) and negative lags in the lower diagonal
p(GAP;;, GAP;,_1). A peak at lag -3 has value 0.26. Its
neighbors (lag -2 and -4) show still some higher value than
the remaining ones. These three coefficients are the only
interesting in the plot.

For more insight into correlation between far lying sectors,
we analyze the two sectors EXH and EUY from European
Airspace. They are separated by the two sectors EUF and
EXE. Their correlation matrix function is plotted in the right
panel of Figure 4. A decay of autocorrelation, starting from
-0.1, can be seen. A peak in the cross-correlation is found at
lag -5.

Table II summarizes the significant correlations of the full
cross correlation matrices. In Europe, local correlations are
on average 0.19 and have a maximum of 0.34 (columns 2,
3). The non-local correlations are on average 0.16 and have
a maximum of 0.24. In Japan, the local correlations are on
average 0.24 with a maximum of 0.28. And the non-local
correlations are on average 0.23 and have a maximum of 0.36.
All correlation coefficients are positive. Table III summarizes
how two sectors are correlated. Of interest are the number of
significant coefficients (at different lag values) and the time
lag of these coefficients. In Europe, for locally correlated
sectors, 77 % have exactly one significant coefficient, 19 %
have two and 4 % three or four, leading to an average of
1.29 coefficients (column 2). In the Japanese Airspace, the
average number is 4.3. For non-locally correlated European
sectors, 91 % have exactly one and 9 % have two significant
coefficients, averaging 1.09. The Japanese is higher again,
with 5.2 significant coefficients per correlated sectors. Local
correlations occur between lags -4 and 3, and non-local
ones between lags -6 and 6 (column 3) in the European and
between lags [-4,2] and [-8,8] in the Japanese Airspace. The
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Figure 5.

higher average values in the Japanese Airspace have been
analyzed further: there are generally many coefficients close
to the critical value. This can be attributed to the higher
sample variability as compared to the European data, because
of the smaller sample size and because of the quality of the
Japanese Airspace data [Gwi08].

The weak autocorrelation of the component processes and
the sparse number of peaks in the crosscorrelation matrices
suggest that the correlation structure in the system (i) does
not contain spurious correlations because the component
processes do not imply a severe variance inflation and (ii)
has an intuitive explanation: all coefficients lie in the range
of expectation since the traversal time for one sector lies
between 6 and 10 minutes.

e) Visualization of correlation matrix: The correlation
matrix functions for all 31 European and all 21 Japanese
sectors were estimated up to lag k& = 30, corresponding to
2.5 hours.

Figure 5 visualizes the results. An arrow between two
sectors (7, ) represents a significant correlation at least one
lag k. Positive and negative lags have opposite arrows. Local
correlations are drawn in red. They reproduce almost the route
network. For example, in the central flow (Frankfurt-London),
they are bi-directional, whereas in the flow from Zurich to
London, they are mono-directional. Non-local correlations are
plotted in green. They reproduce only routes with high traffic
densities. No correlations between two sectors that are not
connected by a route are found.
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Visualization of the cross-correlation matrix. Left: Europe, Right: Japan.

IV. CONCLUSION AND FUTURE WORK

We analyzed how gaps between planned and realized traffic
propagate through the European and the Japanese airspace. For
this we did a correlation analysis for the most congested part of
the systems. Because of the motion of aircraft, gaps propagate
to neighboring sectors, expecting positive correlation coeffi-
cients. The question in the analysis was whether there are
unexpected coefficients. Such coefficients would be caused
by traffic controllers or flow managers who compensate for
high gaps by re-routings or speed adjustments. Such strategies
would often lead to negative correlation coefficients. We first
analyzed the risk of obtaining misleading coefficients in a large
correlation matrix. Then, we analyzed data from the European
and Japanese airspace.

Our main results were:

o European and Japanese Airspace show similar patterns.

o significant cross-correlations appear on two levels: (i)

locally, that is between a sector S and a direct neighbor
and (ii) on high density routes, that is between two sectors
51,59 that are connected through a flight route with high
traffic densities.

o all correlations are positive.

o their lags correspond to the average traversal times.

No unexpected correlations have been found, and none of
the correlations appears to be induced by the autocorrelation
structure of a component process.

On the other hand one can argue that systematic re-routings
would cause only weak correlations. Also, correlation assumes
that the only source of covariation lies in the two variables
under study. Indeed, the average strength of correlation was
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0.2 in our data sets. This means that the non-existence for such
strategies cannot be concluded; it can only be confirmed that
such strategies currently show very weak effects in the counts
of aircraft entering flight sectors. Such information is useful
for demand prediction based on traffic densities: network-
effects from far-lying sectors appear to have negligible effect.
In order to get a deeper understanding of how controllers treat
high workloads, a more specific model should be built. As a
next step, inspiration for the construction of semi-empirical
models (of conflict probabilities) can be found in the work of
[JarO3]. This work is a step toward the identification of the
mechanisms that lead to congestion in air traffic. Based on
this, flow planning can be improved by taking into account
the traffic predictions.
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VI. VALIDATION

Figure 6 shows 4 scatter plots of variables in the system.
The two upper ones are from the Japanese- the two lower
ones from European Airspace. In each panel the bold line is
the sample mean. It is reasonably linear. No other functional
form of dependency is visible, neither. The first and third have
significant coefficients of linear correlation. The second and
fourth ones have not. Thus, linear correlation as a measure for
dependence seems justified, even if the dependency between
the variables is visibly weak.
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Abstract— This paper is a continuation of previous
research on optimal airspace configuration. It is expected
to improve the predictability and the flexibility of the
airspace management process by computing realistic pre-
dictions of the sectors opening schedules in En-route ATC
centers. In previous papers, we selected relevant complexity
metrics to predict the controllers workload, using neural
networks trained on recorded airspace configurations. We
also introduced new algorithms to build optimally balanced
airspace configurations, exploring all possible combinations
of elementary sectors.

As a result of this previous work, we were able to
compute realistic schedules on a whole day of traffic, using
complexity metrics that were computed from recorded
radar tracks. The raw metrics, however, showed high vari-
ations in time which caused a 'configuration switching'
phenomenon. Although the number of control sectors in
the computed schedule stayed globally close to the recorded
number of sectors, the airspace was reconfigured much
more often than in reality. The present paper shows how
the input metrics can be smoothed in order to avoid this
problem, and what may be the subsequent problems caused
by the smoothing strategy.

INTRODUCTION

Over the years, and in a context of increasing air
traffic demand, there has been a growing need to increase
the capacity of the Air Traffic Management system.
Improving the predictability of the system’s response to
the traffic demand is also a crucial issue, as it would
allow a better use of the existing resources and an earlier
anticipation of future congestions.

The work presented in this paper is the continuation
of previous research on airspace configuration schedules
([11, [2], [3]) and air traffic complexity metrics ([4], [S])
previously led at the Global Optimization Laboratory
(CENA/ENAC) and now continued within the Planifica-
tion, Optimization, and Modeling team of DSNA/DTI-
R&D. The initial aim of this research is to compute
realistic sectors opening schedules for en-route air traffic
control centres, given an input traffic demand on a
chosen day.

The current FMP/CFMU working method to build
airspace configuration schedules relies on pre-defined
sectorization scenarios, where the incoming traffic flows!
are matched against the sector capacities’ to detect

' The metric used is the "incoming flow", also called "flight counts"
or "traffic-volume" in some Eurocontrol documentations ([6]) or "traf-
fic load" in the CFMU handbook. For a sector, it is the number of
flights that will enter the sector within the next 60 minutes (or any
other chosen period of time).

2The sector capacity is defined as a threshold value on the number
of flights that may enter the sector in a chosen period of time.
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potential overloads. Although it may prove effective in
practice as it relies on the FMP/CFMU operators experi-
ence, this method is not grounded on a solid assessment
of the actual controllers workload. Consequently, imple-
menting any strategy to optimize the airspace schedule
on this basis may lead to unexpected results (see [1]).
Another drawback of the current method is that only
a small subset of all possible airspace configurations is
used.

In [3], new algorithms were proposed, using more
relevant complexity metrics to assess the controllers
workload, and exploring all possible combinations of
elementary sectors to build optimal airspace configura-
tions. As a result of this previous work, we were able
to compute realistic airspace configuration schedules on
a whole day of traffic, using raw complexity metrics
computed from recorded radar tracks. The raw metrics,
however, showed high variations in time which caused
a "configuration switching" phenomenon. Although the
number of control sectors in the computed schedule
stayed globally close to the recorded number of sectors,
the airspace was reconfigured much more often than in
reality.

The present paper shows how the input metrics can
be smoothed in order to avoid this problem. The next
section first provides a short overview of the current re-
search on airspace configuration and air traffic complex-
ity. Section II describes the algorithms used to predict the
sector status and to build airspace configurations, mainly
focusing on the few improvements that were made since
[3] was published. The experimental procedure applied
to select the best smoothing parameters is described in
section III. Results are provided in sections IV and V.
Section VI concludes this paper.

I. OVERVIEW
A. Airspace configuration

Current research on airspace configuration is manifold
and may deal with strategic airspace partitioning (see
[7] and included references, [8]), pre-tactical sectors
opening schedules ([9]), or tactical airspace management
([13]). In this paper, we are mainly concerned with pre-
tactical airspace configuration schedules, although some
of the proposed algorithms may also be used in tactical
applications, provided the complexity metrics being used
are relevant in that context.

The FMP/CFMU working method to build sectors
opening schedules was shortly described in the intro-
duction. Current research led by Eurocontrol proposes
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short-term improvements of the Flow Management pro-
cess, mainly by avoiding unecessary regulations when
building sectors opening schemes ([9],[6], [11]). One of
the main concerns is the network effect observed in ATM
regulations ([12]). These studies still use incoming flows
and sector capacities, and a small number of pre-defined
configurations.

In the United States, the main concern seems to be the
dynamic adjustment of the airspace structure to the traffic
flows reroutings caused by severe weather conditions. It
is expected that more flexible boundaries would allow a
more efficient use of airspace and increase the overall
capacity. In [13], pre-defined scenarios of airspace sec-
torizations associated to traffic rerouting scenarios are
proposed as a short-term improvement to the current
practice.

A more dynamic resectorization with flexible bound-
aries is envisionned in future operational concepts ([14],
[15], and some SESAR Operational Improvement steps).
It is expected that moving the sector’s boundaries in
real-time to adapt to the traffic demand would increase
the capacity and the efficiency of the ATM system.
The actual capabilities and potential benefits of this
new operational paradigm are still largely unknown at
this early stage, however. There is also some concern
that unlimited flexibility in the sectors boundaries would
lead to a loss of situational awareness by the air traffic
controllers (see discussion and litterature review in [16]).

The work presented in this paper is more medium-
term research, trying to improve the predictability and
the flexibility of today’s airspace management in Europe.
The idea is to find the optimal combination of elementary
(or modular) sectors that will provide the maximum ca-
pacity to a given input traffic, and balance the controllers
workload as best as possible among the control sectors.

This airspace partitioning problem would be difficult
to solve without choosing a heuristic if every combina-
tion of sectors was possible. The partitionning of the
whole ATCC'’s airspace into control sectors is highly
combinatorial ([2]), even with relatively few elementary
sectors. Hopefully, the list of possible control sectors
(either elementary or collapsed sectors) that can be
operated in an air traffic control center is relatively
small®, as not all combinations of elementary sectors
are operationnally valid*. So we may explore all valid
airspace configurations, which may be built with oper-
ationally valid control sectors only, using classical tree
search methods ([1], [3]).

These algorithms are applied to the prediction of
airspace configuration schedules, optimally balancing the
workload among the control sectors. Consequently, we
need a way to assess the controller’s workload, and it was
proposed to use relevant air traffic complexity metrics to
that purpose ([4], [5]).

3The list of control sectors is available from the ATCC’s database
4One usually does not merge sectors which are not geographically
connex, for example.
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B. Air traffic complexity

A multitude of air traffic complexity metrics have
been proposed in the litterature (see [17] and [18] for
a review), and many studies tried to correlate some of
these metrics to the controllers workload, using various
methods: linear ([19]) or logistic ([20]) regression, cross-
sectional time series analysis ([21]), neural networks
([22]),... Many ways to quantify the controller’s work-
load have also been tried: physical activity ([23], [21]),
physiological indicators ([24], [25]), simulation models
of the controller’s tasks ([26], [27]), subjective ratings
([19], [22], [20]). The reader may refer to [4] for a
discussion on these variables. Let us just say that, in
addition to being subject to noise and biases®, most of
the above dependent variables require relatively heavy
experimental setups to collect the data, usually with the
active participation of controllers. Databases are often
small and might exhibit low variability, which may in
turn harm the statistical relevance of the results.

In order to avoid some of these drawbacks, we pro-
posed a new dependent variable for which a large amount
of data is available from the ATCC databases, and
which does reflect an operational reality. The basic idea,
introduced in [29], is that the decisions to split (resp.
merge) a sector are mostly taken when the controller
is close to overload (resp. under-load). So the sector
status (merged, operated, or split) is directly related to
the controller’s workload and may therefore provide an
acceptable dependent variable. In [4] and [5], neural
networks were trained on recorded patterns of metrics
and sector statuses® to select the most relevant metrics
for our airspace configuration problem.

The proposed method allowed to select a subset of
only 6 relevant indicators among the initial 28 cho-
sen from [19], [22], [30], [31] and other sources. The
airspace configuration schedules obtained with these
metrics as input were quite realistic ([3]) when computed
from recorded radar tracks. In this previous work, how-
ever, the input metrics were not smoothed, and a "con-
figuration switching" phenomenon was observed. Let us
now see, after a short description of the algorithms, if
smoothed metrics provide better results.

II. ALGORITHMS

Our aim is to build a realistic schedule of the airspace
configuration throughout the day. To that purpose, one
needs first a correct assessment of the workload gen-
erated by the traffic throughput in a control sector,
and second an algorithm exploring all possible airspace
configurations to find out the optimal one, with respect
to the workoad balance over control sectors.

A. A neural network to predict the sector status

Neural networks are used to issue sector status proba-
bilities for each control sector of a candidate configura-

Ssuch as the subjective ratings recency effect denounced in [25], or
raters errors in the case of "over-the shoulder workload ratings" [28]

®In our case, a pattern is a vector of complexity metrics measured
at a time ¢ in a given sector, together with the sector status (merged,
normal, or splif) that was recorded at this time.
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tion. Beyond the similarities with the biological model,
an artificial neural network may be viewed as a statistical
processor, making probabilistic assumptions about data
([32]). A training set of patterns is used to determine
a statistical model of the process which produced this
data. Once correctly trained, the neural network uses this
model to make predictions on new data. The reader may
refer to [33] and [34] for an extensive presentation of
neural networks for pattern recognition.

In our case, the neural network is trained on recorded
airspace configurations, considering the actual status
of each control sector : merged when the sector is
collapsed with other sectors to form a larger sector (low
workload), normal when the control sector is opened
(normal workload), or split into smaller sectors operated
separately (high workload)’. The input variables are the
relevant complexity metrics, or any candidate subset of
metrics, normalized by substracting the mean value and
by dividing by the standard deviation. The output of the
neural network is a triple of sector status probabilities
(pmergevpnormalypsplit)-

The network is unable to make complex recommen-
dations such as to split the sector’s volume in several
parts and then to merge each of these parts with other
sectors. It only recommends to merge the sector when
the workload is low, or split it when the workload is high,
or operate it normally when the workload is acceptable.
As we are necessarily in one of the above three cases,
the sum of the three probabilities pp,erges Prormats, and
Dsplit 18 always 1.

More details on neural networks applied to sector
status prediction, in the context of airspace configura-
tion, can be found in previous works ([3]). How these
networks were used to select the most relevant metrics
is described in [4] and [5]. The same network’s topology
and training algorithms are used in the work presented
here to select the most relevant smoothing strategy for
the input metrics.

The software implementation is different, though. In
previous works, the nnet R package developped by
Pr. Ripley was used. As it is envisionned in a near
future to try other types of neural networks, more suited
to time series, some new software® was developped.
A backprogation method® and a BFGS'® quasi-Newton
optimization method were implemented in Ocaml lan-
guage. The same stopping parameters as in previous
works with nnet were used.

TIrrelevant statuses, such as when a part of the initial sector is
merged with one control sector, and the other part with another control
sector, were discarded in the neural network’s training.

8 ANNIiML (Artificial Neural Networks in ML) is written in Ocaml
and should be made available soon, probably under GNU Lesser
General Public License.

9Backpropagation of the output error through the network’s layers
allows to approximate the partial derivatives of the error function with
respect to the weights

10BEGS (Broyden-Fletcher-Goldfarb-Shanno) is an iterative local
optimization method, starting from an initial point (weights values in
our case) and using an approximate hessian and the gradient of the
objective function to find a local optimum. Note that different initial
points may lead to different local optima.
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B. Tree search algorithms for well-balanced sector con-
figurations

As previously told, the neural network cannot issue
complex recommendations on how to reconfigure several
control sectors. A tree search algorithm was used to
that purpose, exploring all possible combinations of
elementary sectors, to find out the optimal one.

An optimal configuration is one for which the work-
load among the control sectors is balanced as best as
possible, while using the less possible ressources, and
satisfying operational constraints such as a maximum
number of available working positions for example.

Once again, we used the same algorithm as in [3]
to compute optimal airspace configurations, with a few
improvements that shall be detailed later in this section,
and with the aim to study the influence of the smoothing
strategy on the computed opening schedule.

Let us just describe the main features of this algo-
rithm. Starting at time t=0 with a configuration where
all elementary sectors are assigned to a single con-
troller’s working position, the situation is reconsidered
every minute of the day, using the status probabilities
(pmergeypnormalypsplit) of each control sector in the
current configuration to decide if the airspace should be
reconfigured or not.

The decision criterion may be straightforward (taking
the action corresponding to the highest probability),
or it may propose to take an action only when the
corresponding probability is close enough to 1, and when
the difference between the two highest probabilities is
sufficient. The first, straightforward, decision criterion
was called D1 in [3], and the second was name D2,
with decision parameters 7 (threshold on the difference
between the two highest probabilities, for merging deci-
sions), o (proximity of pperge to 1) and 3 (proximity
of pspiit to 1). Figure 1 illustrates criterion D2, showing
the evolution of the sector status probabilities just before
a "split" decision, when p,,;; reaches 1 — (3.
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Fig. 1. Example of sector status probabilities in NGA sector (Brest

ATCC) just before the algorithm decides to split the sector.

Once a decision to reconfigure some control sectors
is taken, the corresponding elementary sectors are re-
combined, exploring all possible partitions of this set.
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Some drawbacks of this local recombination method
were highlighted in [3], for example in the case where
the decision criterion triggers a "merge" action for two
control sectors which are not neighbours. This is typi-
cally a case where the local recombination leads to no
change, because the airspace should be reconfigured on a
larger scale. A solution to this problem is to reconfigure
the whole airspace in such cases. However, exploring
exhaustively the whole tree of possible configurations
by computing all of them becomes very rapidly compu-
tationnally intensive even with a relatively small number
of elementary sectors.

So the previous algorithm was improved as follows.
Local recombinations are made as before when the
control sectors that need to be reconfigured are geo-
graphically connected. If this is not the case, a full
airspace reconfiguration is triggered, using a Branch &
bound algorithm to explore all possible combinations.
The detailed description of this algorithm will be the
subject of a next publication, but the reader may refer to
[11, [2], and [29] where a very similar Branch & bound
algorithm is detailed.

A second improvement introduced in this paper is
about the cost function allowing to compare the can-
didate airspace configurations. A more simple and more
understandable cost function was designed, where the
cost depends on the number of control sectors and the
maximum probability in each category (merge, normal,

split).
An "ideal" configuration should have
(Pmerges Pman, Pspiit) = (0,1,0) for all its control

sectors. This is not always possible, so we need to
take account of overloaded or underloaded sectors, and
ill-balanced configurations. The cost of a configuration
¢, with a vector x of complexity metrics measured at
time t is expressed as follows:

cost(c,z,t)) = xx TXTT _TT TTL,_TT TITX

ki ks ks ks ks ks

where we have assigned:

o ky digits to the number of overloaded sectors,

e ko digits to the maximum value of p,p;;; among the
overloaded sectors, where the probability is suitably
scaled to the allowed number of digits,

o ks digits to the number of under-loaded sectors,

e ky digits to the maximum value of p,,erge among
the under-loaded sectors,

o kg digits to the number of normally loaded sectors,

o kg digits to the maximum value of 1 — prormai
among the normally loaded sectors,

With this cost, the first priority is to have the less
possible overloaded sectors, and if there still remains
some then the maximum probability pg,;;; among these
sectors should be as small as possible. The same ex-
planation stands for underloaded sectors. For normally
loaded sectors, we still want to use the less possible
ressources, but workload should be balanced as well as
possible among the sectors. So the minimum value of
Prormal among the normally loaded sectors should be
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as high as possible. This is why we use the maximum
of 1 — Prormal in the cost, so that minimizing this cost
will lead to more desirable configurations.

III. EXPERIMENTAL PROCEDURE

Each complexity metric x; may be smoothed by taking
its average value over a period of time [t — d1,t + 2],
where we may try different values for §; and &5 for each
metric.

For now, the metrics are computed on past data
(recorded radar tracks). In future applications, they may
be computed either from simulated trajectories following
flight plans, in the context of airspace configuration
schedules, or from real-time radar tracks and trajectory
predictions for tactical airspace management purposes.
For real-time applications, one may prefer to smooth the
metrics on a time window [t — d,t], considering only
the past positions of the aircraft. We decided to try this
strategy first, which may be applied also to simulated
trajectories for airspace schedules.

30 . i '
nb ——
avg(nb,-15,0)
5y avg(nb,-30,0)
avg(nb,-60,0)
=
g
:E
B
o}
=}
g
=
Z
400 450 500 550 600
Time (minutes)
Fig. 2. Raw and smoothed number of aircraft in N sector (Brest

ATCC). The splitting decision was taken at t=530 (vertical line).

As an illustration of the effect of smoothing on the
metrics, figure 2 shows the number of aircraft within
sector N (Brest ATCC), with different values of §. We
may notice the high variations in the raw aircraft count.
The vertical line shows when the decision to split the
sector into two smaller sectors was taken.

A. Testing different smoothing strategies

We would like to find out which combination of
metrics and smoothing parameters is the best. This is a
model selection problem. The main difficulties in model
selection are the choice of a search strategy (how to
explore the possible subsets of explanatory variables,
knowing that the number of combinations is usually too
large for an exhaustive search), and also the assessment
of each model’s performance (quality criterion, ability to
generalize to fresh data).

In this paper, we will consider different values for
the size of the smoothing window: 3, 5, 10, 15, 30, or
60 minutes. Ideally, we should make the same study as
in [4], [5] but applied to the 27 complexity metrics with
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all smoothing possibilities, which means 190 variables''.
The forward strategy that was used in previous works to
explore different combinations of variables would take
too much computation time, so it was decided to focus
on the 6 most relevant variables found in our previous
studies. These were the sector volume V, the number of
aircraft within the sector Nb, the average vertical speed
avg_vs, the incoming flows with time horizons of 15
minutes and 60 minutes (Fi5, Fgg), and the number of
potential crossings with an angle greater than 20 degrees
(inter_hori).

As a first approach, and keeping in mind that it
is a fairly restrictive search strategy, it was decided
to try different smoothing values, applying the same
smoothing window to all variables in the set of rel-
evant raw metrics. The reference set of variables is
REF={V, Nb,avg_vs, Fso, F15, inter_hori}. The other
combinations that were tested are SM3, SMS5, SM10,
SM15, SM30, SM60, which contain the same complex-
ity metrics, smoothed respectively using time windows
of 3, 5, 10, 15, 30, or 60 minutes.

B. Model selection and performance assessement

In our previous works ([4], [5]), the mean AIC'?
(averaged over the sample’s size) was used to compare
the performance of a given neural network on data
samples of different sizes (a training set and a test set),
and the mean BIC'3 was used to compare different neural
networks, trained on candidate subsets of complexity
metrics (models of different sizes). In this paper, we will
also use the mean BIC to compare the candidate models
and assess the improvements provided by smoothing the
metrics values, and the AIC to assess the generalization
performance.

Once trained on past data, it important to check if
the neural network also provides good predictions of
the sector status when feeded with new inputs. This is
generally done by splitting the initial data set in two
samples: a train set and a test set. This split-sample (or
hold-out) procedure is generally satisfying on large data
samples, but may be prone to overfitting '4 problems

127 metrics multiplied by 7 smoothing values (counting a zero
value for the raw metrics), plus the sector volume.

12 Akaike’s "An Information Criterion" AIC = 2\ —2In(L), where
A is the number of unadjusted parameters of the model (i.e. the number
of weights and biases of the network), and In(L) is the log-likelihood
error. When used for model selection with neural networks, AIC tends
to overfit (see discussion in [34], p. 61), leading to select bigger
models. The Schwartz’s Bayesian Information Criterion is usually
preferred.

13Schwartz’s Bayesian Information Criterion BIC' = 2\.In(N) —
2in(L), where N is the size of the data sample. The BIC criterion
gives a higher penalization than AIC to big models, but varies with
the size of the data sample, so it may not be used to compare the
performances of a neural network on samples of different sizes. Note
that AIC and BIC are not absolute criteria: their evaluation is specific
to the underlying "true" model, and only the relative differences in the
criterion’s value is useful.

4 Overfitting occurs when the statistical model fits very well the
data from which it was derived, but cannot generalize well on fresh
data. The number of parameters in the model (network’s weights for
example) and few data samples may both cause overfitting problems.
A neural network with too few weights may not be able to capture all
the variations of the response to the input x, whereas a network with
too many weights will more likely be subject to overfitting (see [32]).
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on small samples. It was used in [4] and [5] with good
results, but one may argue that the selected models may
only be fit to the chosen train and test sets, although
some tests on a second test set (another day of traffic)
proved also satisfying.

So is was decided to apply a more sophisticated proce-
dure, using first a k-fold cross-validation method for the
model selection, and second a split-sample method (or
hold-out validation) to assess the generalization perfor-
mance of the best model. The initial data set is randomly
split in two samples. The first one (training set) is again
divided in k sub-samples and used for an iterative k-fold
cross-validation allowing to select the best smoothing
parameter. Then, the neural network is trained on the
whole training set, and the generalization performance
is checked on the the fest set.

In our case, we applied a 10-fold cross-validation,
iteratively holding out one of the 10 sub-samples of the
training set to assess the candidate model, and training
the neural network on the 9 remaining sub-samples.
The Schwartz’s Bayesian Information Criterion (BIC)
is computed on the sample that was not used to train
the network. The BIC is averaged on the 10 runs for
each model. The best model is found by comparing the
average BIC.

Once we have found the best model, the neural
network is trained on the whole training set (the 10
samples). The generalization performance of the trained
network is assessed by comparing the AIC value found
for the training set to the AIC of the test set. As the
training method is an iterative local optimization (BFGS)
which may fall into local optima depending on the
chosen initial weights vector, ten training runs are made
with different random values of the initial weights!>.

C. Comparison of airspace configurations schedules

So far we have only detailed how to compare different
statistical models allowing to predict the sector status
from smoothed complexity metrics. Our final goal, how-
ever, is to build realistic airspace configuration sched-
ules. So we also need to consider the influence of the
smoothing strategy on the overall airspace configuration.

Ideally, the computed schedule should reproduce the
actual configurations recorded that day. However, there
is a high variability in the decisions made by control
room managers on how to reconfigure the airspace,
which comes in addition to the variability of decisions
on when to reconfigure. We may hope that our sector
status prediction could give an indication on when to
trigger a reconfiguration and allow to build realistic
configurations, but our algorithms may not compute
exactly the same configuration as in reality.

We will assess the realism of the computed schedule
by comparing the number of control sectors to the
actual number of sectors that were opened that day. The
Pearson’s correlation coefficient may give an indication
of the linear correlation between the computed and the

I5Note that the ten runs of the cross-validation were also made with
different random initial weights
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real number of control sectors. However it may not be
always reliable'® so we will also compute an ad-hoc
"dissimilarity measure" which is the surface delimited
by the two curves, divided by the surface of the real
schedule. With this measure, two identical curves shall
have a dissimilarity O if they are exactly superposed.
In addition, we will also consider the number of recon-
figurations throughout the day, which should be close
enough to the real one.

So we don’t have a unique quantified measure of simi-
larity between airspace configuration schedules for now:
the influence of the smoothing parameter on the opening
schedule is assessed by considering both the number of
control sectors and the number of configuration changes.

But before looking how smoothing the complexity
metrics may change the overall airspace configuration
schedule, let us show some results on the influence of
the smoothing parameter on the prediction of the sector
status.

IV. INFLUENCE OF SMOOTHED METRICS ON SECTOR
STATUS PREDICTION

The results of the 10-fold cross-validation with dif-
ferent values of the smoothing window are presented in
tables I, II, and III.

Set mean BIC | BIC std dev
REF 1.163 2.7TE — 2
SM3 1.156 3.0E — 02
SM5 1.141 29E — 02
SM10 1.117 2.4F — 02
SM15 1.114 2.4FE — 02
SM30 1.059 2.6E — 02
SM60 1.046 3.5FE — 02

TABLE 1

MEAN BIC VALUES AND STANDARD DEVIATIONS FOR THE
CROSS-VALIDATION

Table I shows the mean value and the standard devi-
ation of the BIC criterion over the 10 runs of the cross-
validation, for each candidate model. A somewhat sur-
prising result is that SM60 (smoothing over 60 minutes)
seems to provide the best results if we look only at the
mean BIC. However, considering the standard deviation,
it is not obvious that there is a true statistical difference
between SM30 and SM60. Note also that the model with
the lowest mean BIC is the one with the highest standard
deviation.

Tables II and III show the mean correct classification
rates and their standard deviations, over the ten runs,
for all classes (Global) and also for each sector status
class. Let us notice that the main improvement, when
smoothing the input metrics, is made for the class
corresponding to the normal domain of operation.

Let us now assess the generalization performance of
the models. As explained in the previous section, the

16The correlation coefficient between two equal variables  and y =
x will be 1. Let us note however that this coefficient is not sufficient
to actually measure how close we are to equality: the correlation
coefficient between a variable = and another variable y = x + d,
where d is a constant offset, will also be 1.
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Set Global Merged Normal Split
REF 82.074% || 88.353% | 62.799% | 90.322%
SM3 82.428% || 88.451% | 63.691% | 90.587%
SM5 82.673% || 88.545% | 64.279% | 90.75%
SMI0 || 83.454% || 89.401% | 64.918% | 91.548%
SMI5 || 83.784% || 89.365% | 66.066% | 91.699%
SM30 || 84.947% || 89.910% | 68.036% | 93.147%
SM60 || 85.811% || 90.698% | 69.798% | 93.242%

TABLE II
CORRECT CLASSIFICATION RATES
Set Global Merged | Normal Split
REF 0.446% || 0.616% | 1.543% | 0.572%
SM3 0.662% || 0.586% | 1.853% | 0.641%
SM5 0.662% || 0.852% | 1.275% | 0.556%
SM10 || 0.574% || 0.714% | 1.419% | 0.384%
SMI5 || 0.696% || 0.771% | 1.822% | 0.636%
SM30 || 0.648% || 0.568% | 1.667% | 0.794%
SM60 || 0.601% 1.091% | 1.488% | 0.794%
TABLE III

STANDARD DEVIATIONS OF THE CORRECT CLASSIFICATION RATES

neural network is trained again on the whole training
set of patterns (instead of 9 sub-samples in the cross-
validation). Ten runs were made with different random
initial weights. The difference with cross-validation is
that there are all made on the same training set.

FAIRFAX, VA, JUNE 1-4 2008

Training set Test set

Set mean AIC | AIC std dev mean AIC | AIC std dev
REF 0.765 1.2E — 02 0.781 1.5E — 02
SM3 0.750 1.3E — 02 0.757 1.3E — 02
SM5 0.743 1.6E — 02 0.751 1.5FE — 02
SM10 0.733 2.1E —02 0.744 2.3E — 02
SM15 0.710 2.2FE — 02 0.727 2.2FE — 02
SM30 0.681 1.5FE — 02 0.697 1.3E — 02
SM60 0.644 1.6E — 02 0.662 1.8E — 02

TABLE IV

GENERALIZATION PERFORMANCE: MEAN AIC VALUES AND
STANDARD DEVIATIONS FOR THE TRAINING SET AND THE TEST SET

Table IV shows the mean AIC values and the standard
deviation, over the 9 best results out of the 10 runs'’,
for each smoothing parameter. The neural networks
performances on the training and test sets are quite
close, with any smoothing parameter. All models seem
to generalize well, and show little differences in that

respect (see figure 3).

V. INFLUENCE OF SMOOTHED METRICS ON OPENING
SCHEDULES

The last section was dedicated to the influence of
the smoothing strategy on the performance of the sector
status prediction. Now, let us see how it modifies the
resulting opening schedules, comparing the different
models on a same day and for a chosen air traffic centre
(Brest ATCC, 2003, June 1st). The same algorithms

"In two cases, it happened that the choice of the random initial
weights and the training process relying on a local optimization led to
significantly less performing networks. So it was decided to remove
the ten percent less performing networks from the results.
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Fig. 3. Mean AIC for the training set and the test set.

were used for all models, with the same values for the
split/merge decision parameters (eta = 0.2,alpha = 0.1,
and beta = 0.3).

Set Correlation coeff. | Dissimilarity | Nb. config.
REF 0.9443 0.1169 101
SM3 0.9196 0.1489 202
SM5 0.9142 0.1510 179
SM10 0.9038 0.1783 125
SM15 0.9065 0.1681 140
SM30 0.9471 0.1094 34
SM60 0.9101 0.1426 23

TABLE V

CORRELATION COEFFICIENT AND NUMBER OF AIRSPACE
CONFIGURATIONS FOR EACH MODEL

Table V shows the correlation coefficient, the dissimi-
larity measure, and the number of configurations for each
model. All models show a good correlation, above 0.9
to the recorded number of control sectors. The number
of reconfigurations is fairly high when smoothing on
less than 15 minutes, showing a lot of "configuration
switching", whereas SM30 and SM60 are much closer
to the 28 airspace configurations that were actually used
that day. Considering the dissimilarity measure and the
number of configurations, SM30 seems to be the model
that is most similar to reality. Let us now have a closer
look at each computed schedule.

Figure 4 shows the reference situation, for Brest
ATCC (2003, June 1st). The number of control sectors
computed by our algorithm, using raw complexity met-
rics, can be compared to the actual number of control
sectors that where opened, for each minute of this day.
The evolution of the number of aircraft within the center
is also displayed, above the two other curves. Let us
remind that the number of aircraft is not sufficient to
explain the number of control sectors, as other complex-
ity metrics are also involved in the explanation of the
sector status, and as the traffic load may not be equally
dispatched among the sectors. It is still a good indication
of the overall traffic load, however.

We may notice that, while the computed output stays
globally close the recorded number of control sectors,

83

20 . . 100
Computed ——

: 80
z 60
= Q
= B
6 =
2 -
8 2
g 0 2

0
0 L L L L L L 20
0 200 400 600 800 1000 1200 1400
Time (minutes)

Fig. 4. Number of control sectors (computed schedule, real

configurations), and traffic for Brest ATCC (2003, June 1st), with REF
setup

it also shows many variations around the actual curve,
more or less following the traffic trends on that day.
Notice the peak of traffic around 20:00 UTC (1200
minutes after 00:00), where the curve of the computed
schedule apparently better follows the traffic trend than
the actual configurations (we shall see later that this
depends on the chosen smoothing parameter).

20 T T 100
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Traffic -~ 80
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= 60 £
£
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Fig. 5. Number of control sectors (computed schedule, real

configurations), and traffic for Brest ATCC (2003, June 1st), with
smoothed metrics (SM15)

Figures 5, 6 and 7 show the airspace schedule com-
puted with smoothed metrics, using a smoothing window
of 15, 30, or 60 minutes respectively. The traffic load’s
curve displayed on each figure shows the smoothed
number of aircraft, using the smoothing window cor-
responding to each model.

At this point, when comparing figures 4, 5, 6, and 7,
we may notice two phenomena which are not quantified
by the measures of correlation and the number of recon-
figurations. First of all, considering the peak of traffic
aroung 20:00 UTC (1200 minutes after 00:00), we can
see that the more you smooth the metrics, the less the
computed number of control sectors reflects this peak of
traffic. In fact, it becomes closer to the actual number of
control sectors.
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Fig. 6. Number of control sectors (computed schedule, real

configurations), and traffic for Brest ATCC (2003, June 1st), with
smoothed metrics (SM30)
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Fig. 7. Number of control sectors (computed schedule, real

configurations), and traffic for Brest ATCC (2003, June 1st), with
smoothed metrics (SM60)

The second conclusion that may be drawn from these
figures is that smoothing the input metrics leads to delay
the decisions to reconfigure the airspace. This is most
visible on figure 7 (SM60) where the "climbing steps”
corresponding to the split decisions in the morning and
the "descending steps" of the merge decisions towards
the end of the day are both on the right of the actual
curve. In other words, the sector status prediction seems
more performant on average when smoothing over 60
minutes'®, but smoothing too much leads to take late
split/merge decisions, thus delaying the moments at
which the reconfigurations should be triggered.

All these experiments were made using the same
decision parameters (eta 0.2, alpha = 0.1, and
beta = 0.3) for all models. These parameters also have
an influence on the moment at which reconfigurations
are triggered. Some other parameter values were tried
(eta = 0, alpha = 0.5, and beta = 0.5), with the aim to
improve the reactivity of the reconfiguration algorithm.
For SM60, the reconfigurations were triggered slightly

18 Although it was not such a clear-cut in deciding which of SM30
or SM60 was the best model, in table I

84

earlier but still the same phenomenon was observed, and
the number of configurations increased to 38 configura-
tions. Other trials were made, mixing metrics smoothed
over 60 minutes and metrics smoothed over 10 minutes,
with similar results.

So, smoothing the metrics over 15 minutes or less al-
lows a higher reactivity to the traffic variations, but with
much more reconfigurations than observed in real life.
Among the models that were tested, SM30 (smoothing
the input metrics over 30 minutes) seems the best com-
promise, considering the performance of the sector status
prediction, but also the realism of the computed airspace
configuration schedule. It seems to better capture the
moments at which the reconfigurations are triggered,
than when smoothing over 60 minutes.

VI. CONCLUSION AND PERSPECTIVES

The opening schedule computed with metrics
smoothed over 30 minutes showed a number of recon-
figurations close to reality, and with a number of control
sectors well correlated to the actual configurations. It
seems the best compromise among the models tested so
far with the chosen neural network topology.

In a pre-tactical context, smoothing over relatively
long periods of time may have positive consequences.
The model should be more robust to uncertainties on
aircraft trajectories when the complexity metrics will be
computed from flight plans instead of past radar tracks.

In regard to the instant workoad of a controller operat-
ing a sector at a time ¢, this smoothing strategy seems too
drastic and may lead to miss the exact moments at which
reconfigurations should be triggered, if this model was
to be used for tactical purposes in a dynamic airspace
management tool. An explanation is that only snapshots
of the traffic situation — i.e. metrics values measured at
time ¢t — were used to predict the sector status. We may
expect better results by considering the input metrics
as time series, and by using recurrent neural networks
instead of simple feed-forward networks. Provided this
approach proves successful, the airspace configuration
algorithms may prove useful for tactical purposes: flow
managers may issue what-if requests and get some
feedback on the resulting sectorization and workload
balance among the control sectors.

Further works shall adress both issues: improve the
statistical model by using time series and recurrent
networks to better capture the instant workload, and
test the current model on simulated traffic, using flight
plans as inputs, in order to predict the airspace opening
schedule for the next day. Other smoothing strategies
may also be tried, with different smoothing parameters
for each metric for example, or with smoothing intervals
centered on the current time.
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Abstract— Current air traffic forecast methods employed by the
FAA function under the assumption that the flight route network
will not change, that is, no new flight routes will be added and no
existing flight routes will be removed. However, in reality the
competitive nature of the airline industry is such that new routes
are routinely added between cities possessing significant
passenger demand while other city-pairs are removed. This
paper investigates models for forecasting network
reconfiguration that exploit knowledge of network structure in
the Air Transportation System (ATS), with the goal of improving
overall forecast that drives policy and infrastructure
enhancement decision-making.

Keywords-forecast; network theory; air traffic

L INTRODUCTION

In order to synthesize long term plans for new technology,
infrastructure improvements, policy enhancements, and
regulations for the Air Transportation System (ATS), an
understanding of air traffic dynamics is needed (i.e.,
determining how, when and where would air traffic arise or
shift in the future). To meet this need, the FAA Air Traffic
Organization (ATO) Office of Performance Analysis and
Strategy (PAS) produces air traffic forecasts to project future
demand, identify operational shortfalls, determine workforce
requirements, and estimate the benefits of future investments.
In the current forecast algorithm, the projected schedules are
based upon the assumption that the future route network
structure will be the same as the current network structure.
That is, no new direct service routes are added between cities
and, thus, the existing airline hub airports will continue to
operate as hub airports.

However, the flight service route network structure is likely
to change over time. The competitive nature of the airline
industry is such that new direct routes are routinely added
between cities with significant passenger demand and routes
are also removed when demand dwindles. In addition, the
location and number of airline hubs are not fixed; within the
past several years, two major hubs have been eliminated (St.

Louis and Pittsburgh), one airline hub opened and
subsequently closed (Washington Dulles International
Airport), and several other hubs were substantially
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restructured. Looking further, scenarios are now taking shape
in which environmentally-inspired imperatives may
significantly modify the feasible sets of operations and
network reconfiguration states. Overall, in order to enhance
the ATS forecast precision, a better understanding of
restructuring dynamics is required. Motivated by this goal,
research described in this paper is focused on investigating
several models for forecasting the mechanism of network
restructuring, in particular the aspect of new flight service
route formation. Families of parameters that describe the
network topology are used as predictor variables in these
models.

The remainder of the paper is organized as follows. After
an introduction to network theory and some examples of its
use in previous efforts for analyzing the ATS (Section II),
Section III describes the data source and assumptions for all
analysis. Detailed explanation of the three forecast algorithms
developed up to date, along with key implications will follow
in Section IV. Section V summarizes the interim results from
these forecast algorithms.

II.  NETWORK THEORY

A. Background

Multiple networks subsist in the overall ATS; the primary
ones are summarized in Table I. The transport network
topology was analyzed in the present study in which airports
(nodes) are interconnected by flight routes (links). Modern
Network Theory (also known as Network Science)'? has
produced powerful results from multiple domains (e.g.
physics, information, social science, biology) in recent years
concerning how real world networks evolve. Some researchers
have begun to explore application for analyzing air
transportation networks. Guimera et al analyzed the
worldwide air transportation network topology and computed
measures which characterized the relative importance of
cities/airports.” Bonnefoy and Hansman® used a plot of the
weighted degree distribution for light jet operations to
understand the capability of airports to attract the use of Very
Light Jets (VLJs). A significant body of work exists in the
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TABLE 1. MULTIPLE, INTERACTING NETWORKS IN THE ATS
Network Node (N) & Link(L) Time Scale
N : Homes/Business
Demand L : Demand for Trips Months/Years
- N : Origin/Destination
Mobility L : Actual PAX trips Days/Weeks
N: dirports
Transport L: Flight Routes Days/Weeks
N: Adircraft / Crew
Operator L: Mission Hours
N: Waypoints and Airports
Infrastructure L: Flight Routes Months
TABLE IL. DEFINITIONS FOR SELECTED NETWORK MEASURES
Parameter Symbol Description
Node N/A Airport
Node Number of flight routes
k; . ;
Degree existing at node i
Node w Amount of operations
Weight ! associated with node i
. . Amount of operations
Link Weight i between node i and j
Measure of local
cohesiveness for a node.
Clustering C Higher C; implies that it is
Coefficient ! more likely an alternate
connection path exists
when a existing link fails
A centrality measure of a
node determined by its own
and neighbors’ degree. In
the transport network, the
importance of one airport is
determined not only by its
own number of routes
Eigenvector . supported, but also the
Centrality ! number of routes and traffic
level of airports with which
it directly connects (an
airport with high
eigenvector centrality is
likely to be very busy itself
and also connected to other
busy airports)
Population* pop; Population within a 50 mile

radius of node i

related domain of operations research on the design of optimal
networks for particular instances and applications (e.g.
schedule for an airline). However, these approaches generally
do not pursue insight into the underlying structure of networks,
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5% error
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Predicted Number of Delayed and Cancelled Flights
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Actual Number of Delayed and Cancelled Flights x 10°

Figure 1. Prediction validation for 2004 delayed operations regression model
(each data point is an airport)

the role this structure plays in future designs, nor the interplay
between networks from multiple domains. Examination of the
ATS using network theory at the national level and assessment
of associated analysis models and techniques as a framework to
provide both insight into ATS structure and a useful systems
analysis has been a topic for our work®. The forecast of service
route restructuring presented in this paper is one example
application. Table II summarizes key network theory
parameters that will be discussed and utilized for the remainder
of this paper. More details can be found in [6].

The manner in which some of these parameters translate into
real world performance and operations metrics is also topic of
ongoing research®. One example of such a mapping is depicted
in Eq. (1). This expression is a multivariate regression model
for predicting the number of delayed operations for an airport
using its degree, clustering coefficient, eigenvector centrality,
degree weight and surrounding population as predictor
variables.

\/Delayed Ops per Year = 0.01928 + 0.147k; +
0.02606C; + 0.56722x; + 0.20758w; + 0.07462pop;. (1)
All variables are normalized using the corresponding
maximum value, and the model produces a good coefficient of
determination (R* = 0.95). The graph shown in Figure 1
displays the comparison between the actual and predicted
number of delayed operations (for airports that registered at
least one delay) for the 2004 ATS. A 5% error interval is also
included. Eigenvector centrality and degree compose the
majority of the regression model (significantly high F-values
and Type II Sum of Squares compared to the other variables in
the model). The number of expected delays can be forecasted
using Eq. (1), but in order to reduce traffic congestion more
attention should be placed on airports with not only high
degree but also higher eigenvector centrality since these two
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variables are anticipated to be the main source of operation
delays. The primary implication for utilizing network theory
as an ATS analysis tool, then, is that these measures can be
efficient indicators of network operational performance. Also,
focusing on the high-level characteristic of the ATS network
generates deeper understanding on the nature of the ATS
without being overwhelmed by its complexity.

III.

The primary research conducted under this study follows a
similar approach to the delay regression model presented in
the previous section. The objective is to determine if network
theory parameters can be utilized to identify unconnected city-
pairs that are most likely to connect in the future. The data
used for this study was obtained from Air Carrier Statistics
database family maintained by the U.S. Bureau of
Transportation Statistics’. In particular, the Form 41 T- 100
Domestic segment (All US Carriers) database was used to
construct the network studied. The BTS monitors 2627 total
airports; however, the ATS network analyzed in this study was
restricted to airports that had at least one cumulative
commercial flight since 1990. This criterion reduces the
network size to 887 nodes (airports). Several different
measures are available for use in defining a link, such as the
number of passengers, available seats, flights scheduled or
actually performed. Since the transport network was explored
in this research, a link was constituted by performed passenger
flights per year between airports. Each flight route was
required to have a minimum of 24 annual flights to be defined
as a link in order to filter out any spontaneous, irregular flights
that may bring ‘noise’ to the network analysis. To further
simplify the analysis, the ATS network was assumed to be
undirected and the number of arrival and departure operations
were simply added together to compute the w; and 7;;.

DATA SOURCE AND ASSUMPTIONS

The source of the ATS network evolution can be broken
down into four basic categories—flight route addition due to
network expansion or reconfiguration, and flight route
removal due to network contraction or reconfiguration.
Reconfiguration refers to the ‘re-wiring’ of links within a

100% IFI F 100% ql

50%

B Removal due to Network
Contraction

Percent of Occurrence
Percent of Occurence
2
&

B Addition by
Expansion

[ Addition due to
Reconfiguration

0810

9394 9597

B Removal due to

B,

0% 0%

90-91 9495 98-89 9091 9900 0203

Years

0203
Years

Figure 2. Variation in source of ATS network topology evolution
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defined set of nodes; no new nodes are added and no pre-
existing nodes are removed to create or destroy a link.
Network contraction and expansion are opposite to
reconfiguration, with links either being created by connecting
to newly developed nodes or removed by detaching nodes
from an existing set. Figure 2 illustrates the morphing of the
ATS network categorized in these four evolution sets—it can
be seen that the vast majority of the flight routes removed and
created are a result of network reconfiguration. Thus, all
forecast model and results described in the following section
will only examine the mechanism of flight route construction
due to reconfiguration. Investigation of the mechanism for the
other three evolution categories (flight route removal due to
network contraction / reconfiguration and flight route addition
due to expansion) can be done relatively easily by supplying
historical data sets to the algorithm that corresponds to the
evolution category of interest.

IV. ROUTE CONSTRUCTION FORECAST ALGORITHMS

Three prototype forecast algorithms were created,
compared and contrasted a) the logistic regression model, b)
fitness function model and c) the artificial neural network
approach. In this paper, the logistic regression model is
discussed in detail. A brief summary for each approach is
listed below.

Logistic regression is a statistical method to train a
probability curve for event occurrence based on historical data
input. The event for which the occurrence probability is
calculated will be the construction of a new flight route
between unconnected city-pairs and the inputs will be the
parametric characteristics of the flight route. The iteratively-
reweighted least squares (IRLS) method was utilized as the
algorithm to fit the regression model with historical data.

Fitness function model is a network growth logic which
operates under principles of the scale free network model
where nodes with higher importance, or fitness value, are
granted a higher probability to construct a new link. The initial
composition of the function that computes nodal fitness
projects growth that favors highly connected nodes (a hub-
and-spoke type growth) that is typical in the ATS today.
However, the fitness function can be modified to investigate
the efficacy of various types of network growth mechanisms
corresponding to a mix of different business models.

The Artificial Neural Network (ANN) is composed of a set
of interconnected neurons that mimic human brain activity in
attempting to develop optimal input-output mappings for
prediction. Though some underlying fundamentals are similar
to logistic regression, the ANN usually has higher precision.
One drawback is that the relationship between input and
output remains to be a ‘black box’—it cannot be expressed in
terms of explicit equations as is typical in conventional
statistical models. Also, due to the higher computational
requirements of the ANN algorithm, the network to be
analyzed via ANN must be kept relatively small.
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A. Logistic Regression Model

A new flight route in the network context represents a new
pathway between unconnected node pairs. The characteristic
of new routes can be described by observing the traits of the
airport pairs that create the route. The traits of the airport pair
can be captured from two perspectives: a) by examining the
list of parameters for each of the airports and b) by examining
the relative difference of parameters between the airports. A
record of network parameters (referred to as [parameter] list)
for each airport involved in a new route indicates the type of
airports that are most likely to be involved in a new
connection. On the other hand, a record of parameter
difference, or deviation, between the airport pairs produces a
pair-wise measure that may be better able to characterize new
connection formation. In particular, the type of connection can
be categorized into either homogenous (connection between
‘large-large’  airports or  ‘small-small’ airports) or
heterogeneous (connection between ‘small-large’ airports).
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Figure 3. Node weight list distribution for new flight routes established in the
ATS network between 1990 and 2005
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Figure 4. Node weight deviation divergence distribution for new flight routes
established in the ATS network between 1990 and 2005
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By combining insights from the parameter list and
parameter deviation traits of the airport pairs that construct a
new connection, the patterns that facilitate new flight routes
can be extracted. The histograms in Figure 3 and 4 illustrate
the distribution of node weight list and deviation for airports
that formed new flight routes in the ATS network between
1990 and 2005. Figure 3 shows that most of the nodes
involved in flight route constructions had relatively low traffic
(between 1 and 100,000 annual operations), and Figure 4
shows that the difference (deviation) in the traffic of nodes
involved in new links was mostly homogenous. The
implication is that most new flight routes are established
between airports that have lower traffic. A similar exercise
was carried out for the remainder of the network parameters
listed in Table II.

Parametric data are fed into the logistic regression model
via design matrix X which ultimately gives node pairs that
follow such trends higher likelihood of connection. Design
matrix X is structured as shown in Eq. (2) for which all
network theory variables in Table II are included, along with
the distance information between node i and j. The second
column of X; rij , signifies the occurrence of a new flight route
construction for node i and j between observation years. If a
new route is established between i and j a ‘1’ is placed in r;
and if not a ‘0’ is placed.

P L r, k k; abs(tk,—k;) w, @)
1 . . . . .
Based on the design matrix input, the regression model
computes the variable parameter estimates using the standard
iteratively-reweighted least squares (IRLS) algorithm and
feeds the estimates into Eq. (3) which computes the
probability of an unconnected node pair i will construct a new

flight route.
1 3)

—XX5,0j

connect,ij —

l+e

X, in Eq. (2) is a matrix that contains the network parameter
and parameter deviation information structured identically to X,
except X; only includes data for unconnected node pairs. The
design matrix X contains information for all connected and
non-connected node pairs for probability curve training
purposes. After Eq. (2) has been computed, Peopecrii 1S
compared to a random number (rand) between 0 and 1 and the
algorithm predicts a new flight route construction between
node i and j if Peoecr; > rand.

B. Accuracy Measures

Three accuracy measures are employed to assess the
forecast precision.

3)

number of correctly predicted routes
Accuracy 1 = f Y P

total number of predicted routes
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number of correctly predicted routes 4

Accuracy 2 =
number of actual new routes

Accuracy 1 shown in Eq. (3) was used to check how many
new routes the forecast algorithm was predicting in order to
obtain the correct new route. If the algorithm is predicting
thousands of new routes to acquire only few correct new
routes, accuracy 1 will be very low. On the other hand,
accuracy 2, shown in Eq. (4) simply describes how many of
the predicted new routes were correct, with respect to the
number of actual new routes.

Accuracy 3 is a special type of accuracy measure which
the coherence in distribution of characteristic trends for new
links between the data and forecast model is examined. This is
done by comparing the node parameter list and divergence
histogram curve from the data and forecast algorithm, such as
those seen in Figure 3 and Figure 4. The goal of employing
accuracy 3 is to make sure that the forecast methods are
predicting the future ATS network in the ‘right direction’; a
formal equation to describe accuracy 3 currently does not
exist.

TABLE III. SUMMARY OF LOGISTIC REGRESSION RESULTS FOR ACCURACY 3

Logistic Regression Results Distribution
(1990-2005 Cumulative)

Historical Distribution(1990-2005 Cumulative)
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C. Logistic Regression Results and Discussion

Results for an iteration of the logistic regression model are
shown on Table IV; output for each year is an average over 10
runs. Inputs to the model consist of all the network theory
parameters and deviation values for variables listed on Table
II as well as the distance between airport pairs. Forecasts are
done on a year-over-year basis; that is, parameters from only
the previous year are utilized for the forecast.

The ‘Correctly Predicted’ column indicates the total
number of correctly predicted routes for that year while the
‘Total Predicted’ column indicates the total number of
predicted routes from the forecast algorithm. The logistic
regression model has relatively high Accuracy 2 but low
Accuracy 1 across all years, indicating that the algorithm can
correctly forecast a significant number of new routes but does
so by forecasting many additional routes in the process.

Accuracy 3 outcomes for both list and deviation
distributions for degree and eigenvector centrality are shown
in Table III. The first important finding was that the
distributions produced by the logistic regression differ from
those observed from historical data. In particular, the logistic
regression allocates too much preference for connection to
airports and airport pairs with small valued network
parameters. This result, however, does not mask a second
important finding from these results: across both parameter list
and deviation distributions [for nodes with new connections],
new routes were being established primarily between ‘small’
airports, whether defining small by degree or centrality
significance. Appropriately, the logistic regression model
distributes higher probability to establish connections between
these small airports...it just distributes too much importance
to these. Owing to the fact that the current ATS network is
dominated by hub-and-spoke style architectures®, there exist
many small, spoke airports and very few large, hub airports.
Since there are more small nodes in the network, many small-

TABLE IV. SUMMARY OF LOGISTIC REGRESSION RESULTS
Correctl Total
Year Predictez Predictions Accuracyl  Accuracy 2
1990 N/A N/A N/A N/A
1991 83.7 1217.6 0.0700 0.4314
1992 88.7 1427.6 0.0624 0.4264
1993 68.8 1065.1 0.0658 0.4145
1994 80.0 1365.8 0.0594 0.4645
1995 146.7 1395.8 0.1077 0.3976
1996 82.6 1409.8 0.0596 0.4325
1997 78.2 1489.0 0.0535 0.3476
1998 62.7 1177.6 0.0552 0.3968
1999 71.3 1488.4 0.0488 0.4006
2000 113.6 1980.2 0.0580 0.3381
2001 52.0 1286.3 0.0410 0.3824
2002 388.8 2328.9 0.1676 0.2878
2003 128.2 1123.5 0.1159 0.2728
2004 120.5 1043.1 0.1157 0.2953
2005 104.4 1088.1 0.0970 0.2806
Average 111.3 1392.5 0.0785 0.3713
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to-small airport pairs arise as candidates for flight route
construction. Abundant small-to-small airport connection
candidates coupled with the forecast model favoring small-to-
small airport connections from historical trends results in
significant number of over-predictions for small-to small
airport connections. This conclusion is the message conveyed
from simultaneous consideration of Accuracy 1 and 3 metrics.

D. Brief Introduction and Analysis of the Artificial Neural
Network

The Artificial Neural Network (ANN) is composed of a set
of interconnected neurons that mimic human brain activity.
Through supervised back-propagation training techniques, an
ANN is able to achieve desired input-output mapping by
adjusting the weights associated with each neuronal
connection in the network. While the basic concept underlying
ANN is similar to that of the logistic regression, the ANN
usually has higher accuracy due to its higher degrees of
freedom. However, the relationship between input and output
for a trained ANN remains difficult to describe, unlike the
logistic regression model. Also, the size of the network that
can be analyzed with an ANN was restricted to a smaller size
(~250 nodes) than for the logistic regression model due to the
computational intensity of the ANN training algorithm.

The ANN approach proceeded via a feed-forward, fully-
connected network algorithm’. After training the ANN with
historical data, it was used to predict connections between two
airport nodes. To capture the ATS network dynamics, the
airport metrics for the previous three years were used at the
input neuron layer resulting in an input layer of 63 neurons, a
hidden layer consisting of 126 neurons, and a single output
neuron. The input neurons represent two airport nodes, the
hidden layer neurons used a fan-sig activation function, and the
output neuron used a log-sig activation function. The single
output neuron indicated the connectivity between the two
airport nodes—1 for connected, 0 unconnected. The training
data consisted of 50% of the historical data, while 25% was
used for testing and 25% for validation. Once again, it should
be noted that, for research reported here, the ANN was used to
forecast only a subset of the ATS, mainly due to current
computational limitations. In particular, historical data from the
American Airlines (composed of routes operated by American
Airlines, American Eagle and Executive Airline) and
Southwest Airlines Transport Networks were employed to
evaluate the accuracy of the ANN algorithm.

The trained ANN had extremely high accuracy rates in
predicting new flight routes, with a minimum value of 70% for
both Southwest and American Airlines Transport Networks.
The ATS network used for the ANN forecast algorithm was
abbreviated to 224 nodes (recalling that the logistic regression
model considers 887 nodes). The 224 nodes included in the
ANN training were the most active nodes in the ATS,
excluding smaller, inactive airport nodes. Results for the two
airline network forecasts along with translation to Accuracy 1
and 2 are shown below in Table V and VI.
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TABLE V. TRAINED ANN RESULTS (SOUTHWEST AIRLINES NETWORK)
Historical Data
Connect Disconnect
Network Connect 2850 1104
Simulation Disconnect 738 380706
Accuracy 1 =72.08%
Accuracy 2 =79.43%
TABLE VI TRAINED ANN RESULTS (AMERICAN AIRLINES NETWORK)
Historical Data
Connect Disconnect
Network Connect 7291 2788
Simulation Disconnect 2962 372357
Accuracy 1 =72.33%
Accuracy 2=71.11%

The results displayed in Tables V and VI are separated into
four cells. The sum of rows in the table describes the forecast
results by the ANN, and the sum of columns describes the
actual status of the unconnected node pairs. For example, in
the American Airlines results (Table VI), the ANN forecasted
a total of (7,291+2,788) 10,079 new flight routes (city pairs).
Out of this total number of predicted new routes, in actuality
7,291 formed connections as determined from the historical
data while 2,788 were disconnected (i.e., ‘false alarms’).
Similarly, the ANN forecasted that (2,962+372,357) 375,319
node pairs would remain disconnected but in actuality 2,962
out of these 375,319 made a connection. The overall accuracy
results of the ANN are impressive when compared to the
logistic regression model; however, it is difficult to extract any
insights on the ATS evolution mechanism itself, since the
relationships inside the trained ANN do not relate directly to
the meaning of the input data (it is just an optimal prediction
configuration). It is noted here again that the network size was
significantly reduced in the ANN case.

E. Brief Introduction and Analysis of the Fitness Function
Method

The fitness function model is a network growth logic
which operates under the fundamentals of scale-free network
model®. In this type of growth mechanism and network model,
nodes with higher importance, or fitness value, are granted a
higher probability to participate in a new link. The procedure
begins by reading in the network topology from the previous
year. For each node in the network, a fitness value was
calculated through a specific functional composition of several
nodal metrics listed in Table II. The initial functional
composition used in the research was simply a ratio of
individual nodal parameter of airports and the network sum of
that parameter. For example, if a particular node has k=10 and
the total & for the entire network is 100, its fitness function
will be 10/100 = 0.1. This type of fitness function projects
growth that favors highly connected and important nodes (a
hub-and-spoke type growth) that is typical in the ATS today.

However, the fitness function can be modified to allow
various types of network growth mechanisms corresponding to
a different mix of business models that might emerge in the
future. This ability to tailor scenarios in an explicit manner
dealing directly with service provider behavior is an attractive
advantage of this approach. Subsequent to the fitness
calculation, a pair-wise fitness was calculated for each node
pair, and this was used to determine a probability of linking
for all unconnected node pairs in the network. Links are added
to the topology based on those pairs with high link probability
(under some randomness).

Unlike the logistic regression model and the ANN
approach, for which historical trends were directly projected to
forecasting, the fitness function algorithm employs insights
from growth models developed from the network science
domain. Various combinations of network parameters
(summarized in Table II) were investigated for the fitness
function to determine which combination best suited the
forecasting task. The fitness function that combines distance,
degree, eigenvector centrality and nodal weight produced the
forecast with highest accuracy. Results for an iteration of this
fitness function model are shown on Table VII, noting once
again that output for each year is an average over 10 runs. In
comparison with the logistic regression model, the fitness
function model produces poor results in the form of Accuracy
1 and 2. The problem of ‘over-forecasting” was not resolved.

Surprisingly, however, the fitness function has improved
Accuracy 3 results especially in the parameter list histograms
(not displayed). The fitness function seems to develop the
correct traits for choosing the nodes that develop new routes,
but the specific prediction of ‘which nodes’ is relatively low
perhaps due to the large pool of new connection candidates
(there are approximately 4 million unconnected node pairs to
choose from!). Even though Accuracy 1 and 2 for the fitness
function approach may be lower than the ANN or logistic

FAIRFAX, VA, JUNE 1-4 2008

TABLE VII. . SUMMARY OF LOGISTIC REGRESSION RESULTS
Correctl Total
Year Predictegil Predictions Accuracyl  Accuracy 2
1990 N/A N/A N/A N/A
1991 36.9 1217.6 0.0700 0.4314
1992 453 1427.6 0.0624 0.4264
1993 28.5 1065.1 0.0658 0.4145
1994 31.1 1365.8 0.0594 0.4645
1995 75.3 1395.8 0.1077 0.3976
1996 33.6 1409.8 0.0596 0.4325
1997 46.7 1489.0 0.0535 0.3476
1998 30.9 1177.6 0.0552 0.3968
1999 29.8 1488.4 0.0488 0.4006
2000 51.6 1980.2 0.0580 0.3381
2001 23.3 1286.3 0.0410 0.3824
2002 139.5 2328.9 0.1676 0.2875
2003 54.7 1123.5 0.1159 0.2728
2004 454 1043.1 0.1157 0.2953
2005 48.1 1088.1 0.0970 0.2806
Average 111.3 1392.5 0.0785 0.3713
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regression, the results appear sensible for an algorithm that
does not depend on historical trends. This latter fact makes it
difficult to judge the fitness function model performance
comparative to the other two models described in this paper
that purely utilizes historical trends as input. In addition,
models that are independent of historical trends have an
distinct advantage over models are that dependent—it is more
likely that the forecast accuracy can be maintained even if the
characteristic of the ATS is significantly shifted from the
nature of past trends. The logistic regression and ANN model
will be able to forecast the ATS at higher accuracy levels if
and only if the ATS continues to evolve in the direction it has
been evolving. However, if new policy, technology or
operation methods that revolutionizes the ATS are introduced,
the logistic and ANN will require new historical data to
accumulate before further accurate forecast can be made. With
algorithms like the fitness function model, change in ATS
characteristics can be readily introduced by appropriately
adjusting the fitness function calculation. Combinations of the
models, therefore, also seem like a promising avenue for
further research.

V.

Current air traffic forecast methods employed at the FAA
function under the assumption that the flight route network
will not change, that is, no new flight routes will be added and
no existing flight routes will be removed. In reality, the
competitive nature of the airline industry and the potential
need for new policies relating to the environment are such that
new routes are routinely added between cities possessing
significant passenger demand and other city-pairs are
removed.

CONCLUSION AND FUTURE WORK

Research performed under this project and described in this
paper explored means to understand network reconfiguration
dynamics in the ATS. In particular, the aim was to expand the
capabilities of the existing ATS forecast methods developed
by the FAA, ultimately leading to improved decision-support
in maintaining and enhancing the ATS. Employing network
theory variables and concepts as a foundation to characterize
the network of flight service routes in the ATS, three families
of models were developed and tested: a) Logistic regression,
b) a network topology based fitness function method, and c)
an artificial neural network (ANN) algorithm. Results indicate
that each has merit under differing accuracy metrics and each
has methodological drawbacks. Advantages and disadvantages
were documented. Overall, the logistic regression appears to
capture more likely new city pairs, though in an inefficient
manner as compared to the fitness function model. The ANN
has superb prediction capabilities but was only tested on a
sub-set of the network data due to computational and time
constraints of this short duration study.

There still is much room for expansion in the current ATS
forecast capabilities described in this paper. First, means are
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available to increase all accuracy measures for each forecast
algorithm. Some proposed methods to meet this goal include
the implementation of more accurate and precise data of the
ATS (i.e. ETMS instead of BTS), parsing the ATS network
into sub-networks such as specific aircraft class or service
provider, and removing variables deemed insignificant to the
model or causing high multicollinearity. Forecasting based on
multiple previous years for the logistic regression and fitness
function model may also increase accuracy. Eventually,
multiple forecast methods may be merged to go beyond the
limit of individual methods. Second, enhanced ability to
implement future scenarios will greatly improve the value of
this research. All forecast methods are essentially based under
an assumption in which the future ATS will grow in the way it
has in the past. However, this is not true. New types of airline
services, emergence of innovative technologies as well as new
regulations and policies will impact the future state of network
configurations; each of these may also drastically change the
fundamental principles of operation of the ATS. In order to
anticipate the effect for some of these ground-breaking factors
in the forecast algorithms, a better understanding and mapping
of the ATS is required. Finally, combining the best of the
algorithms for predicting new city pairs with the FAA’s
current forecast method (based largely on the FRATAR
algorithm) constitutes the most immediate next step.
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Abstract

In this paper we formulate an optimization problem for the
assignment of dispositions to flights whose preferred flight
plans pass through a flow-constrained area. For each flight,
the disposition can be either to depart as scheduled but via a
secondary route that avoids the flow-constrained area, or to
use the originally intended route but to depart with a
controlled departure time and accompanying ground delay.
We anticipate that the capacity through the flow-constrained
area will increase at some future time once the weather
activity clears. The model is a two-stage stochastic program
that represents the time of this capacity windfall as a random
variable, and determines expected costs given a second-stage
decision, conditioning on that time. The goal is to minimize
the expected cost over the entire distribution of possible
capacity increase times.

L INTRODUCTION

A flow-constrained area (FCA) is a region of the national
airspace system (NAS) where a capacity-demand imbalance is
expected due to some unexpected condition such as adverse
weather, security concerns, special-use airspace, or others.
Flow-constrained areas might be drawn as polygons in a two-
dimensional space, although in practice they are usually
represented by a single straight line, functioning as a cordon.

When an FCA has been defined, it is then often the case that
an airspace flow program (AFP) is invoked by the Federal
Aviation Administration (FAA). An AFP is a traffic
management initiative (TMI) issued by the FAA to resolve the
anticipated capacity-demand imbalance associated with the
FCA. It is the goal of this paper to develop a method by
which, given the aggregate data described here, specific orders
for individual flights can be developed for a single FCA that a)
maximize the utilization of the constrained airspace, b)
prevent the capacity of the FCA from being exceeded, and c)
achieve a system-wide delay minimization objective. We
recognize that this model cannot be directly applied to AFP
planning as it does not address issues related to the manner in
which the FAA and the flight operators collaborate in reaching
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a final decision regarding each flight. Our goal here is to
develop relevant stochastic optimization models. We intend to
address issues related to collaborative decision making (CDM)
in later papers.

II RELATED RESEARCH

The research most closely related to this paper has to do with
airport ground holding. Much work has been done in
addressing the airport ground holding problem, including the
development of stochastic integer programming models, [1],
[4], [5], [6], [11]. However, there is still much active research
in the development of models for managing flights through
congested areas of en route airspace under weather
uncertainty.

In [10], the rerouting of a single aircraft to avoid multiple
storms and minimize the expected delay was examined. In
this model, the weather uncertainty was treated as a two-state
Markov chain, with the weather being stationary in location
and either existing or not existing at each phase in time. A
dynamic programming approach was used to solve the routing
of the aircraft through a gridded airspace, and the aircraft was
allowed to hedge by taking a path towards a storm with the
possibility that the storm may resolve by the time the aircraft
arrived. The focus of the work was on finding the optimal
geometrical flight path of the aircraft, and not on allocation of
time slots through the weather area. Follow-on work
expanded to modeling multiple aircraft with multiple states of
weather and attempted to consider capacity and separation
constraints at the storms.[9][8]

Initial steps at a concept of operations that describes the
terminology, process, and technologies required to increase
the effectiveness of uncertain weather information and the use
of a probabilistic decision tree to model the state space of the
weather scenarios was provided in [1]. Making use of this
framework is a model recently proposed that uses a decision-
tree approach with two-stage stochastic linear programming
with recourse to apportion flows of aircraft over multiple
routing options in the presence of uncertain weather [3]. In
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the model, an initial decision is made to assign flights to
various paths to hedge against imperfect knowledge of
weather conditions, and the decision is later revised using
deterministic weather information at staging nodes on these
network paths that are close enough to the weather that the
upcoming weather activity is assumed known with perfect
knowledge. Since this is a linear programming model, only
continuous proportions of traffic flow can be obtained at an
aggregate level, and not decisions on which individual flights
should be sent and when they should arrive at the weather. In
[7], a stochastic integer programming model is developed
based on the use of scenario trees to addressed combined
ground delay-rerouting strategies in response to en route
weather events. While this model is conceptually more
general than ours, by developing a more structured approach
we hope to develop a more scalable model.

Recently, a Ration-by-Distance (RBD) method was proposed
as an alternative to the Ration-by-Schedule (RBS) method
currently used for Ground Delay Programs (GDPs) that
maximizes expected throughput into an airport and minimizes
total delay if the GDP cancels earlier than anticipated [3].
This approach considers probabilities of scenarios of GDP
cancellation times and assigns a greater proportion of delays to
shorter-haul flights such that when the GDP clears and all
flights are allowed to depart unrestricted, the aircraft are in
such a position that the expected total delay can be minimized.
While this problem was applied to GDPs, the principles of a
probabilistic clearing time where there is a sudden increase in
capacity and making initial decisions such that the aircraft are
positioned to take the most advantage of the clearing is similar
to our problem.

. MoODEL

A. Model inputs
Our base model inputs consist of information about the FCA,
which is consistent with the information used in AFP
planning.

e  Location of the FCA
Nominal (good weather) capacity of the FCA
Reduced FCA (bad weather) capacity of the FCA
Start time of the AFP
Planned end time of the AFP

From a list of scheduled flights and their flight plans, we
determine the set of flights whose paths cross the FCA, and
who therefore would be subject to departure time and/or route
controls under an AFP. We also require a set of alternate
routes for each flight (see Figure 1). The alternate route for
each flight should be dependent on the geometry of the FCA
and the origin-destination pair it serves. These most likely
would be submitted by carriers in response to an AFP; for the
purposes of this paper it is assumed they are submitted
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exogenously, although for testing purposes it was necessary to
synthesize some alternate routes.

H FCA

Primary Route p

Secondary Route s

Figure 1. Primary route through the FCA and secondary route
bypassing FCA.

B. Controls

In order not to exceed the (reduced) FCA capacity, each flight
will be assigned one of two dispositions in the initial plan
reacting to the FCA:

1. The flight is assigned to its primary route, with a
controlled departure time that is no earlier than its
scheduled departure time. Given an estimate of en
route time, this is tantamount to an appointment (i.e.,
a slot) at the FCA boundary. Some flights might be
important enough that they depart on time, the AFP
notwithstanding. Other flights might be assigned
some ground delay.

The flight is assigned to its secondary route, and is
assumed to depart at its scheduled departure time.

This limited set of conceived actions imposes several
important assumptions:

e We do not consider airborne holding as a metering
mechanism to synchronize a flight on its primary
route with its slot time at the FCA

e  We assume that any necessary number of flights can
be assigned to their secondary routes without
exceeding any capacity constraints in other parts of
the airspace. (In fact, our model can easily be
extended to handle such “other” capacity constraints
but in this initial version we do not include them.)

e  We assume that, when the weather clears, the FCA
capacity increases immediately (“in one step”), back
to some higher capacity.

e The random variable is the time at which the FCA
capacity increases back to a higher value. We
assume that perfect knowledge of the realization of
this random variable is not gained until the scenario
actually occurs, and so no recourse can be taken until
the scenario is realized.

C. Scenarios and future responses

The outputs of this model are:
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1. An initial plan that designates whether a flight is
assigned to its primary route or secondary route; for
those assigned to their primary route an amount of
ground delay (possibly zero) is assigned.

A recourse action for each flight under each possible
early clearance time.

We model the time at which the weather clears (i.e. FAC
capacity increases) as a discrete random variable, with some
exogenous distribution. For any realization of the capacity
increase time, the flights in question will be in some particular
configuration as specified in the initial plan. Some will have
departed, either on their primary or secondary routes, some
will already have completed their journeys, and some will still
be at their departure airports.

Flights that were originally assigned to their primary route and
that have already taken off will be assumed to continue with
that plan. For any such flight, the primary route is assumed to
be best, s0 no recourse action is necessary.

We now consider flights originally assigned to their primary
route that have not yet taken off. We need not consider
transferring them to their secondary routes, because if that
were a good idea in the improved capacity situation, it would
also have been a good idea in the initial plan. Thus, the only
possible change in disposition for these flights involves
potentially moving their controlled departure time, i.e.
reducing their assigned ground delay. Constraints are required
to define the range of times the fight can arrive at the FCA
boundary based on the required en route time and the time the
recourse action is taken (clearance time). We also explicitly
enforce the restriction that under such situations the assigned
ground delay (or equivalently arrival time at FCA) cannot be
increased.

All other flights not yet considered were originally assigned to
their secondary routes, with departure times as originally
scheduled. These secondary routes avoid the FCA somehow.
Under the FCA capacity windfall, some of those flights may
now have an opportunity to use the FCA. If a flight has not
yet taken off, and it is decided that it can use the FCA, the
lowest cost way to do this is to re-assign it back to their
primary route, with some controlled departure time no earlier
than their scheduled departure time. If, on the other hand, the
flight has already taken off, then the only mechanism to allow
it the use of the FCA is a hybrid route that includes that
portion (and perhaps more) of the secondary route already
flown, plus a deviation that traverses the FCA and presumably
rejoins the primary route at some point after the FCA (see
Figure 2). A flight that is already en route via its secondary
route may or may not prefer such a hybrid path, depending on
the difference in cost (time, fuel, etc.) between doing that and
continuing on its secondary route. There may be many
possible hybrid routes, and perhaps only a limited set of those
would be acceptable to carriers and air traffic control (ATC).
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H FCA

Hybrid Route

Primary Route p

Secondary Route s

Figure 2. Reverting from secondary route back to primary
route through FCA.

For each possible value of the capacity windfall time, we
determine the expected locations of all affected flights at that
time, and also what would be the best change in disposition, if
any, for each of those flights according to a system
performance metric. With this information, we can compute
the conditional cost associated with flying these flights under
that realization of the stochastic event. Ultimately, then, the
goal of the optimization problem is to minimize the expected
total cost, given these conditional costs and their probabilities.

D. Model development

We start by defining the discrete lattice on which time will be
represented. We assume there is an index set {1,...,T} of size

T that demarcates equally spaced time slots, each of duration
At. Each of these represents a possible appointment time
window at the FCA. The nominal capacity of the FCA should
be specified in terms of the maximum number of flights
permissible during one of these time windows. The number of
time slots 7 then depends directly on Ar and the total
duration of an AFP, perhaps inflated to allow for ending times
later than the original estimate. The reference time ¢ =1 can
be chosen as the earliest scheduled departure time of all of the
affected flights. The actual time indicated by the index t is

then (1—1/2)Ar.

The flights affected by the FCA can be determined from the
filed flight plans for that day, minus known cancellations and
re-routes at the time the AFP is invoked. These flights are

indexed according to the set {l,...,F}. In the rest of the

paper, any specific reference to a time period ¢ and flight f
assumes that € {1,2,...,T} and fe{l....F}.

1) First stage (Initial Plan)

There are two sets of assignment variables that are related to
decisions about the dispositions of flights. One set represents
the initial plan, which are the decisions provided by the model
that will be enacted immediately once the model is run and the
AFP is declared. The second set represents conditional
decisions (recourse actions) based on the random variable
representing the time at which the capacity windfall takes
place, which we do not know at the time of the execution of
this optimization problem, but that we condition for when
determining the best initial plan.
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For the initial plan, we define the following set of binary
decision variables:
1, if flight f uses its primary route and

Y -

x7, =1 has an appointment time # at the FCA
0, otherwise
1, if flight f is assigned to its secondary
x; =1 route

0, otherwise

Every flight f needs to have an assigned disposition under the
initial plan, thus:

DXl +xp =1 Vf (0

We require that any flight that is assigned to its primary route
cannot be given an appointment slot at the FCA that is earlier
than its scheduled departure time plus the expected en route
time required to arrive at the FCA. If E At represents the en

route time (from its origin to the FCA) for flight f, and D, At
is the scheduled departure time for flight f, then:

D, +E;

2 %, =0 vf @

This construction requires that en route times and scheduled
departure times are represented on the same discrete lattice as
the FCA appointment times.

No similar constraint is applied to flights assigned to their
secondary routes under the initial plan, because they are not
metered at any point and hence are expected to depart at their
originally scheduled departure time. There is no provision in
the model for a flight to depart early, despite the fact that the
secondary route takes more time than the primary route (since,
subject to minor variations, airlines do not allow flights to take
off before their scheduled departure times).

It might be the case that for a particular flight f, there is a latest
slot time [, at the FCA that the carrier who owns that flight
would be willing to accept. Slots later than [, can be
prevented via the following constraint:

Y, =0

1=l;+1

3

For any flight for which /, is not explicitly provided, /, is an

effective time beyond which it would never make sense not to
choose the secondary route.

The initial constrained capacity (maximum number of flights)

for time window ¢ can now be defined as C’ and the

constraint to enforce it is:
>,
!

<C" Vi @)

98

2) Second Stage (Revised Plan)

The variables and constraints defined so far represent the first
stage of the stochastic program. It is assumed that these
decisions will be enacted deterministically immediately after
the FCA is declared. Next, we describe the second stage of
the stochastic program — those variables that represent the
conditional decisions we expect would be made if any of a
number of possible capacity windfall times happens to come
true in the future. We model the time slot at which this occurs
as a discrete random variable with domain € and probability
mass function

fy (u)=Pr{U =u} VueQ

Under a capacity windfall, a flight that was originally assigned
to its primary route with a controlled departure time might still
be given the same general disposition, although its departure
time could be moved earlier if that were beneficial to the
system goal. We let

1, if at the time U =u of the capacity windfall,

’ | flight f is assigned to its primary route with
u
V1 appointment slot ¢ at the FCA

0, otherwise
We will (shortly) introduce other variables for the other
possible second stage flight dispositions, and we will require
that all flights be assigned a disposition under every possible
realization of the stochastic event U. For now, we proceed by
obviating values of y; lu that would either be physically
infeasible or politically imprudent. Later, structural
constraints plus pressure from the objective function will lead

to the best possible selection of second stage dispositions for
all flights.

First, it is impossible to assign a flight to a slot that would
require it to depart before its scheduled departure time:

y]’Z’[ lu =x}”[ Vf,u, Vte {1,...,Df +Ef}

This constraint works with constraint (2) to achieve the
required result.

)

Given the timing U of the capacity windfall, some flights may
already have taken off. If they did so via their primary route
(with a controlled departure time), then their second stage
disposition should match that of the first stage:

Yo lu=xt, Vfu, Vie{l..u+E,] (6)

A closer look at constraint (6) reveals that it also satisfies an
important requirement for flights that have not yet taken off.
For any particular flight f and given the capacity windfall time

. . . » t=u+E; .
u, the collection of primary stage variables {x f«f},:l will

either contain one at exactly one position or it will consist
entirely of zeros. In the former case, this means that the flight
has already taken off, and that situation has been dealt with.
In the latter case, this is indicative of the fact that these slot
times are infeasible. Thus, even for flights that have not yet
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taken off, constraints (2) and (6) insure that they will not be
assigned, in the second stage, to their primary routes with slot
times that they cannot achieve.

Looking at constraints (5) and (6), it is clear that they can be
combined:
b @)

i Vf,u, ‘v’te{l,...,max(u,Df)+Ef}

P o=
yf’tlu—

On the other hand, for flights that already took off via their
secondary routes (and therefore at their scheduled departure
times), the only possible second stage dispositions are
secondary or hybrid routes, so assignments to primary routes
for these flights must be prevented:

Yy lu<l-x, VYu,Nf3D, <u (8)

In addition, we will not allow a flight whose controlled
departure time is being moved in the face of a capacity
windfall to be worse off than it was before this event
materialized:

yr lus< Zx}"q +x} Yu, f,t

g2t

(€))

Notice that we want to allow for the possibility that flights
originally assigned to their secondary routes can revert, under
the appropriate circumstances and if the optimization decides
this is best, to their primary route if they have not already

taken off, which is why the variable x; appears in constraint

).

For flights that were originally assigned to the secondary
route, the increased capacity at the FCA might allow some of
these flights to pass through the FCA and thus improve their
flight path by returning to the primary route at some point
after the FCA or continuing directly to the destination. For a
flight that has not yet departed, one could choose to have the
same structure apply, but the portions of the total flight path
spent on the secondary and reverting routes would then have
to have length zero. In this paper, as will be shown later, we
use a different approach. We define the second-stage decision
variables for this choice as follows:
1, if flight f was originally assigned to its

secondary route, but under capacity

y}, lu= clearing time u has been assigned an
FCA appointment slot ¢
0, otherwise

This decision can only be reached for flights that were
originally assigned to their secondary routes:

yi lusx; u, ft (10)
However, it should be obvious that the objective function will
enforce this behavior implicitly.

The flights in question will be on their secondary routes and
diverting onto a hybrid route that passes through the FCA.
We need to impose constraints that insure that these flights are
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only assigned to FCA time slots they can feasibly reach. If a
flight diverts from its secondary route to its hybrid route at
time t* there will be an earliest time it can reach the FCA.
Figure 3 illustrates the geometry used to compute the
parameter used by our model:

t%;, is the time at which f must divert from its secondary route
so as to use its hybrid route that arrives at the FCA at time t.

Figure 3. Possible diversion from secondary to hybrid route.

The following constraint prevents a flight from diverting to its
hybrid route before the weather is actually cleared.

yiJu=0 Yf,u, Vl“l‘;,tﬁu (11)

In addition, the time slot assignment cannot be later than the
latest time for which it would be reasonable to accept an
assignment at the FCA considering the geometry of its
secondary route:

Vi lu=0 Vfu, Vi>l, (12)

The final option possible, if the capacity increase occurs at
time u, is to leave a flight that was originally assigned to its
secondary route on that route, with the same (scheduled)
departure time:

1, if flight f was originally assigned to its

secondary route, and if, under AFP stop

s
yilu= . .. .
4 time u, that decision remains unchanged

0 otherwise

Practically speaking, it would never make sense to assign a
flight to its secondary route under the recourse if it had not
also been given the same assignment in the initial plan. It
might seem, therefore, that the following constraint is
necessary:

yilusx; Vu, f (13)

However, it should be obvious that the objective function will
enforce this behavior implicitly. If it was cost effective to
assign a flight to its secondary route under the recourse, it
would be cost effective to do so under the initial plan.

ISBN: 978-0-615-20720-9

FAIRFAX, VA, JUNE 1-4 2008



THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN AIR TRANSPORTATION

Constraints 10 and 13 can be combined into a single
constraint:

(14)

It would be possible, given the constraints developed so far, to
assign a flight to a hybrid route that essentially reverts to the
primary route immediately. In other words, this would be an
assignment that is tantamount to taking off on the primary
route at the scheduled departure time, which is a more logical
way to interpret this outcome. Therefore we introduce the
following constraint to enforce this behavior:

)’_I;',DfafE, lu=0 Vf,u (15)

For each time scenario u, every flight f must be assigned to
one of these dispositions. Furthermore, if the disposition
involves being scheduled into a slot appointment at the FCA,
no more than one slot can be assigned to a given flight. Given
that the decision variables are required to be binary, the
following constraint addresses both of these concerns:

Yyl ut Yy lutyylu=1 Vu,f
t t

For any value U=u, there will be a new capacity profile

h s s
Ve duty lusx, Vu, f1

(16)

C"(r) that agrees with Co(t) up to time ¢ =u , but represents

an increase in capacity beyond that point. For example, if

Co(t) had been a constant vector, then C%(r) could be a step
function that makes a jump at timef =u . On the other hand,
if Co(t) had been a periodic 0-1 function, then C%(r) might

just have an increased duty cycle after times=u . Figure 4
shows examples of both of these extremes. A wide variety of

profiles for C"(¢) are possible; the only real requirements are

that it agree with C°(¢) prior to times =u , and that after that
time, it supports a higher rate of flow than that was possible
under the initial plan. The capacity constraint under the
scenario U=u can now be written as:

ny’f’, |u+2yf.’tluSC,“ Yu,t a7
i f

3) Objective Function

Since our model involves the specification of decisions that
are conditioned random events, the objective function will be
an expected value. To emphasize the paradigm of creating a
plan (our initial plan) together with contingency plans (our
recourse actions), we represent the objective function as the
sum of the deterministic cost of the initial plan minus the
expected savings from recourse actions.

100

E)apagity 20 mins
number
of flights) A F A
8
4
>
Capacity clearing time
(number time, u
of flights) A
— 2 mins
1__|I_lﬂﬂﬂl_llﬁl_ll_)
clearing time
time, u

Figure 4. Capacity functions with high (top) and low
(bottom) throughput before and after clearing.

Therefore the objective function can thus be represented as:

Min{c(x)—ZPuS(Yu )} (18)
Or more precisely:
Min Z=z'+z2—ZPM(z3+zj) 19)
Where, '
=22 20
7o
Z :Zc}x; 2y
!
T DT T TS 30 T I
7o T o3

= VY
f ot

where

s, is the cost of assigning flight f to its primary route so that
it arrives at the FCA at time ¢.

c’s is the cost of assigning flight f to its secondary route.

svhﬁ, is the savings incurred if flight f starts out on its
secondary route but reverts to a hybrid route that arrives at the
FCA at time .

s°;, is a dummy binary variable that works as an indicator. It
takes value of one when a flight initially assigned to its
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secondary route is assigned back to its primary route under
revised plan.
So;

57, = Min(x‘;, y}",) (24)

IV. COMPUTATIONAL EXPERIMENT

We conducted a computational experiment to give some
preliminary evidence as to the computational feasibility of the
model and its impact on decision making. We now describe
the problem data. Flights, their routes and alternate routes
were generated artificially based on the airspace geometry
given in Figure 5. There were three types of flights:

Short haul: length - 60 min: origin-to-FCA — 30 min, FCA-
to-destination — 30 min; reroute angle —
arctan(30/30).

Medium haul: length — 180 min: origin-to-FCA — 90 min,
FCA-to-destination — 90 min; reroute angle —
arctan(30/90).

Long haul: length — 300 min: origin-to-FCA — 150 min,
FCA-to-destination — 150 min; reroute angle —
arctan(30/150).

—

-

S
—

Vohrs |
2 || 2
Figure 5: Airspace Geometry for Flight Generation

There were F=200 flights with one flight departing every 1
minute and departures alternating among the three flight types.
First flight departed at 2:00 PM. There were 7=200 time slots;

each slot had a width of Af=2 minutes. Initially, the FCA
had restricted capacity of 1 flight per every three time slots (10
flights per hour). In all cases, the FCA cleared by 7:00 PM so
that capacity rose to 4 flights per time slot (120 flights per
hour). There were four possible early clearance times: 3:00
PM, 4:20 PM, 5:30 PM, each occurring with probability 0.25.
In event of early clearance, slot capacity rose from 1/3 to 2
flights for slots between the clearance time and 7:00 PM.

Three cases were run:

All Options: This was the complete model as defined in the
paper.

Reroute but No Recourse: In this case, the reroute option
did not include the possibility of recourse, i.e. the y_ﬁ,h
variables are all fixed at zero. This corresponds to a
decision making scenario where the possibility of
rerouting after departure is not taken into account.

No Reroute: In the case, no rerouting is allowed. This
corresponds to a decision making scenario under
which the problem is solved only using ground
delays.

Table 1 gives the results of our experiments. The costs of

various solution components as well as the total expected cost

are given. Note that the “All Options” scenario produced
substantial cost savings over the other cases (particularly the

No Reroute case). The fact that the initial plan costs (cost of

the assigned ground delay C(x,) and cost of complete reroutes

C(x;)) changed significantly among the cases shows that

taking the various recourse options into account can

substantially alter the initial plan.

Also note that running times are given. A 2.8 GHz Intel®
Pentium® based computer was used with 1.99 GB of RAM.
The IP solver used was XPress MP® vers 2007B.

All Options Reroute but No Recourse No Reroute
air/ground delay cost 4 4 4
Objective Function 23794 2622.8 6808
Clp) 187 455 11381
Clxs) 764.7 722.0 0
U:Clearance time 3:00 PM|4:20 PM|5:40 PM] |3:00 PM|4:20 PM|5:40 PM| |3:00 PM| 4:20 PM| 5:40 PM
Probability of clearance | 028 025 0.25 0.25 0.25 0.25 0.25 0.25 0.25
SViyp) 61 114 0 45 364 110 10117 | 6247 | 1928
SVIyh}+SV(xs—=yp) | 5951 | 207.8 | 19.7 4466 | 687 0.0 0.0 0.0 0.0
GD{u) 126 73 187 110 9N 345 1264 5134 9453
AD{u) 169.6 | 556.9 | 745.0 2754 | 6533 | 7220 0.0 0.0 0.0
Clu) 8044 | 23006 | 3166.9 1211.6 | 2704.0 | 3232.8 1264.0 | 5134.0 | 94530
E[cost] 23794 26228 6808.0
E[GD] 143.3 2503 6808.0
E[AD] 559.0 5931 0.0
n(xp=1) 65 73 200
nlyp=1) 148 [ 17 | 65 150 [ 84 [ 73 200 | 200 | 200
nixs=1) 135 127 0
n{yh=1) 4 55 10 0 0 0 0 0 0
nfys=1) il 68 125 50 116 127 0 0 0
n(xs—=yp) 83 12 0 i 1 0 0 0 0
Running Time (sec) 283 226 428

Table 1: Computational Results

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have defined the basics of a stochastic
optimization model for simultaneously making ground delay
and reroute decisions in response to en route airspace
congestion. We have also given the results of an initial
computational experiment. Future steps should include more
computational experiments and model refinements aimed at
improving the computational performance of the integer
program and at exploring the changes in airspace planning the
model provides. We anticipate the need to provide many
refinements and extensions to this model to better address
practical problem solving. Further, another vital direction is
the development of strategies necessary to embed this model
within CDM processes necessary for the delivery of practical
air traffic flow management solutions.
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Abstract—Accurate trajectory prediction is an important issue
for decision support tools in the field of ATM. This paper
presents a new approach that considers trajectories as points in a
functional space. By finding a expansion of observed trajectories
on a suitable basis and truncating the expansion to a finite
number of terms, standard regression algorithms can be used.
Within this framework, full segments of trajectories can be
forecasted up to 10-15 minutes.

1. INTRODUCTION

Functional data analysis is an active branch of statistics
in which relevant objects are mappings belonging to a well
defined space, most of the time an Hilbert space. It has
been proven very efficient for problems where preserving the
functional nature of data is of great importance : curves classi-
fication, functional dependence learning and similar problems
[15]. In the recent literature an increasing attention has been
paid to linear functional regression [2],[6] and some of its
generalization [23],[14]. In this setting, either a scalar value
or a mapping (the response), possibly contaminated by an
independent measure noise is assumed to be linearly dependent
on a mapping (the predictor). In the functional framework,
the equivalent of the slope coefficient in the classical finite
dimensional linear model is a kernel function that has to be
estimated. Solving the associated least square problem leads to
the well known Wiener-Hopf equation that generally admits no
unique solution. One of the main issue in functional regression
is thus to add some extra assumption on the regressor kernel
so that the original ill-posed problem can be solved. On
the other hand, in the field of ATM, the need for accurate
trajectory predictor has appeared as a prerequisite for Decision
Support Tools (DST). Air traffic management research and
development has produced a substantial collection of decision
support tools that provide automated conflict detection and
resolution [4], [1], [22],trial planning [10], controller advi-
sories for metering and sequencing [20], [3], traffic load
forecasting [11], [9], weather impact assessment [8], [19],
[5]. The ability to properly forecast future aircraft trajectories
is central in many of those decision support tools. As a
result, trajectory prediction (TP) and the treatment of trajectory
prediction uncertainty continue as active areas of research and
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development (eg [17], [21], [12], [16], [18]. In this paper we
will present an innovative approach based on functional re-
gression for solving the short to mid-term trajectory prediction
(TP) problem. Long-term prediction is yet beyond the scope
of this study, but considering a database of trajectories and
taking into account intents of aircraft through flight plans may
allow an extension of our methodology to encompass it. The
first part of the paper will be devoted to a short compendium
of available trajectory goodness-of-fit metrics, then the main
results on functional regression will be exposed, with the
potential applications and improvements of existing algorithms
for the specific trajectory prediction problem.

II. TRAJECTORY PREDICTION METRICS

When an aircraft flies from a city A to a city B, it has
to be managed by air traffic controllers in order to avoid
collisions with others aircraft. Everyday, about 8000 aircraft
fly in the French airspace, inducing a huge amount of control
workload. Such a workload, is then spread by the mean of the
airspace sectoring. The airspace is divided into geometrical
sectors, each of them being assigned to a controller team.
When a conflict between two (or more) aircraft is detected,
the controller changes their routes (heading, speed, altitude) in
order to keep a minimum distance between them during the
crossing. All flying aircraft are then monitored during their
navigation and so from the departure till the destination.

When a controller observes its traffic on the radar screen, he
tries to identify convergent aircraft which may be in conflict in
a near future, in order to apply manoeuvers that will separate
them. The problem is to estimate where the aircraft will be
located in this near future (5-10-20 minutes); this process is
call trajectory prediction. This prediction may be also very
useful in order to estimate the workload level in control sector
to prevent over capacity event. As a mater of fact, it is
very useful to estimate when an aircraft will enter a sector
in order to compute the associated sector workload and to
apply regulation if necessary. When a sector is expected to
be overloaded, the aircraft involved in such a process will be
speeded up or slow down by the controller in order to adapt
the demand to the actual capacity as much as possible.

The trajectory prediction depends mainly on the residual
noise after filtering which are the weight of the aircraft, the
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temperature and the wind. The residual noise is integrated
with time with a growing covariance matrix indicating that
the estimated position is less and less accurate. The weight
of the aircraft is relevant in the flight dynamics model but is
still a raw data. The engines of aircraft are sensitive to the air
temperature and such a data is very useful to model the trust
of the aircraft but it is also very difficult to measure on real
time. Finally, the wind influences strongly the cinematic of the
aircraft and limits also the trajectory prediction. Based on the
available accuracy, the actual limit of the trajectory prediction
is about 15 minutes for the conflict detection. It means that
after 15 minutes the uncertainty is so big that the estimated
position is no more useful for such application.

One of the issues in trajectory prediction is to measure how
accurately a model will fit to a target trajectory. Unfortunately,
many different metrics can be proposed, each of them focusing
on a specific aspect of accuracy. Most of the time, the proposed
metrics fall into one of these categories [13] :

o Time coincidence. The time difference between a pre-
dicted event and a real event is used as a measure of
TP accuracy. Time coincidence is relevant in applications
where synchronizing is important, like sequencing traffic,
or when the DST uses time information to instruct
controller about the order in which actions have to be
taken.

o Spatial coincidence. Similar to the previous one except
that spatial distance at specified time (or more generally
at events that can be predicted with the knowledge of
aircraft positions up to a given time) between the model
and the real aircraft is computed. Spatial coincidence can
be refined by further splitting into altitude and horizontal
error. Furthermore, for some applications, mainly conflict
predictors and/or solvers, spatial difference is projected
onto a vector normal to the real trajectory (cross-track
error) and onto a vector tangent to the real trajectory
(along-track error).

e 4D coincidence. Trajectories are considered to be 4D
curves, and distance between such curves is computed.
Most of the metrics derived for spatial coincidence can be
extended to the 4D setting, with the benefit of including a
kind of time coincidence, thus generalizing in some sense
the previous two aspects.

« Morphological similarity. Different in nature from the
previous metrics, an intrinsic distance between trajecto-
ries considered as curves in a 3D space can be derived
from Riemannian geometry. Since only the shape of the
trajectory is taken into account, this metric is relevant
mainly for trajectory design tools.

Except for the last one, all those basic metrics can be inte-
grated along trajectories to produce a mean value indicator (the
classical L? distance is for example obtained by integrating
the standard spatial coincidence metric over time). Within
the frame of functional regression, the standard choice is
to consider L? distance as goodness-of-fit measure. In the
following, we will use this spatial coincidence metric along
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with a specific 4D distance. Investigation of different kind of
accuracy evaluations is planned for future work.

III. FUNCTIONAL REGRESSION
A. The functional nature of the trajectory prediction problem

An aircraft trajectory is by definition a mapping from a time
interval [a,b] to the space R® (sometimes, it is convenient
to add speed, so that the resulting expanded state space
is R®). Such a trajectory is indeed the observed result of
a complex evolution process that involves flight dynamics,
external actions (pilot, ATC) and atmospheric factors (wind,
temperature ...). The complete description of the trajectory
using all these factors is generally not possible, because many
influencing factors are unknown (aircraft mass, local wind, etc
...), so a less accurate but tractable model has to be chosen.
For the purpose of short term prediction, a linear controlled
model is accurate enough. The main assumption made is that
the derivative of acceleration is zero (in a weak sense, since
in most models commands are piecewise constant functions).
Based on this observation, we will focus on trajectories belong
to the Sobolev space of square integrable mappings with
square integrable derivatives (in distributional sense) up to
order 3. From now, we will assume that all trajectories belong
to this space.

B. Linear regression with a functional predictor

The linear functional regression problem can be stated as
follows :

o The predictor and the response are square integrable
mappings from respective compact time intervals [a, b],
[c,d] to R™ (resp. R™).

o The data set consists of pairs (X;,Y;);=1.. n of predic-
tor/response. It is assumed that the X,;,Y; are sample
trajectories of two underlying smooth Hilbert random
processes (for a general account on these processes, see
[71), with unknown smooth mean px, y,, and covariance
kernels By, By.

o The functional linear model on the predictor X has the
general form :

Yt f(t)+ K(s,t)X (s)ds
[a,b]
with f: [¢,d] — R™ a smooth square integrable mapping
and K: [a,d] x [e,d] — My, »(R) a smooth square
integrable (m,n)-matrix valued kernel.

o The solution of the functional regression problem is the
optimal couple (f, K) that minimize the mean square
error between Y and Y.

Most of the time, the related literature on the subject addresses
the problem with n = 1, that is for real valued trajectories.
In our setting, this clearly means that it enforces the fact
that the z,y,z components of a trajectory can be treated
as independents scalar valued mappings. Although we will
see later that functional regression models satisfying some
invariance properties must fall into this category, there is
no reason to limit ourselves to kernels with values in the
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set of diagonal matrices. It worth notice too that the basic
theory makes the assumption that trajectories are continuously
observed, which is clearly not the case of ATC data. The
reference [23] extends the least square criterion to irregularly
spaced samples on predictor and response, providing us with
the right framework for trajectory prediction applications and
will be the starting point of our work. The solution of the
functional regression problem is known to satisfy a Wiener-
Hopf equation :
E[XY] = K (s,t)B.(s,t)ds 1)
[a,b]
Unfortunately, this equation has generally not a unique solu-
tion. Furthermore, solving 1 from sampled trajectories yields
an even more ill-posed problem. Solutions to this problem,
mainly by using regularization, have been proposed in [15].
Most of the time, an expansion of the predictor on an Hilbert
basis is used to solve the functional regression (note that at
some point of the process, all expansion must be truncated
in order to obtain something computable). Several choices
exist for such a basis. In many papers it is recommended to
use Karhunen-Loeve expansion, with the eigenfunctions of the
covariance operator as basis :

Yit) = A; Bx (s, t)yi(s)ds

[a,b]

with \; the eigenvalue corresponding to ;. Since the co-
variance and mean functions are unknown, there are to be
estimated from the data. The procedure used in [23] is to use
a weighted sum kernel approximation. A complete treatment
can be found in [24]. It has to be noted that this particular
choice is essentially heuristic : since the basis functions
depend only on the predictor and not on the response, it
cannot be guaranteed that the first ¢ eigenfunctions, associated
to the ¢ largest eigenvalues, are the ¢ most predictive (the
integer ¢ represents the truncation index used when solving
the functional regression problem).

C. Solving the functional regression

The framework in this part will be the one chosen in [23].
Under the general assumptions of the previous section, we will
further assume that the data set consists in a finite number
of sparsely sampled predictor/response pairs. Let X; (resp.
Y:) be the realization of predictor process X (resp. response
process Y') corresponding to observation ¢ in the data set. Let
M; (resp. N;) be the number of samples available for this
observation and let X; ;,j = 1...M; (resp. Y; j,7 = 1...N;)
be the actual samples along trajectories X; (resp. Y;) with
corresponding sample times 7; ; (resp. 7;;). The number of
samples M;, N; and the sampling times are assumed to be
random variables independent from the processes X,Y. As
mentioned before, the first step towards solving the regression
problem is to find an expansion of the predictor and the re-
sponse on respective (infinite but countable) basis, respectively
(¢i)ien and (¥;)ien. A widely used procedure in the field
of functional data analysis is to find a smooth approximation

105

to covariance function of X (resp. Y) then find estimators
of the eigenvalues/eigenvectors of the covariance operators
(such procedure is known as Functional Principal Component
Analysis FPCA). As mentioned before, it is not guaranteed
that this will result in an optimal representation for regression
purpose, but it has proved quite efficient and robust in practice.
However, finding the eigenvalue/eigenvectors from the em-
pirical covariance function obtained from the measurements
is quite a lengthy process. First of all, a smooth estimator
of mean and covariance function has to be obtained. A first
approach is to use a local linear smoother . Given a kernel K
and a bandwidth parameter h, the local linear smoother for the
(t, X) scatterplot is obtained by minimization over a,b of :

n M;

Y)Y K (T) (Xij —a—b(t — 7))

i=1j=1

with ¢t being a fixed time. The optimal values a,b obtained
for a fixed ¢ give a local linear model, so that the estimated
mean at time ¢ is [ix(t) = a. For covariance estimation, the
procedure is roughly the same, but instead of considering the
samples X;; of X, the empirical covariance function :

Cx (Tigos Tiin) = (Xigy — 1ix (105, )) (X g, — wix (7ij,))

is used. The corresponding local linear model is bivariate and
corresponds to the minimum over a, b, ¢ of :
n M;

I (e

i=1 j=1 k=1 k]
(C(TijyTi) —a—0bt —7i;) —c(s —Tig))? (2

The estimated covariance C'x (£, s) at time ¢, s is thus the term
a in the previous expression. Several packages exist for such
estimation. For our purpose, an ad-hoc algorithm has been
developed : the general principle will be described below.

It must be noted that local linear smoother is not the only
usable procedure for fitting a smooth curve or surface to
scatterplot data. Smoothing splines seem to be a good choice
too. The difference in terms of performance between those
two approaches has not been investigated yet, but at first sight
there is no evidence why the first one will be better : it has
been chosen in our application only because of its availability
and some asymptotic approximation results.

Next step is to estimate eigenvalues and eigenvectors of the
covariance function by solving the functional equation :

/[ ’ Cx (t,s)ih(s)ds = Mp(t)

Several numerical procedures can be found in the numerical
analysis literature for solving such problems. We have ap-
plied a Nystrom method on a regular grid for the trajectory
application (see details in the next section). The result is
two finite sets of pairs eigenvalues/eigenvectors (\;, ¥;)i=1...p
and (p3,0;)i=1..¢ for X and Y respectively. The number of
representing functions (the P and () integers) has to be chosen
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on either a leave-one-out or an AIC : the later gives good
results in the trajectory case.

Given the eigenvalues/eigenfunctions pairs for X and Y
respectively, it is possible to compute an estimate of the
covariance of X and Y components respectively :

&mwdazl'][]@@mumx@gﬁw
c,d a,b

The resulting optimal kernel solving (approximately) the func-
tional regression problem is then obtained as :

P Q . .
o OXY (Zv j)
K(ts) =323 P06 (s)
i=1 j=1
IV. APPLICATION TO TRAJECTORY PREDICTION
Applying functional regression to trajectories implies :
« Extending all previous estimators to vector valued ones
(thus replacing the covariance function by a 3 x 3 matrix

valued function).
o Find the right predictor and response.

A. Principal components in the vector case

Recall that the chosen representation basis is obtained
by functional principal component analysis. For trajectory
prediction purpose, all random processes have values in R?, so
that canonical procedures have to be extended. Estimation of
mean and covariance functions can be used readily since the
proposed local linear estimator extends componentwise to the
3-dimensional case. It should be noted however that computing
the mean function involve 3 times more computation than for
the scalar case and computational task is scaled by a 6 factor
for the covariance (due to the symmetry of the covariance
matrix). An important step in the design of a linear smoother
is the choice of weighting kernel and bandwidth. The problem
has been addressed in the field of non parametric statistics
and it is known that the kernel has less influence than the
bandwidth. The Epanechnikov kernel :

3
Ke(t) = Z(l — t2)1[_171] (t)
has some interesting optimality properties and is easy to
compute. Another choice is the Gaussian kernel :

1 exp( t2)
T exp(— L
Vo P 2

For very fast computation, it is still possible to use a uniform
kernel : 1

K, (t) = 51[_1,1] (t)

Since the data set is usually large (around 1000 trajectories
sampled at 10s), a compactly supported kernel in the local
linear smoother allows a reduced computational load and an
complexity mostly independent of the number of samples in
a trajectory. The Gaussian kernel is not compactly supported,
but decreases very fast at infinity so that practically it can be
set to 0 outside an compact interval. The optimal bandwidth
can be found in the limit of large samples. If the kernel is

Kg(t) =
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K, and the target function f is supported in the interval [a, ]
then the asymptotically optimal bandwidth is :

15— o?(b—a)? [ K*(x)dz
N(f J:QK(x)dx)fo % (x)dx

with o2 the variance of the noise, N the number of samples.
Since f is unknown, one has to estimate both o and f”’. Since
f has to be estimated, it is clear that only some rough guess
on plausible value can be done. A first approach is simply to
increase the order of the model as :

i%K <t_h7ij) (Xij — a = bt — 1) — c(t — 735)%)?

i=1 j=1

the ¢ coefficient will then give an estimate of f”(7;7)/2. This
method is appealing for trajectory modelling since curvature
can be obtained directly from c. However, experiments on
real data show that little is gained since the second order
model itself has a bandwidth that must be set heuristically.
A second approach is simply to compute using a finite
difference operator. It works surprisingly well for such a naive
approach, probably because noise is not dominant in ATM
data. Assuming that the bandwidth is known, solving for the
parameters of the local linear model can be done easily. For
a given vector or matrix valued function X sampled at times
7;; with values A;;, the mean value at time ¢ can be obtained
using the following formula :

X(t) = —dmx +efx

with :
n X t— T
d:ZZKe< h”)(t—Tij)2
i=1 j=1
n X t— T
G_ZZK6< h”)(tﬂ'j)
i=1j=1
and :

n i t—Tij
mX:ZZK6< h )X”

i=1 j=1

n N; .
fx=3> e(t h”)(t—Tz‘j)Xz‘j

i=1 j=1

Since K is compactly supported (or approximately such), the
inner sum in the previous expression will only involve a num-
ber of terms bounded by a constant so that the computational
task for computing X (t) at a given t scales linearly with the
number of trajectories in data set but independent from the size
of the trajectories themselves. Once the covariance functions
have been obtained for both the predictor and the response,
the eigenvalues/eigenfunctions are computed by solving an
homogeneous Fredholm equation of the second kind :

C(s,t)¢(s)ds = Ao(t)

[a,b]
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with C' the covariance function of interest. Several numerical
methods can be found in the literature for such a problem.
In our setting, the Nystrom method based on Gauss-Legendre
quadrature formula has proved very well fitted. The method
proceeds by approximating the integral operator as :

Z w;C(s3,t)p(s4)

with w; and s; respectively the weights and the abscissa of
the Gauss-Legendre quadrature approximation. For n points,
the abscissa are the roots of the n-th Legendre polynomial P,
while the weights are computed as :

2
(1= s7)P(s:)
with the Legendre polynomials P; evaluated by the recursion :

(7, + l)PiJrl == (21 + 1)$P,L - 7;PZ‘71

w; =

with conventionallyP_; = 0, Py = 1. The Fredholm equation
of the second kind is approximated by the following eigenval-
ues problem :

ZwiC(SmSjW(Si) =Apsj),j=1...n
=1

The result is a set of eigenvectors ¢(s;,i),j = 1...n,i =
1...n and eigenvalues \;. The approximation to the eigen-
function of the original covariance operator associated to
eigenvalue \; is then :

6i(t) = %Zwﬁ(smw(si)

(the case A\; = 0 will not occur in our application). Since our
original processes X,Y take their values in R3, all previous
equations are to be taken as vector ones. The main conse-
quence is that the approximate eigenvalue has to be solved
with a full 3n x 3n system. Fredholm equation solving is quite
a critical step in the overall algorithm, so attention has been
paid to its accuracy. In fact, Gaussian quadrature is not the only
procedure that can be used, but any quadrature formula based
on samples will work. A comparison has been made between
low accuracy rectangle method for approximating the integral
and the complete Nystrom algorithm with Gauss-Legendre
quadrature. For that purpose, the test set has be obtained by
generating trajectories of a simple random process (namely
a square root function with an additive gaussian noise and a
random scaling).

The error obtained with the two methods on the test set is,
as a function of the number of eigenfunctions : Nystrém algo-
rithm appears to be more accurate than rectangle quadrature,
at least for small number of eigenfunctions. However, method
tends to yield ill conditioned matrices when a large number
of eigenfunctions is required : this phenomenon explains why
Nystrom is outperformed by rectangle quadrature in such
cases. The difference between the two procedures remains
anyway quit low, indicating that a high order quadrature
formula is not of great importance for our purpose.
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Fig. 1. Test functions for fredholm equation

Errers on test functions

Fig. 2. Error comparison

B. Predictor

Finding the right predictor is a critical task in applying
functional regression. For trajectory prediction purpose, it
is natural to consider a part of the observed trajectory as
the predictor, and a part of the future trajectory as target.
The learning database has thus been chosen by selecting
homogeneous segments of 20 radar plots from a day of traffic,
then for each segment cut into two 10 plots pieces. The first
piece will be used as predictor and second one as target. A
total of 3200 trajectories has been considered, with a final
database of 100 segments. In the traffic, a test database with
the same number of segments and similar characteristics has
been selected too. Since the random process associated to
trajectories has no reason to be stationary, the Karhunen-Loeve
basis is a priori different for the predictor and the target. These
two basis will be denoted respectively by (¢;);en and (;);en.
Let (X, Yy)r be the k-th sample from the learning base (that
is Xy is the first half on segment k£ while Y}, is the second
half), the regression problem is to find an optimal K such

that : N
Ve (t) — | K(t,8)X ,(s)ds||2dt

is minimal. The kernel K can be expressed using basis

(¢i)ien, (Vi)ien as :
K(t,s) = Z Z Kiji(t)d;(s)

Using orthogonality of the Karhunen-Loeve eigenfunctions,
the original problem is reduced to find optimal an optimal
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sequence (K;;) minimizing :
2

N
> [ | | ow - S| | a
k=1 i J

assuming that the expansions of X, Y, are :

Xi(s) = Z ajkd;(s), Yi(t) = Z bikr (1)

using the orthonormality of (1;);cn, the minimization problem
reduces further to :

2
N

ain 35" (- 3 Koy
)35 j
= J
In practice, expansions are truncated to a fixed rank. Let P be
the corresponding integer. The approximate finite dimensional
mimization problem is :

2
N

P P
ain S5 (0> K
Kij) 1315 .
= J
which is nothing but a linear least mean square problem
that can be solved with the help of normal equations or QR
factorization. The result of prediction for first the test functions
(same as in previous sections) is summarized below :

Fig. 3. Test functions for prediction

Fig. 4. Predicted second half of trajectories

In the case of real traffic, the obtained results are : The
relative error for in the horizontal plane is kept low and
increases as expected with prediction time. In the case of
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Fig. 5.

Relative prediction error

Fig. 6. Relative prediction error (x-y plane)

Fig. 7. Relative prediction error (z component)

z component, relative error is high, but measurements are
discrete (flight levels), thus there is an intrinsic noise coming
from quantization. For this component, prediction is indeed
built-in with smoothing : a comparison with a smoothed
trajectory yields much lower error.

C. Clustered regression

From now, only the case of trajectories originating from the
same underlying stochastic process has been considered. While
several operational situations fall in this category (especially
when the predictor consists of small parts of trajectories), it is
known that this assumption is false when applied to large areas
of the airspace. To deal with this problem, it may be necessary
to introduce a cluster regression. The data set of trajectories
is partitioned into homogeneous classes (clusters) based on a
relative distance criterion (most of the time, a L? norm or
a Sobolev norm is used). Once the clustering has been done,
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functional regressors are computed cluster by cluster, assuming
that all trajectories in the same cluster are close enough to
be modeled as samples of the same stochastic process. When
applying functional regression to a new trajectory, the closest
cluster is chosen, then the corresponding regressor is used.
This way of applying functional regression has proved to
be very efficient for inhomogeneous 1D curves ; however,
application to 3D trajectories has not been done yet.

V. CONCLUSION AND FUTURE WORK

The functional regression is a promising approach on sim-
ulated situations. Besides of producing an estimation of the
future positions of aircraft in the short to mid term prediction
range, it is possible to derive confidence regions for the actual
position, thus yielding a better control on the quality of the
produced solution. The computational task involved is heavy,
but has to be done only once : as soon as the Karhunen-
Loeve has been produced, it can be used at low cost. The
future work will be first experiments on selected learning data
sets so that functional regression can be compared with other
methods. A second aspect will be to introduce other kind
of decompositions (namely wavelets and curvlets basis) that
are known to perform much like Karhunen-Loeve but at a
much lower computational cost and to investigate the cluster
functional regression. Furthermore, a functional regression
software adapted to trajectory prediction is currently under
development.
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Abstract—This paper studies the robust flight-level assignment
problem. Our goal is reducing the cost (and more specifically the
delay) induced by airspace congestion through an appropriated
flight level assignment (FLA) taking account of uncertainties. We
investigate a robust optimization framework inspired by Bertsi-
mas and Sim work for linear programs and propose appropriate
models for the robust flight level assignment problem.

Keywords: Flight-level assignment, Robustness, Linear
programming.

I. INTRODUCTION

Alleviating delays caused by airspace congestion is, and
will continue to be, critical to the operation of the European
air traffic control system. Two kinds of congestion can be
identified corresponding to two different areas of airspace:
terminal congestion (around airports) and en-route congestion
(between airports). We will focus on congestion in the airspace
rather than at airports, and we are interested here in a specific
direction involving flight-level optimization with respect to a
given traffic demand and given routes. In other words, our
goal is to reduce the additional cost (including delay) induced
by conflict resolution procedures through a better assignment
of flight levels. Indeed, in case of en-route conflicts, some
aircraft has to be rerouted, which produces some delay. This
delay can be reduced through increasing the speed of aircraft,
which yields additional energetic cost. We typically consider
here the energetic cost due to conflict resolution, called simply
conflict or energetic cost in the remainder of the paper. With
respect to the FLA problem, we restrict ourselves to only
three possible levels for each flight. Despite this restriction, the
problem remains highly combinatory due to the large number
of simultaneous flights. The flight level assignment problem is
shown to be NP-complete in the strong sense [2], which makes
it hard to solve at optimum even for reduced size instances.
The problem becomes rather more difficult when involving the
uncertainties in ATM. More precisely, an important question
that we raise in this paper is how to include the potential en-
route conflicts associated with each aircraft in the model and
take into account the uncertainties related to it. All this leads to
the robust flight-level assignment problem and the associated
mathematical model, which is the main focus of this work.

A. Related works

Optimization problems in ATM have been widely studied,
and we do not intend to mention all of them. We prefer
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to focus on some work related someway to the flight-level
assignment problem. Let us first cite Bertsimas and Stock [7],
[8] who have looked at the Air Traffic Flow Management
Rerouting Problem (TFMRP), considering simultaneously the
time and the route assignment problem through a deterministic
approach. First in [7], they handle the Air Traffic Flow
Management Problem (TFMP) with En-route Capacities, and
then in [8] they show how to optimally control aircraft by
rerouting, delaying, or adjusting the speeds of the aircraft in
the ATC system to avoid airspace regions with reduced capac-
ities due to weather conditions. Delahaye and Odoni in [11],
study the problem of airspace congestion from the stochastic
optimization point of view and propose a genetic algorithm.
Barnier and Brisset (see [10]), consider the problem of level
assignment while using an ideal sector-less environment. The
main idea is to allocate different flight levels to intersecting
routes in order to avoid conflicts. A straight line between an
origin and destination pair represents the path of a flow of
flights between these two airports; in other words, only direct
routes are considered. Then, if two flows are in conflict, they
must be routed on two different levels. The problem becomes
a graph coloring one: given a graph with a set of vertices and
a set of edges, the problem is to color the edges such that any
two intersecting edges (not at their extreme vertices) have two
different colors, and the number of colors used is the lowest
possible. Some other research on this problem, also based on
the graph coloring problem is presented in Letrouit’s thesis
(see [16]). The route assignment problem here is handled
by several tasks. The first task is minimizing the number of
required levels when assigning each route to a level from the
beginning to the end of a flight, and the second task is the
distribution of routes among N levels in order to minimize the
number of intersections between the routes having the same
level. More recently, Constans et al. (see [19]) have studied the
problem from the angle of aircraft speed modification. They
propose minimizing conflict risks by dynamically imposing
feasible modifications on the speeds of the aircraft. Doan et
al. (see [9]) have presented a deterministic model intended to
optimize route and flight-level assignment in a trajectory-based
ATM environment. The aim of the latter study is to address
the problem of airspace congestion, and in particular to reduce
the number of potential en-route conflicts. This work was the
starting point for the study presented here.

Let us recall that our goal is reducing the cost induced by
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potential en-route conflicts. An important question is then how
modeling the induced cost given conflict probabilities. Clearly,
the cost induced by an en-route conflict greatly depends on
the conflict resolution methods and for a majority of cases,
the delay is asymmetrically distributed to the involved aircraft.
Due to uncertainties, it is not possible to determine in advance
if some conflict will occur and which aircraft will be delayed.
All this justifies the need for a robust flight level assignment
as depicted below.

B. Paper organization

This paper is organized as follows. After this introduction,
in Section Il we recall briefly works on robust linear pro-
gramming (LP). In Section Ill, we focus on the FLA problem.
We present binary linear programming models and in Section
IV we discuss its robust versions. Section V is devoted to
some numerical results, including remarks on implementation
and data estimation. Some concluding notes are provided in
Section VI.

Il. THE ROBUST BINARY LINEAR PROGRAMMING
PROBLEMS

Robust optimization is one of the common approaches to
take account of uncertainties in optimization problems. We
refer to [18] for a survey in the context of combinatorial
optimization. The usual goal of robust optimization is to
find the best solution which remains feasible for a whole set
of possible events. The main criticism for robust models is
the so-called over-conservatism: the obtained solution will be
feasible for all the possible events, regardless their occurrence
probability. In practice, the worst case may impose a large cost,
while being highly improbable. To remedy this disadvantage,
some works have proposed to relax this worst case condition
[4], [6]. As a result, the solution computed may be feasible
for most of the events, but not all of them.

This is the spirit of the robust model proposed by Bertsimas
and Sim [6], where the feasibility degree of a solution can
be controlled. An important advantage of this model is to
be easily used also with integer variables (see e.g. [5]).
Indeed, the initial integer linear program (without uncertainty)
is transformed into another robust integer linear program. A
similar model has been proposed in [15]. The main interest
of this latter approach lies in the existence of an efficient
solution heuristic. Hence, it can be used on large integer linear
problems.

I11. THE FLIGHT LEVEL ASSIGNMENT PROBLEM
In this section we present LP based approaches for both
deterministic and robust variants of the FLA problem.

A. An LP model for the FLA problem

Notation:

o L denotes the set of possible flight-levels . We denote
with L; the set of preferred flight levels associated with
flight <.
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« The set of flights is noted with F. ' groups all flights
allowed to flight to level 1.

o zl: binary variable (0, 1), takes value 1 when the flight
1, fly on level [ and 0 otherwise.

o bl: gives the profit associated with flight i when flying
on level .

e p;j. gives the cost penalty associated with aircraft ¢
when resolving a potential conflict with aircraft 5. When
dealing with the robust variant, it will denote a random
variable associated with the additional cost that an aircraft
can have due to some potential conflict.

« P!: gives the admissible cumulated cost for a given flight
¢ and level [.

. Sl gives the set of flights j having a potential conflict
with flight 7 at level [.

Given the above notation, an LP model associated with the
FLA problem denoted with P is as follows:

max Z bixi Q)
i€F|lEL
> pijal <M{(1—2)+ P, ie€Flel, )
jes!
doal=1,  ieF (3)
leL;
xt e {0,1} i€ Flecl, 4

where M} gives a sufficient large value, (for instance M} =
Zjes% pi;). Without loss of generality, we assume that for the

given P! values there exists a feasible solution for problem P.

The above model is a binary integer LP problem involving a
large number of constraints and variables, which makes it hard
to be solved by exact methods. From mathematical point of
view, it can be seen as a specific case of a multi-dimensional
multiple-choice knapsack problem. We will provide in the fol-
lowing the framework of an approximated method for the FLA
problem. The main idea behind this method is considering the
assignment problem separately for each level. There are two
main bricks: the first one, Step 0, is devoted to maximize
the number of flights assigned to their preferred level. Thus,
we solve a reduced problem involving only flights with their
preferred level and next, fix all assigned flights. The second
brick is concerned with the remaining flights. This problem,
called P!, is slightly different to P/ as we use as constants (i.e;,
x; = 1) for all already assigned flights, and we add all other
flights concerned with this level that are not yet assigned. Both
these problems are different to P as we do not need to force
any flight to be assigned to some level, as described below.
It provides the main block to construct the solution approach
outlined below:
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Approximated flight level assignment (ApproxFLA)
Step 0:  Proceed with robust flight assignment separately
for each level (Solve problem PY);

Fix the level for flights already assigned.
Proceed with robust flight assignment separately
for each level (Solve problem P");

Fix the level for flights already assigned.

If all flights are assigned, STOP.

Else, increase the admissible cost for each

non assigned flight and return to Step 1.

Step 1.

Step 2:

The key element of the method is the procedure of flight
assignment (P! and P'') associated with a given level of Step
0 and Step 1. We will focus only on P! used in Step O.
Before detailing the mathematical formulation, let give some
precision on the notation. As there is no need to distinguish
flight levels, the binary variable z! is now replaced by z;,
and as before it takes value 1 when the flight 7 flies on level
I and 0 otherwise. Respectively b. and P! are now replaced
by b; and P;. For sake of simplicity we will allow ourselves
to use the same notation for F* as in P, but here it groups
only flights having [ as their preferred level. Notice also that
the order of level examination would have an impact on the
obtained solution. We propose to start with the most loaded
levels. Problem P! follows:

mas ) _ by ©)
i€ F!
S pizy+ Mz < M + Py, i€ F ©)
jest
r; €{0,1} iec F. 7

The above model has an interesting structure as it corresponds
to a simple multi-dimensional knapsack problem. The problem
P'" can be written in a similar way except that some con-
straints of type z; = 1 are added and F* groups all concerned
flights.

1V. MODELING AND SOLVING THE ROBUST FLA PROBLEM

Assuming separate probability conditions, the robust
version of the FLA can be formulated with probability
constraints as follows:

max Z b;x;
i€Fl el
Pr(y_ pijwj+ Miz; <M+ P)>1-¢ Vie FLleL.
jes!
Following the Bertsimas and Sim work, we can deduce the
robust variant of the above ILP problem. This yields still
another ILP problem, which is at least as difficult as the
standard problem. All this justifies heading to approximated
methods to deal with it: we will make use of the framework
approximated method given above for the FLA problem,
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except that we consider the robust variant of the P' problem
(called RPY), instead.

The key element of the method is the procedure of robust
flight assignment RP' associated with a given level of Step
0. Let us deduce first its robust variant.

A. Modeling the RP' problem

In the P! we have assumed that p;; are some given constants
expressing the potential cost induced by some conflict involv-
ing aircraft 7 and j. In the following, we assume that p;; are
random variables that take values in an interval data already
estimated. This assumption leads us to the robust version
of the P! problem, that is RP', and subsequentially to the
robust variant of the FLA problem. Naturally, some way to
take into consideration the uncertainties is not to allow all en-
route potential conflicts to count for the total cost estimation.
We have thus a robust version of the FLA problem in the
sense that for a given aircraft only a part of potential en-
route conflicts are assumed to occur and expected to generate
additional costs. First, let us precise the assumptions related
to the robust problem RP' and the ways used to introduce the
uncertainty in the model. Following the Bertsimas and Sim
works on this area, it seems natural to model the uncertainty by
introducing a protection coefficient, which gives the maximum
number of conflicts that can occur for a given flight. In our
model we do not make use of conflict probabilities in a direct
way but consider their consequences, that is the corresponding
additional costs. These potential costs are modeled by intervals
[0, ], with p;; > 0. Resolving a conflict that involves a
pair of aircraft, yields delay and hence an additional cost, non
necessarily symmetrically distributed among involved aircraft.
This statement leads us to the following assumption: any
flight « will experience (most probably) a reduced number
of potential conflicts during his time flight, (which yields
additional costs to the involved aircraft) and this number
(T;) varies in [0,|S!|]. Then, we are interested in “best”
solutions that remain feasible for any scenario with at most
I'; coefficients taking the worst value p;;. Such a solution is
obtained through the following program:

Zﬁijxj 4+ Mx; < M; +F;, i€ Fl,S - Szl : |S| =1,
jes
z; €{0,1} i€ F.

The above program contains a large number of constraints
and it is hard to solve at optimum. However, it has been shown
by Bertsimas and Sim that it can be modeled through an ILP
(Integer Linear Programming). The latter program, provided
below, still contains a large number of constraints and variables
and remains hard to be solved by exact methods.

Following the work of Bertsimas and Sim, the robust variant
of problem P, with respect to a given vector I, denoted RP,r,
is as follows:
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i€ F!
Dizi + Z 0ijyij + Miz; < M; + P, i€ F
jes!
2 +0ijyi; > dijz; i€ FlLje St

z; €{0,1}, 2, > 0,y;; >0 i€ F',jeS.

Hence, we have opted to use another (alternative) robust
model of above, following the one introduced in [115]. The
following model uses a parameter vector € [0, 1]/¥"| instead

of the vector I
max Z bllz
i€ F!

M;z; + min Z]_)ijj,’yqz]_)w < M;+ P; iEFZ’
jes! jes!

z;€{0,1}, ieF.

The above model is denoted below RPF;,. This formulation
can be simplified a lot. Let us focus on the robust constraint 7.
Either we consider the worst case (maximum conflict induced
costs), or we have a constraint: M;x; + %Zjesg Dij <
M; + P;. In this latter case, two sub-cases occur: when
Yi- 2jest Pij > Py, then z; = 05 when ;. 3 i pij < B,
we have a dummy constraint which can be ignored.

Hence, this robust model leads to three different configura-
tions:

o either z; = 0: the flight 7 does not use level [;

e Or z; = 1 and no constraint is associated to flight 4: this

means that flight < uses level I with zero conflict costs;

e Or z; = 1 and the worst case is taken into account: the

flight 4 uses level [ with maximal conflict costs.
These three cases are in fact summarized in the two following
ones:

« either flight ¢ has zero conflict costs;

« or flight ¢ is associated maximal conflict costs.

Hence, the analysis of the above robust model leads to a
new one, which is very simple. Let I. C F' be a subset of

flights:
max Z b;x;
IEF!
M;x; + Z Dijr; < M+ Py i€l
jes!
z; € {0,1}, ieF.

The parameter enabling to tune robustness is the subset 7.,
and we denote the problem by RP'(I.).

B. Solving the RP' problem

In the precedent section we have described how an instance
of the robust FLA problem can be modeled by ILP. Let recall
that we are interested in robust solutions that remain feasible
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in a large part of scenarios, that is, which has a high enough
feasibility probability. Obviously, if we take v; = 1, for all i
in F! (which gives I, = F'), we obtain feasible solution for
all scenarios. One idea is to start with 7. = ¢ and to make
it grow gradually until a solution with the desired feasibility
probability is achieved. Such ideas have already been exploited
in [14], [15]. The algorithm can be depicted as follows:

A fast heuristic approach for solving RP’

Step 0:  Set I. = ¢.
Select an index i € F* such that:
i = argmin{P; — E[Zjesj pijl}
Set I. — I. U {i}.
Step 1:  Solve RP!(1,).
Let z be the solution found.
Step 2: If feasibility probability of z is high enough,

STOP.

Else, select an index i € F' \ I.. such that:
i = argmin{P; — E[};c o pij 5]}

Set I. «— I. U {i}; Return to Step 1:.

As it can be seen from the algorithm, during Step 0 we look
for a strongly constrained constraint to introduce in I.. The
solution will admit all flights in this level except the flight
or a few constraining the selected flight ¢ (it depends on the
associated benefits). At this stage, the above solution is most
probably not feasible and we need to pursue with other steps
in order to further constrain the set of flights to be assigned
at this level. An immediate way to accelerate the algorithm is
to introduce at step 0 in I.. a larger number of constraints. For
more details on the general framework of the algorithm and a
deeper study on its theoretical properties, we refer to [15].

Notice also that the above algorithm doesn’t ensure the
optimality of the obtained solution. An important element of
the resolution scheme given above is measuring the probability
of the obtained solution. There are two ways to estimate the
feasibility probability associated with some solution.

1) First method: The main idea behind the first method
is using the Hoeffding’s inequality [12], which is a result in
probability theory that gives an upper bound on the probability
for the sum of random variables to deviate from its expected
value. This yields general results but it could be pertinent since
variables p;; can be assumed independents in our model. Let
us recall first this fundamental result (see [12] for details):

Let Xy,..., X, be independent random variables. Assume
that the X, are almost surely bounded; that is, assume for
1 <i < nthat Pr(X; € [a;,b;]) = 1. Lethbe S = > X; and

E[S] its expected value. Then, we have the inequality

Pr(S —E[S] > nt) < exp (—% ,

which is valid for positive values of ¢.

To apply this result to our problem, we first need to compute
the expected value for each random variable. For doing this,
let us try to express these variables in a more formal way.
Recall that the random variable p;; corresponds to the cost
induced by some resolution conflict procedure. Then, it de-
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pends to two factors: first, if some conflict is occurring, and
second, the resolution procedure engaged by the air traffic
controllers. Hence, the first event is an en-route conflict!
modeled below with a random variable c;;, which follows
a Bernoulli distribution (Pr(c;; = 1) = ¢;;, and Pr(c;; =
0) = 1 — gy). In case of conflict, the cost induced to
the involved aircraft, represented by random variables p;j,
is assumed identically distributed in the interval [0, p;;]. We
have: p;; = pj;.cij. Then, E[p;;] = E[p};.ci;]. Since the
random variables p; and c;; are stochastically independent:
Elpi;] = E[p};].Elcij] = %*qu;. Clearly for a given vector z,
we obtain E[p;;z;] = 2 q;;x;.

Considering that the FLA problem has separated probability
constraints, we need to ensure that for each constraint the
following probability condition is satisfied:

Pr(szSf PijTj + MZ{ITZ < ]\4Z + Pl) > 1 — e AS
P’"(Zjesg pijr; + Mz, < M; + P;) >

Pr(y;es pijr; < Bi),

we restrict ourselves in ensuring that

Pr(zjesﬁ pijr; < P;) >1—e€forall z; = 1.

Applying the Hoeffding’s inequality we have:

Pr(3_jes pijr; 2 Pi) =

Pr(3jes Pijti =B e g pijr;] 2 Pi—E[} ;e g pij;]) <

Q(Pi*zjesé L gijw;)?
2 jest Ph®
Notice that the interval of values for variable pi;; 1S given by
[0, P;;], which explains the above formula. Clearly, we have
reached a feasible robust solution = when for all i in F'! with

x; =1, we have €, <e.

The method is attractive and does not need restrictive
probability conditions but it could lead to costly solutions as
the probability bounds are quite general and could be weak. To
remedy this, a natural idea is to use Monte-Carlo simulation.

Remarque. It is possible to formulate an ILP model for
computing a robust solution with the desired feasibility prob-
ability. For this, we need to combine the search for some robust
solution x with some additional conditions that a feasible
solution must satisfy. As shown in [15], it yields an ILP model
involving additional variables and constraints.

2) Second method: The second way to handle the feasibility
probability computation is using Monte-Carlo simulation. The
main idea behind is simulating the departures times for all
flights, simulating next the most convenient resolution en-
route procedure, and estimating the induced cost. Once all
coefficients of the model estimated, we check the feasibility
of our solution for the given scenario. We repeat this a
large number of times, and deduce the feasibility probability
associated with the robust solution.

= €.

exp | — i

V. NUMERICAL TESTS

Our approach for the robust FLA problem is implemented
in C++ using CPLEX 10.0. Let us give some details on the

1The conflict probability associated with a pair of aircraft can be computed
following the method given in [3].
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TABLE |
TEST INSTANCE

Number of Flights
1377

Network
NET_FR

Used Airports
134

Used WayPoints
769

implementation approach: we start by considering levels one
by one, from the most loaded to the least one. For each
level, we start with a set of a reduced number of flights.
More precisely, we initiate the RP' problem with about 5%
of concerned flights. We choose the most constrained ones,
that is in increasing order of {F; — E[}_, q pi;]} values.
Further iterations could be necessary to ensure the probability
feasibility of the obtained solution. Hence, for a given solution
x, we add in the RP' problem a few new flights in decreasing
order of € (> ¢) values.

For our tests we use collected data on departure and arrival
times, aircraft type, velocities, trajectory crossing angle and
flight levels for a set of flights. Next, for each flight we
will compute the en-route conflict probability following the
guidelines given in [3]. The test data corresponds to French air
traffic of August 12th 1999. Table I presents the characteristics
of test data. All the tests were run on a machine with the
following configuration: Windows XP, 1 processors Pentium
4 2.4GHz, 1 Gb of RAM.

At this stage, the first difficulty encountered when imple-
menting the model, is concerned with providing the right
parameters p;; and P;. Indeed, the best choice would be to
estimate the interval [0,p;;] as a function of crossing angle,
and type of aircraft, and last, estimate the P/ as a few percent
of the energetic cost of the flight. In this first series of tests,
essentially because of lack of data and time, we have set
the same unitary cost for all conflicts. Thus, we have set
P, = maxa,c* (duration — 1) + «, where duration gives
the flight duration, ¢ and « are both constants. For instance,
for any flight with duration less than 1 hour, we have fixed
P; to o = 3, while for the others we also take into account
the duration of the flight according to the above formula with
¢ = 0.1. Our goal is to measure the impact of robustness on the
number of flights assigned to their preferred level comparing
to these that have to be changed. We have also varied the
level of robustness parameter e. To measure the feasibility of
the solution, we have used the Hoeffding’s formula. In table 11
are shown some results obtained with the above parameters for
three different values of ¢, which gives the allowed infeasibility
probability. The second column, (“Number of changed levels”)
gives the number of flights not assigned to their preferred
levels and accommodated to adjacent levels because of en-
route conflicts. The last column (“Gap Robust/Deterministic”)
gives the percentage of additional flights assigned to their
preferred levels thanks to robustness in comparison with the
deterministic model. These results show that when using the
robust model we can have some increase in the capacity of
accommodating flights in their preferred levels with very high
probability feasibility comparing to the standard problem when
considering the worst case. This latter case is computed by
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TABLE 1l
NUMERICAL RESULTS

€ Number of changed levels | Gap Robust/Deterministic
0.05 170 6.5%
0.10 163 10.4%
0.15 139 23.6%
0.20 135 25.8%
0.25 126 30.7%

adding all constraints corresponding to flights in the problem.
We do not need at all to do any computation on the probability
feasibility: the obtained solution is feasible for any case and all
constraints are satisfied. For our deterministic problem using
the above set of parameters we have obtained 182 flights not
assigned to their preferred levels.

In our computations, most of remained flights not assigned
to their preferred levels are accommodated to adjacent levels,
while for some of them we have needed to increment their cu-
mulated allowed cost as indicated in Step 2 of the ApproxFLA
Algorithm described in Section I1I.

Indeed, we expected to have a larger difference between the
deterministic and the probabilistic model. We believe that this
is because of using the Hoeffding bound which is somehow
weak. To remedy this, two directions need to be followed:
first, using a better parameterizing of the model, and next
switching to Monte-Carlo simulations, better suited to this
kind of problems. This work is in progress.

V1. CONCLUDING REMARKS

In this paper we have provided a mathematical model for
the robust FLA problem. We have first discussed the model
following the Bertsimas and Sim [5] approach and focus on
a second one inspired from [15], for which an approximated
tractable iterative approach is available. We have adapted this
later work in the context of ATM for solving the robust FLA
problem. This work is a first stage to achieve a thorough
study on the robust flight level assignment problem. As
remarked above, the obtained results rises the problem of how
parameterizing the model. Another point, in addition to those
shown above, is related with the assumption of considering
only en-route conflicts between aircraft flying horizontally in
the same level. We are actually thinking in considering air
conflicts that involve crossing aircraft flying on different levels,
for instance when one of them is climbing or descending. This
assumption will also allow a better modeling of the problem
and can contribute in avoiding the above limitations of the
robust model. Further investigations are needed.
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Abstract— In this paper we consider the problem of predicting
the demand for en route airspace sectors considering uncertain
flight departure time and en route conditions. Flight, airport,
and airline conditions that lead to greater variance in
departure time prediction errors are examined and used to
develop kernel-smoothed empirical probability density
functions for flight departure time predictions. The structure
of the departure time prediction errors is found to vary across
the departing airport type. A similar analysis is performed for
the en route airspace to characterize the random component of
airspace sector traversal time. Variance of en route sector
traversal times is found to increase for shorter duration
planned sector traversal times. A method that combines these
sources of uncertainty is presented and applied to two days of
historical traffic conditions for east coast U.S. airspace sectors.
Results of this analysis indicate that the mean absolute
prediction error of the airspace demand can be reduced by
20% when using the probabilistic method as compared to a
deterministic procedure. Similarly, standard deviation of the
error in airspace demand is reduced by 23 to 25% also
indicating a reduced spread in the demand estimation.

Keywords-en route; airgpace; traffic flow management;
demand; probabilisic

l. INTRODUCTION

In 2006 aircraft operating in the National Airspace
System (NAS) experienced in excess of five hundred
thousand aircraft hours of airborne delay [1]. The number
and duration of delays are expected to worsen during a
projected growth of 47.5 million to 67.7 million flights
operating under instrument flight rules (IFR) from 2006 to
2017 respectively [2]. A combination of improved traffic
flow management practices and an increase in airspace
capacity would be required to mitigate these expected delays.
The Next Generation Air Transportation System (NextGen)
program is one such current initiative [3].

The focus of this work is to demonstrate how stochastic
models can support en route traffic flow management
decision-making under uncertainty. Current traffic flow
management practice is based on the deterministic Enhanced
Traffic Management System (ETMS) and the experience of
air traffic controllers and managers [4]. ETMS provides
forecasts of airport departures and arrivals, sector entry and
exits, airway entry and exits, and waypoint crossings [5]. The
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drawback of these forecasts is the inability to consider a
range of potential scenarios so that traffic flow managers
must be more conservative in their decision-making.
Conversely, the deterministic forecast may under represent
the congestion potential during volatile conditions, such as
severe convective weather, leading to capacity overload.

There is a body of work in the recent literature focusing
on quantifying and modeling stochastic elements of the NAS
en route airspace. The estimated time of departure is the
single largest source of uncertainty for flights that have not
departed from the origin airport [6]. The work on pre-
departure uncertainty has focused on quantifying variance
and confidence bounds under various weather and flight-
specific attributes at a range of look-ahead times [7-9].

The prediction of departure time is one component in the
estimation of en route airspace sector demand. Meyn details
a method to estimate sector and airport demand from arrival
probability distributions and sector traversal time [10]. Only
a single source of uncertainty is modeled at an unspecified
look-ahead time. Mueller et al. note that departure time, wind
forecasting errors, deviations from the flight plan, and
aircraft performance and weight uncertainty can lead to
errors in sector demand prediction [11]. The climb phase of
flight, especially step climbs that are mandated by air traffic
controllers in congested airspace, is identified as the source
of the highest trajectory performance prediction errors with
empirical results presented.

Flow models are another proposed approach to improve
the estimation of sector demand by considering air traffic
demand at a high level. Many of the current models are
deterministic though well-suited to metering traffic flows to
an arrival fix at a busy airport [12-15]. Probabilistic versions
have also been developed but at the more macroscopic center
level [16]. An attempt to establish a relationship between
planned and observed sector counts is discussed in [17].

The following sections describe extensions to current
stochastic airspace demand models to include pre-departure
uncertainty, en route traversal uncertainty, and route
uncertainty. A method to combine departure time uncertainty
and en route traversal time uncertainty is presented and
applied to one day of historical airspace conditions to
quantify the benefit of a probabilistic approach.
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Il.  DEPARTURE UNCERTAINTY

Previous work in the area of sector demand estimation
has noted several factors that lead to errors in sector demand
[6-8]. The work presented here will focus on pre-departure,
sector traversal, and route uncertainty. Pre-departure
uncertainty is the difference between the proposed wheels-
off time at the origin airport and the measured departure time
as recorded in ETMS. The ETMS system does not provide
the most accurate historical prediction of wheels-off time,
however errors of a few minutes are considered negligible in
the context of this analysis.

The quantity of interest is the departure prediction error
and not deviation from the schedule so the lateness of a flight
is not what is being measured. The following is a partial list
of factors that can result in poor estimations of departure
time: aircraft arriving late from a previous leg, unavailable
gates from the previous leg, crew arriving late, aircraft
servicing, de-icing operations, runway direction reversals,
taxiway availability, etc.

The procedure to calculate departure uncertainty begins
by collecting all relevant messages from the ETMS historical
data including the flight schedule (FS), flight plan (FZ),
flight amendment (AF), control departure time (CTRL), and
flight cancellation (RZ) messages. The analysis days for this
study are shown in Table | from which 1,238,730 departure
observations are extracted. Information from the previous
day is also used to obtain full flight plan and schedule
information. Gate push-back times are obtained from the
FAA Airline Service Quality Performance (ASQP) database
[18]. Definitions for departure time are shown in Table II.

Messages are then sorted by time of entry into the ETMS
system. For each message a modeled departure time may be
recorded at 0, 15, 30, 60, and 120 minute look-ahead times.
A modeled departure time is not recorded if a more recent
message is received prior to one of the look-ahead times.

TABLE 1. STUDY ANALYSIS DAYS.
Day Year(s) Day Year(s)
February 19 2000-2005 September 26 2000-2004
May 10 2000-2005 October 23 2004
June 11 2004-2005 December 1 2001-2002
June 27 2004 December 3 2000
July 14 2005 November 28 2004
July 27 2000-2004 November 30 2003
TABLE II. DEPARTURE TIME DEFINITIONS.
Notation Definition
ETMS modeled departure | Gate pushback time + ETMS modeled taxi
time time
ETMS modeled taxi time Movmg average of last five taxi times for
that flight

Estimated runway-off time for flight from
ETMS message

Wheels-off time — ETMS modeled
departure time

ETMS modeled departure time — current
time

Wheels-off time

Departure time prediction
error

Look-ahead time
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For example if a flight plan message is received at 02002
with a modeled departure time of 0330Z, then a subsequent
flight amendment is received at 0250Z then only an error
observation corresponding to a 60 minute look-ahead time is
recorded for the 0200Z message.

The analysis proceeds by attempting to find structural
variance in the prediction error data. Exploratory analysis
strongly suggests the existence of non-constant variance
across variables, otherwise known as heteroscedasticity. A
modified least squares regression procedure is used since
errors are non-normal and right-skewed even under a
logarithmic transformation. Another method that accounts
for non-constant variance is the class of generalized
autoregressive conditional heteroscedasticity (GARCH)
models most suitable to time series analysis but with limited
applicability to this problem [19].

The modified regression procedure is as follows. The
regression form of Error! Reference source not found.
shows a response variable Y to be a function of two
independent random variables X and € and a coefficient
matrix p.

Y= pX+e€ (1)

If the variance is constant then €~N(0,0%) s
independent of X. This model is extended by allowing the
variance to be a function of X as shown in and [20]. An
exponential link function is used in this analysis but others
may be substituted.

e~N{0,072 1(X) ) 0]
AX) = exp(T'X) ®)

This type of regression on the variance does not eliminate
the non-normality problem but it does allow an investigation
into the conditions that lead to larger variance. A total of 26
explanatory variables are considered representing flight,
airline, airport, and weather conditions.

The model is calibrated using SAS [21] with coefficients
for the 14 selected variables presented in Table IIl. The
exponential of the coefficients is also shown since the
coefficients must be transformed back and used as a
multiplier effect. All variables are significant at the 5% level
though the test for statistical significance is somewhat
questionable in this case. A logarithmic transform of the
error response at a 30 minute look-ahead time (E atsq) iS
used to better approximate normality .

Y = log(E,; 730 + 60 minutes) @)

Since the error could not be completely transformed to
normality a categorical analysis of the distribution of errors
is considered based on the results of the regression analysis.
The first of the groupings uses the departing airport type of
the flight. A box-and-whisker diagram of the errors (Fig. 1)
shows the 25th percentile, median, and 75th percentile of the
errors as a box. The difference between the 75th percentile
and the 25th percentile is known as the interquartile range
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(IQR) and is used to mark the largest and smallest

observations that are “valid” as whiskers. A data point is

TABLE III. REGRESSION COEFFICIENTS FOR MEAN AND VARIANCE OF DEPARTURE TIME PREDICTION ERROR AT A 30 MINUTE LOOK-AHEAD TIME.
Coefficient for Mean Estimate Coefficient for Variance Estimate
g expl(£) SE? r exsfl) SE*

Intercept 4.175 65.040 0.0009 0.277 1.319 0.0005
Depart from a large hub 0.014 1.014 0.0009 -0.019 0.981 0.0051
Depart from a medium hub -0.004 0.996 0.0011 0.038 1.039 0.0060
Depart from a small hub -0.064 0.938 0.0013 -0.303 0.739 0.0059
Depart from a non-hub -0.004 0.996 0.0011 -0.170 0.844 0.0066
Departing airport operating under instrument conditions (IMC) 0 1 0.284 1.328 0.0025
A large carrier (top 25 by operations) departing from a large hub airport 0 1 -0.367 0.693 0.0030
A large carrier (top 25 by operations) departing from a medium hub airport 0 1 -0.681 0.506 0.0048
A large carrier (top 25 by operations) departing from a non-hub airport 0 1 -0.048 0.953 0.0088
A large carrier (top 25 by operations) departing from a foreign airport 0 1 -0.313 0.731 0.0061
A smal_l carrier (not top 25 by operations) departing from a small airport 0 1 0379 1.461 0.0048
and arriving to a large hub

If flight plan is amended 0 1 0.100 1.105 0.0018
:jf convection is forecasted to impact this flight (origin airport, en route, 0 1 0047 1.048 0.0022

estination airport)

If flight has been cancelled and reactivated 0 1 0.198 1.219 0.0039
If flight has been both amended and cancelled and reactivated 0 1 0.408 1.504 0.0052
Sample size 1,130,874

Log Likelihood -83,918.2

# Standard Error

considered valid if it is less than 1.5(IQR) from the box.
Outliers are indicated by a “+”. The notable characteristics of
the diagram are that the median is relatively constant
between airport types, all the distributions are right-skewed
(positively skewed), variance increases as airport size
decreases, and there are numerous outliers for each
distribution, which is the reason for the solid red line. Large
variance for smaller airports may seem counter-intuitive but
the type of airline operating at these airports has an impact.

A categorical grouping that includes factors in
addition to departing airport size is shown in Fig. 2 with a
corresponding box-and-whisker plot in Fig. 3. The clustering
procedure covers all cases and the order is generally as
follows: amendment, cancelled, forecasted convection,
airport type, if the carrier is one of the top 25 carriers by
operations, and arriving airport size. Clusters are ranked by
mean error then by variance so that cluster 1 has the lowest
mean and variance while cluster 10 has the highest mean and
variance. The highest variance is for flights that have
amendments or that have been cancelled and reactivated. By
separating smaller carriers from larger carriers this analysis
shows that larger carriers have lower variance than smaller
carriers and smaller airports have lower variance than larger
airports when corrected for carrier type. However, since
smaller carriers dominate smaller airports we get the results
shown in Fig. 1.

An attempt is made to generalize the errors to a
probability distribution. However, since the error is right-
skewed and peaked around 0 the standard distributions are
poor approximations (Fig. 4). Histograms are constructed
and compared to the lognormal for each of the two groupings
considered here: airport type and clustered data. For each of

these histograms the lognormal approximations are
significantly different from the observed empirical
distribution.
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In kernel smoothing a probability mass, such as a normal
or other symmetric density function, is placed at each data
point. The equations to place the probability mass are
straightforward. Begin by specifying a kernel that satisfies
(5). In this case the standard normal distribution is chosen
K(X) ~ N(O,1). The density at each value is estimated by
summing all kernels as detailed in where n is the number
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Figure 2. Tree diagram for clustering.
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Figure 4. Histogram of departure time prediction errors at a 30 minute
look-ahead time frame for large hub airports for 30 days in 2000-2005. A
lognormal approximation and kernel smoothed distribution are also
displayed illustrating a poor and good fit respectively.

of samples and h is the bandwidth. The optimal bandwidth
parameter is a function of sample size and variation of the
distribution. Larger sample sizes permit a smaller bandwidth
while larger variances require increased bandwidth. The
kernel smoothing parameter estimation results are excluded
for brevity.

ff((x]dx= 1 5)
n
- 1 _x—Xi (6)
f(—'x-';h]=ﬁ;f{( h )

IIl.  SECTOR TRAVERSAL TIME VARIATION

Another source of randomness in the estimation of sector
demand is the traversal time through the sector. Controller
actions such as: speed changes, vectoring, issuing a holding
pattern, or the clearance of a more direct route may cause the
flight to spend more or less time in the sector than planned.
The approach used compares the planned sector flight time
obtained through simulation to the observed sector traversal
time from the processed ETMS radar track data (TZ). The
scope of the analysis includes the following east coast air
route traffic control centers (ARTCCs): Chicago (ZAU),
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Indianapolis (ZID), Atlanta (ZTL), Jacksonville (ZJX),
Miami (ZMA), Washington (ZDC), Cleveland (ZOB), New
York (ZNY), and Boston (ZBW).

To obtain planned sector traversal times the most
recent flight plan or amendment before the actual departure
is extracted from ETMS data. The flight plan data is
converted into a format suitable for the RAMS Plus airspace
simulation software [22]. Other information including
aircraft performance, airport locations, navigational aids
(NAVAIDs), fixes, airways, standard terminal arrivals
(STARs), and departure paths are also converted to the
RAMS format. Aircraft performance uses
EUROCONTROL’s Base of Aircraft DAta (BADA) [23]
which is different from the ETMS system aircraft
performance models [5]. The largest source of uncertainty in
aircraft performance modeling is the prediction of aircraft
weight. In this analysis we assume a nominal, or average,
weight for each flight based on the three aircraft mass
categories contained in BADA: low, nominal, and high. Each
of the flight plans are then simulated to obtain the time of
sector entry, time of sector exit, and sector traversal time.
The air traffic controller functionality of RAMS is turned off
so there is no conflict resolution for flights predicted to
violate minimum separation standards.

The ratio of observed sector traversal time to planned
sector traversal time, which is obtained from processing the
RAMS output files, is examined for structure. A plot of the
standard deviation of the ratio of observed to planned sector
traversal times by planned sector traversal time and observed
airspace density (Fig. 5) shows that the planned traversal
time through the sector has a larger effect than the observed
airspace density. This does not mean to suggest that airspace
density has no effect since sectors with shorter traversal
times are typically more congested than those with longer
traversal times. The assertion here is that flown traversal
time is mostly impacted by planned time for a flight to cross
a sector.

Based on this observation a series of kernel-smoothed
densities are developed for planned traversal times (t;) as
follows: {t;| 0 < t, <4 minutes}, {ty| 4 < t, <8 minutes}, {t|
8 < t, < 12 minutes}, {ty| 12 < t, < 16 minutes}, {t,| 16
minutes < tp}. A sample kernel-smoothed ratio for the 4 to 8
minute planned traversal time interval is shown in Fig. 6.

Alternatively, an error distribution that considers the
relative difference between the observed and planned
traversal times is also considered but not selected (i.e. error
distribution = observed traversal time — planned traversal
time). Due to the difference between the high and low range,
e.g. 4 to 8 minutes in Fig. 6, a negative sector traversal time
may be implied from the resulting error distribution. The
ratio distribution is more appropriate in this case since
traversal times are always positive and relative to the
planned traversal time.

IV. SECTOR HIT RATE

The last source of uncertainty considered in this analysis is
the sector hit rate which is defined as the rate at which the
planned sectors for a flight plan match the observed or flown
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sequence of sectors. It is a combined consideration of the
route and altitude forecast accuracy. Consider ordered sets of
planned sectors P and flown sectors F. A hit is defined if the
planned and flown sectors match and is then used to
calculate the overall hit rate . Note that it is possible for a
flight to enter the same sector more than once so by this
definition the hit rate is restricted to be < 1.

lenF| @
171

The simulation and playback results from the sector
traversal analysis in RAMS are also used to calculate the hit
rate. The results of the hit rate analysis show an overall
average hit rate of 73%. Conditions that lead to re-routing
such as severe weather and airspace congestion were not
included here. Further work that could find a relationship to
predict sector hit rate probabilities under various conditions
would be beneficial.

Hit Rate =

Standard Deviation of Ratic of Observed to Planned Sector Traversal Time

Figure 5. Standard deviation of ratio of observed to planned sector
traversal time by planned sector traversal time and observed airspace
density in the sector.
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Figure 6. Ratio of observed to planned sector traversal time for a planned
traversal time of 4 to 8 minutes.

V. PROBABILISTIC SECTOR DEMAND

We now use the departure uncertainty and sector traversal
variability models to develop sector demand at 10, 30, and
60 minute look-ahead times to sector entry. We are interested
in the probability for a given flight to occupy a sector as a
function of time (Fig. 7). The resulting distribution is not a
probability density function since the area under the curve
does not equal 1. This distribution would then be used in the
calculation of sector demand by time period.

The equations in this section represent the application of
standard statistical methods, such as the convolution theorem
[24], and conventions used in calculations. The following
nomenclature is used throughout this section:

E:'fﬂ = Expected count, or demand, for
sector i, during time period t

faeparturey = Distribution of errors in predicting a
i - -

flights departure time as calculated
in Section Il for the flight traversing
the sector at position i under
consideration

fonreuts(.) = Distribution of flight traversal time
through sector at position i
considering the stochastic en route
component

ffﬂfﬂ:[-j = Probabilistic demand distribution for
sector at position i considering both
departure and en route sources of
randomness

k?"ﬂff!*{.:] = Distribution of ratio r for sector k as
calculated in Section 111

F = Flown Flown
Set {51 reerSm } of
sectors traversed using the flight’s
flown trajectory

i =  Position indices where position 1 is
the first sector after the departing
airport and positions m,n are the last
sector before the arrival airport

k =  Sector index for ratio distribution
free()

LATdsparturs = | ook-ahead time to departure
(wheels-off)

LAT =scter =  Look-ahead time to sector entry

m,n = Number of sectors that a flight

crosses when following the flown
(m) or planned (n) trajectory

polt) = Probability that the flight under
consideration arrives to a sector i
during time period t

p,(t) = Probability that the flight under
consideration does not arrive to a
sector i during time period t
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= anlanned aplannad
P set 1T ST
sectors in the flight plan
r = . frraversal
Ratio of observed “J to
Err‘rz versal .
planned *: traversal times
gplannsd =  Sector in position i in the flight plan
L
gflown = Sector at position j in the set of
1 flown sectors F
feniry = Planned time of entry into a sector at
' position i
FLAT =  Planned time of entry into a sector at

position i at look-ahead time LAT

Eirr"ﬂvﬂ?"mi = Planned traversal time through a

sector at position i

pEmEITY =  Flown, or observed, time of entry

] into a sector at position j

t}??‘ﬂvﬂ?"fﬂf = Flown, or observed, traversal time
through a sector at position |

:{ =  Variable used to convert from a ratio
distribution to a relative error

distribution

The analysis of historical ETMS data presented is sector
based so to generate demand each sector in a flight plan is
examined. To start we consider a single flight, its associated
flight plan, and one of the sectors that the flight traverses
when it follows its flight plan.

There are two cases to be considered for demand
prediction for en route flights. There are additional
considerations for flights that have not departed that are
discussed later in this section. In the first case we find a
flown sector that satisfies the conditions listed in (8-10). The
first of these conditions is that the flown sector must also be
included in the set of planned sectors . As shown in Section
IV there are cases where the flown sector does not appear in
the flight plan. The second condition ensures that the flown
sector is at least the look-ahead time away from the planned
sector . The third condition specifies that there is no closer
flown sector .

So if a sector is found that satisfies the three conditions in
(8-10) an improved estimate of the estimated sector entry
time is calculated . Otherwise, for the second case where
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Figure 7. Distribution of probabilistic sector demand.
no sector is found that satisfies (8-10) the uncorrected

planned time of entry into a sector is used which is the
second condition in .

5'}’.‘ town e p @)
E:!nt?"}' _ t;nt?')' > L AT ssctor 9)
Flown o TEntry BERETY
[ e FIn|LAT]secter < 777 — 277 e (10)
ELAI' _ E:'?? try + (t;ntr'}' _ %gntr}')_l if 3 S’ (11)
' femery, other

The next step is to determine the set of sectors for which
traversal time ratio distributions will be considered and
included in the analysis. If a flown sector is found that
satisfies (8-10) then all sectors after and including the flown
sector are included, otherwise all sectors are used to update
the uncertainty distribution starting from the origin airport
(12). Each of these sectors is matched with an appropriate
ratio distribution that is described in Section Il and
categorized by the ratio of observed to planned sector
traversal times (13). Since we are interested in the time
relative to the corrected sector entry time calculated in we
convert the basis of the distribution in . Planned traversal
times are subtracted for all sectors excluding the planned
sector under consideration so that all distributions are error
distributions except the planned sector under consideration.
For the planned sector under consideration the expected
traversal time is included in the distribution to achieve a
correct demand value.

_ { if3 it (12)
1, otherwise
fkrﬂi':'pi:r: Eﬁrﬁuar‘se!l Yk = A (13)
T (r— I}EE?‘EL‘E?‘SE:J ifj<k=<i (14)
k {T.}Ef{mvarsrﬂj ”c‘ k=i
W= .
The distributions are summed by the standard

convolution (i.e. the * operator) method of taking the
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discrete Fast Fourier Transform ¥  of each of the
distributions, performing an element-by-element
multiplication, then transforming back using the Inverse Fast

Fourier Transform F % [24]. The general case is shown in

for distributions ¢ and 8¢ and in for the distributions
considered here. If a sector is found satisfying (8-10) then
the result of is the density function relative to the corrected
sector entry time to be added to the sector demand.
Otherwise the departure time prediction error is also
considered.

If the departure time prediction error needs to be
considered then the look-ahead time for the departure
uncertainty is calculated using the look-ahead time to the
sector, the planned entry time into the sector, and the planned
flight departure . The departure look-ahead time is rounded
up to one of the available departure look-ahead

(+9)=FHF(-F@)

}_:-_"Fﬂlri:? (t_;u-{kl))

times of {0, 15, 30, 60, 120 minutes} and used to select a
departure uncertainty distribution. The departure uncertainty
distribution is combined with the en route uncertainty
distribution to arrive at a total uncertainty distribution .

(19)

(16)
fenrouts(g) = [(}-}mriﬂ (t}_)--- *

LATdeparturs — ] AT=sctor _ [’:L_‘E'?‘!f?"}' _ EE’E',‘EIE?"E: a7

(18)

To estimate the demand for the planned sector under
consideration during any time period a summation of the
discrete total error distributions is performed If a
distribution of demand for a sector is required rather than just
the expected count then a discrete probability density
function is constructed for each flight consisting of the
probability that the flight arrives during a time period 1 or
does not arrive Pa . A series of convolution operators for
each flight similar to that shown in may be used to derive a

distribution of sector counts for the purpose of obtaining
confidence bounds.

d.(t) = fretal (1) (19)

v flights
p,(t) = P(V = 1) = fForei(1) (20)
polt)=PN=0)=1-p, (1)

The method presented in this section implicitly assumes
statistical independence for the departure and en route error
distributions. Though this assertion is not strictly true it does
allow for efficient demand uncertainty calculations. Methods
that consider the covariance between the sector-based
uncertainty  distributions would also need to be
computationally efficient to be useful for strategic traffic
flow management.
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VI. PERFORMANCE OF PROBABILISTIC SECTOR DEMAND
MODEL

The historical traffic conditions on the date of August 29,
2005 is used to compare the performance of the probabilistic
model for sector demand to a deterministic model at 10, 30,
and 60 minute look-ahead times to sector entry in 1-minute
intervals. Recall from the departure uncertainty section that
two groupings are considered: one based on departing airport
type and one based on a clustering that considers additional
factors. Overall comparisons are made by considering the
standard deviation of the demand prediction error and the
mean absolute value of the prediction error (Table 1V). The
standard deviation of the error is reduced by 25% and the
prediction error reduced by 20% when using the probabilistic
methods as compared to the deterministic method. Results
indicate that the cluster grouping method that considers
additional factors offers little improvement on the method
that only considers airport type in the departure uncertainty.
Both methods also consider the en route random component
as described in . A histogram detailing the distribution of the
prediction error at a 30 minute look-ahead time to sector
entry is shown in Fig. 8. This deterministic to probabilistic
comparison is challenged by the fact that deterministic errors
are discrete whereas the probabilistic errors may take on any
real value.

Analysis of a second day of traffic data is performed for
the date of July 27, 2005. The mean absolute prediction error
for sector demand is reduced by 20% and the standard
deviation by 23%, similar to the first day analysis results.

VII. CONCLUSIONS AND FUTURE WORK

In this paper departure time and en route sources of
uncertainty are quantified. Airport size and sector traversal
time are key indicators of the level of uncertainty expected
for a flight. A probabilistic method is presented that
combines airport and en route sources of uncertainty to
produce improved estimates for sector demand. These more
robust sector demand estimates have the potential to more
efficiently use available airspace and identify volatile
conditions that lead to higher controller workload. The
probabilistic method is validated using historical traffic
conditions for airspace sectors on the east coast of the U.S.
for two days. Results indicate that the probabilistic method
has the potential to reduce the standard deviation of the
prediction error by 23 to 25% and the mean absolute
prediction error by 20%. The sector hit rate, which is the rate
that the planned sectors match the observed sectors, is a
significant source of uncertainty for developing airspace
sector demand estimates. Future work that can predict
changes to the hit rate would be useful in improving sector
demand estimates. Other future work could include
identifying structure in the departure time and en route travel
time error distributions.
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Figure 8. Histogram comparison of the distribution of sector count errors
at a 30 minute look-ahead time on August 29, 2005 for deterministic and

probabilistic (airport grouping) methods.

TABLE IV. COMPARISON OF DETERMINISTIC AND PROBABILISTIC
METHODS FOR SECTOR COUNTS USING DATA FROM AUGUST 29, 2005.
Probabilistic Probabilistic
Deterministic Demand Demand
Demand (Airport (Cluster
Grouping) Grouping)
S.D.# 10 min.® 1.909 1.487 1.485
S.D.? 30 min.® 1.971 1.499 1.497
S.D.2 60 min.® 2.003 1.508 1.507
M.A.P.E.> 10 min.° 1.109 0.900 0.899
M.A.P.E.” 30 min.° 1.144 0.909 0.907
M.A.P.E.” 60 min.° 1.159 0.914 0.913

2 Standard deviation of the prediction error.
b Mean absolute value of the prediction error.
© Look-ahead time in minutes
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Abstract— Traffic Management Advisor (TMA) is a decision
support tool developed to assist Traffic Management Units
(TMU) in metering and sequencing arrival traffic. This study
examines the use and impact of TMA during its early stages of
deployment at Chicago Center (ZAU). Determining impacts of
use presents a methodological challenge because usage may
depend on weather and traffic conditions, possibly leading to
spurious results if simple with/without comparisons are made. In
an effort to isolate the impact of TMA, this study therefore
employs an alternate method. A preliminary understanding of
TMA use is established through summary statistics. This enables
the development and use of detailed statistical models to isolate
the impact of TMA at ZAU. We find evidence through these
detailed models that TMA use increased capacity in specific
conditions and capacity variability was reduced in all scenarios.
A simulation of these results on delay at Chicago O’Hare
International Airport (ORD) showed that TMA use can decrease
delay by 33%.

Keywords:  Air Traffic
Management Advisor

Traffic

Management, Capacity,

L INTRODUCTION

The Federal Aviation Administration (FAA) developed the
Free Flight Phase 1 (FFP1) program with the goal of
automating certain functions of air traffic control to improve
performance of the National Airspace System (NAS). The
FFP1 program established metrics used to evaluate system
deployments, which assisted the FAA in performing tests and
evaluations before undertaking widespread deployment of the
tools. Tools analyzed in recent years include User Request
Evaluation Tool (URET) and Traffic Management Advisor
(TMA), which is the focus of this paper. TMA is part of a suite
of tools that was planned to increase the efficiency of flight
operations in all five domains of the NAS [1].

As discussed by Hansen [2], air traffic control system
evaluations present a unique challenge. Because the NAS is
affected by many diverse factors, such as weather and demand,
isolating the impact of a specific air traffic control
enhancement is complicated. The challenge is even more
difficult during early stages of deployment when the tool is

Xing Chen
CSSI, Inc
Arlington, VA, USA

used only in selected time periods, which may be different
from non-use periods in some systematic ways. In this study, to
isolate the impact of TMA on airport operational capacity, we
extend an econometric modeling method developed in [3] that
considers capacity as a random variable. Our work contributes
to the development of consistent and credible evaluation
methods for automation tools, which will become increasingly
important as NAS modernization proceeds.

Section II of this paper provides background on TMA,
describes its functionality, and discusses previous benefit
studies. Section III introduces summary statistics to aid in
understanding how TMA is used, and describes the data used
in the analysis. Section IV defines an econometric model used
to determine the impacts of TMA implementation and presents
estimation results. Section V isolates the capacity and variance
of capacity effects of TMA to determine a change in delay
from TMA use. Section VI concludes the research with
discussion and recommendations.

II. TMA BACKGROUND

The role of TMA is to coordinate the transition between
center and control airspace for arrivals. TMA was designed for
decision support for the metering position of the Traffic
Management Coordinators (TMC). However, as discussed by
Bolic [4], the adaptation, or actual use instead of intended use,
of systems developed for air traffic controllers (ATC) and
traffic management coordinators (TMC) often diverges from
the intended purpose. For example, at Los Angeles center,
TMA was initially used to display traffic in a larger area than
was previously available [2].  This increased “shared
situational awareness” generated considerable operational
benefit even when the decision support functionality was not in
use.

TMA began initial daily use (IDU) at ZAU in June 2005.
Adaptation also took place at ZAU, as TMA was used
exclusively to facilitate the release of internal departures —
those bound for an airport within the same Air Route Traffic
Control Center (ARTCC) airspace. The TMA display screen is
well suited to this function because of a detailed arrival
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schedule for the major airports in the Chicago TRACON—
ORD and Chicago Midway.

Implementation at ZAU followed the successful
implementation of TMA at eight ARTCCs, with the first
implementation in 1996 at Fort Worth. Later implementations
were supported by studies finding benefits from TMA
implementations at Fort Worth and other centers. These
benefit studies relied on before and after analysis, including
summary statistics and regression modeling. Two examples of
such studies are below.

A.  TMA at Minneapolis Center (ZMP)

Through a comparative analysis of airport acceptance rates
(AAR) before and after TMA deployment, the FFP1 program
office determined that TMA increased AAR at ZMP. A
regression analysis was then performed to isolate the impact of
TMA. By defining AAR as a function of TMA, metrological
condition, and runway interaction, it was found that the
increase in the AAR mean was not statistically significant.
This regression treated TMA as a dummy variable which was
set to 1 to signify a time period after TMA was deployed.

A similar study was performed regarding the total
operations rate, or the sum of the airport acceptance and airport
departure rates. This analysis found a statistically significant
increase in the operations rate after TMA was deployed. It was
concluded that optimized arrivals flows under TMA allowed
the controllers to release more aircraft [5].

B. TMA at Los Angeles Center (ZLA)

The impact of TMA on internal release departures to LAX
from other airports within ZLA was examined after the June
2001 TMA implementation. Similar to ZAU, TMA allowed
the Traffic Management Unit (TMU) at ZLA to optimize the
release of these departures by fitting them in to the arrival
stream without causing delays. By calculating the mean delay
before and after the deployment of TMA, it was found that
both gate and airborne delay decreased after TMA deployment.
It was concluded that because other airports experienced
increases in gate and airborne delay for the same time period,
TMA was able to reduce delay at LAX [6]. This study did not
include a regression analysis and did not consider other factors
which could have contributed to a decrease in delay, such as
changes in demand.

III.  EXPLORATORY TMA ANALYSIS

For the purpose of modeling the impact of TMA on airport
runway capacity, the operational impact at Chicago O’Hare
International Airport (ORD) was chosen for case study. Data
were collected for the study period of July 2005, immediately
after IDU of TMA, to mid-March 2006." Data were gathered
from the FAA’s Aviation System Performance Metrics
(ASPM) database. The “Airport Efficiency” portion of this
database provides variables on quarterly-hour arrival and
departure count and “demand” at ORD, which will be explored
in greater detail in Section IV. Each entry includes
corresponding information about the meteorological condition

" The period from December 19 to 25 was excluded, because
schedules and operations are substantially changed by large volumes
of holiday travel.

(MC), other weather related
configuration.

A TMA usage log was collected from ZAU to match the
periods in ASPM with the periods when TMA was explicitly
being used by the TMCs. During the study period, TMA was
powered on and available for use from 6AM to 8PM daily.
However, TMA was referred to sporadically by the TMCs; the
times when TMA was assisting TMCs was recorded in a usage
log [7]. To combine these data with ASPM data, time stamps
on each of the data sets were matched.

A. TMA Use at ZAU

The following summarizes TMA usage data with the goal
of gaining a general understanding of the factors affecting use
of TMA during the study period. Discussions with TMCs,
managers, and consultants supporting TMA implementation at
ZAU revealed the policies and procedures affecting TMA use
was sporadic; therefore, this study will focus on TMA usage
periods rather than before and after TMA deployment periods.
To determine the best model formulation, correlations between
TMA use, meteorological conditions, and runway
configuration are explored.

information, and runway

1)  Meteorological Conditions

Table I summarizes TMA use in terms of visibility
conditions at ORD. The three meteorological conditions
classified are visual meteorological conditions (VMC),
marginal visual meteorological conditions (MVMC), and
instrumental meteorological conditions (IMC) [8]. Each
quarter-hour data entry in ASPM is identified as either VMC or
IMC. We further subdivided VMC into MVMC and “full”

VMC, based on visibility criteria defined in [8].
TABLE 1. CEILING AND VISIBILITY AVERAGES, BY METEOROLOGICAL
CONDITIONS AND TMA USE

IMC MVMC VMC

OFF ON OFF ON OFF ON

Celiling
(100's Ft) 8.95 16.02 19.96 | 27.64 12.92 13.2
Visibility
(statute mi) 3.14 2.06 7.93 7.94 9.57 9.71
no of obs.
with TMA 54 165 1254
total no of
obs. 1694 2445 19362

From Table I it can be seen that during the study period
there were very few observations of TMA use under IMC. Out
of the 1473 periods that TMA was used, only 3.67% (54
periods) were during IMC. For those few periods when TMA
was used during IMC, it was typically during high ceiling
conditions. The average ceiling condition under IMC and
TMA use was almost double that of the average ceiling
condition under IMC with no TMA use. Conditions under
MVMC and VMC when TMA was and was not in use are
more similar, although under MVMC the ceiling is
considerably higher when TMA is in use.
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2)  Runway Configurations

Chicago O’Hare International Airport has 6 active runways
in 3 pairs of parallel runways. There are a number of possible
runway configurations at ORD for arrivals and departures that
can be used at any given time. The five most frequently used
runway configurations for arrivals and departures are shown
Table II, along with the proportion of time each is used and
proportion of TMA use. The configuration 4R, 9L, 9R | 4L,
9L, 32L, 32R is known as the default configuration for VMC
and MVMC.

TABLE II. FIVE MOST COMMON RUNWAY CONFIGURATIONS AT ORD
% of Periods
Configuration % of periods
Configuration Used TMA Used
22R, 27L,27R | 22L, 32L,
32R 40.19 6.64
4R, 9L, 9R | 4L, 9L, 32L,
32R 36.22 6.95
22R, 27L | 22L, 32L, 32R 6.96 10.49
14R, 221, 22R | 9L, 22L, 27L 13.07 3.39
9R, 14L, 14R | 4L, 9L, 22L 3.56 1.61

During the study period, TMA was “certified” on two
runway configurations: 22R, 27L, 27R | 22L, 32L, 32R and
4R, 9L, 9R | 4L, 9L, 32L, 32R (referred to as configuration 1
and 2, respectively). This means that for these configurations
TMA predicts the time when flights reach ORD entry fixes
with sufficient accuracy. TMA was most likely used for these
configurations and for 22R, 27L | 22L, 32L, 32R. This two
arrival runway configuration was favored for two possible
reasons. First it is very similar to the certified configuration 1.
Second, TMCs noted that TMA did not “recognize” the third
runway in configuration 22R, 27L, 27R | 22L, 32L, 32R when
scheduling internal departures, a problem that did not arise
when just two arrival runways were in use.

IV. ECONOMETRIC MODELING OF CAPACITY UNDER TMA

The following section introduces the econometric modeling
technique used to model and determine the impact of TMA on
operational capacity at ORD. This technique is based on the
model developed by Hansen [3] to determine the capacity
impact of new runway development.

A. Count and Demand Data Analysis

To accurately determine the capacity impact of TMA, the
operations rate (operation count per unit time) is compared
with operation demand per unit time. The data are divided into
two groups based on TMA use; data for periods when TMA
was in use are separated from data collected when TMA was
not in use.

Data from ASPM were used for this analysis. The variable
arrival (departure) count in the ASPM database indicates the
number of arrivals (departures) in a time period (defined as a
15 minute interval). The variable arrival (departure) demand
represents the number of aircraft scheduled to arrive (depart) in
a specific time period. While demand for an operation often
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leads to that operation occurring, scenarios exist where the
arrival (departure) demand exceeds the arrival (departure)
capacity, or the maximum number of aircraft that can perform
the operation in a given period. In this case, some aircraft will
be queued. Aircraft counting toward the demand in a given
period that do not actually arrive (depart) in that period are
counted toward demand in the subsequent period. Thus the
difference between count and demand in a given period is
essentially the size of the queue at the end of that period.

To measure demand, ASPM determines the expected
arrival time of an aircraft by adding the en-route time to the
wheels-off time. An arrival in a time period before the
calculated time is counted towards the demand in the earlier
period in which it arrives; an arrival at the calculated time is
counted toward the demand for that period; and an arrival after
the calculated time is counted toward the demand in all time
periods between the calculated arrival and the actual arrival
time. Departure demand is calculated similarly, based on the
actual pushback time plus an airport-specific unimpeded taxi
time, or when a flight is subject to a ground delay program
(GDP), the estimated time when the flight will be cleared for
departure under the GDP.

The model developed for this study will use the data to
determine the change in capacity for arrivals only due to TMA
use. A model is constructed which treats capacity as a random
variable, by calculating capacity as a function whose
distribution depends on weather, runway configuration,
demand, and TMA use. This methodology uses statistical
procedures that estimate the relationship between these factors
and capacity.

To isolate the impact of TMA, the capacity function
includes a dummy variable which is set to 1 if TMA is in use in
time period t, and it is set to zero otherwise. The parameter of
primary importance is the coefficient on the dummy variable
representing TMA use. This parameter is the contribution to
capacity of TMA. If the coefficient is negative, it can be
concluded that TMA reduces capacity; if it is positive, it can be
concluded that TMA increases capacity. This coefficient for
operation type O (where O= arrivals only for this study) will
be termed .

The example in Fig. 1 depicts By. The solid curve is a
sample probability distribution of runway capacity. The
second dashed curve is a sample probability distribution for
runway capacity when TMA is in use, but when other
conditions (weather, etc.) are similar. The difference in the
mean values of these curves, represented by the curve peaks, is
Bo. Fig. 1 depicts a case when TMA use affects only the mean
of the capacity distribution. TMA use may also affect the
variance of the capacity distribution by consistently feeding
traffic to the airport at a more consistent rate. Both effects are
considered below in section B.
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Figure 1. Depiction of B, the contribution of TMA to capacity.

B.  Operational Impact: Censored Regression Model

The model to be used in this section is a censored
regression, or tobit, model, which measures the difference in
capacity due to TMA use. A censored regression model is
appropriate because it is impossible for a count value to exceed
a demand value. Throughput, or runway operations per unit
time, is therefore censored by demand.

The tobit model formulation is below. The model will
calculate the capacity based on the known operation demand
and the known operation count. To isolate the impact of
runway configuration and meteorological condition, there are
separate models for each configuration and condition. We
estimated the model for 4 different data sets. Models were
estimated for VMC and MVMC and for runway configurations
1 (22R, 271, 27R | 22L, 32L, 32R) and 2 (4R, 9L, 9R | 4L, 9L,
32L, 32R). Each model considers capacity as a function of
demand, windspeed, and TMA use. Each model also captures
the variance of capacity, and analyzes the impact of TMA on
this variance.

The model specification is below.

Q,(®) =min(D, (1),C, (1))

Q)
C,O=a,+p,AO+yW(O)+7,D,(0)+¢&,
Where:
0,(1) is the count for operation of type o
? (either arrivals or departures) in
15-minute time period t;
D (1) is the demand for operations of
¢ type o in time period t;
C (1) is the ORD capacity for operations
? of type o in time period t;
A(t) is equal to 1 if TMA is in use in
time period t and 0 otherwise;
W (1) is the windspeed in time period t;
& is a stochastic error term, assumed
? to be IID normal with mean 0 and
variance O j + poA(D);
a B, are parameters to be estimated.
}/ (24 To 2
2
005P,
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The model is estimated using a maximum likelihood
method, which will find the parameters that best fit the data.
Mainly, we are interested in By and p,, the effects of TMA on
the mean and the variance of the capacity distribution. The
detailed model estimation technique is discussed in great depth
by Hansen [3].

1) Illustration of Censored Regression Model Results
For illustrative purposes, the full model results for one data
set will be described in detail. We chose the model for VMC
conditions and runway configuration 1 for this illustration.
Estimation results appear in Table III.

TABLE IIL CENSORED REGRESSION MODEL RESULTS
Estimate
(Standard Error)
Parameter Symbol T-Statistic
26.164
a (0.333)
Intercept 0 78.517
1.720
Effect of TMA on ﬂ 0.412)
capacity o 4.17214
-0.201
(0.026)
Effect of Windspeed Yo -1.797
0.000
r (0.000)
Effect of Demand [4 -0.055
5.994
0_2 (0.101)
Variance 0 59.338
-1.267
Effect of TMA on (0.310)
Capacity Variance Po -4.089

The model results show that the baseline quarter-hour
capacity for arrivals at ORD is 26.164 arrivals, which is the
equivalent of 104.656 arrivals per hour. This is very close to
the benchmarked 100 arrivals per hour determined by the FAA
[9]. The results also show that when TMA 1is being used by the
TMCs, arrival capacity is increased by 1.720 arrivals per
quarter hour, or 6.880 arrivals per hour. This is equivalent to a
6.6% capacity increase. The results show that windspeed
decreases arrival capacity by -.201 arrivals per quarter hour,
and that demand has no impact on capacity. The estimated
variance is 5.994 arrivals per quarter hour squared, which is
decreased by -1.267 when TMA is in use. All parameters
except demand are significant at the 0.05 level (denoted by the
boldface type).

2) Model Results for the Impact of TMA on Arrival
Capacity and Variance of Capacity
The impact of TMA on the capacity mean, measured by
Bo, and capacity variance, p,, for the four sets of MC and
runway configuration are shown in Table IV.
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TABLE IV. THE EFFECT OF TMA ON CAPACITY MEAN AND CAPACITY
VARIANCE
IB , Values P, Values
MC & RW (Standard Error) (Standard Error)
Configuration T-Statistic T-Statistic
1.720 -1.267
0.412) (0.310)
VMC,RW 1 4.172 -2.976
302 -1.892
(:357) (.345)
VMC, RW 2 .846 -5.479
.822 -1.554
(914) (.642)
MVMC, RW 1 .899 -2.420
-1.318 -1.784
(961) (.718)
MVMC, RW 2 -1.372 -2.485

The By values are not significant in three of four
meteorological conditions and runway configuration cases.
Under VMC and runway configuration 1, capacity mean is
significantly higher due to TMA. There is a possible “self-
selection” bias in this case because it represents favorable
conditions, which could encourage TMA use.

The py values indicate the estimated change in capacity
variance when TMA is in use. The results suggest that arrival
capacity variance did decline when TMA was in use. We also
note that these results are consistent with the FFP1 LAX study
[6], which found less dispersion between arrival counts and
throughput after TMA was implemented.

If TMA usage at ZAU did in fact reduce arrival capacity
variance, this would have an important benefit. It would
reduce delay, because a negative capacity deviation is more
likely to have an adverse effect than is positive deviation to
have a beneficial effect. In many cases, positive deviations
cannot be fully exploited because there is insufficient demand.
While a negative deviation can also be inconsequential, it is
more likely to contribute to a queue going into the next period.

The following section explores how the use of TMA can
affect delay due to its capacity and variance impacts.

V. DELAY IMPACT ESTIMATION

To illustrate the potential of TMA use to save minutes of
flight delay, a simulation was employed. The operational count
if TMA was in use 100% of the time was simulated and
compared with operational count if TMA had never been in use
during the study period. To further isolate the capacity and
variance effects of TMA, two potential operational count
scenarios were calculated: one with the capacity effect of TMA
calculated alone (p;=0), and another with both the capacity and
capacity variance effect. Operational demand was kept
constant over all scenarios to fully illustrate the delay changes
due to TMA.

A. Delay Calcuation without TMA

Using demand and count data for all quarter hour periods at
ORD collected for January 2006, a cumulative count curve was
constructed. A cumulative curve in this case is a plot of

cumulative operational count on the y-axis and time on the x-
axis. In the first period, cumulative operational count (n;) is
equal to the count of operations in period one (n;’). In the
second period, cumulative operational count (n,) is the count in
period two (n’), plus the count in period one (n;”). Therefore
the cumulative operational count in period two is ny=n;+n,’.
The count in period three is n;=n,* n;’, and so on for all
remaining periods. Cumulative demand is determined
similarly.

The horizontal distance between any two points on the
curves is equal to the wait time in queue that an operation
(arrival) was delayed. The area between the two curves is the
delay in flight-minutes for the time period of study.

To illustrate how this method can be used to determine the
delay savings potential of TMA, the study period of January 6,
2006 from 13:15-21:15 was chosen. The first step was to
construct the curves of cumulative demand and cumulative
count in the “without TMA” scenario for this period. These
curves can be seen in Fig. 2.
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Figure 2. Cumulative Demand and Count: Without TMA Scenario

The area between the two curves, or the study period delay
in flight-hours, is equal to 225.9 flight-hours.

B. Delay Calcuation with TMA

To simulate and isolate the capacity effect and the variance
of capacity effect of TMA, cumulative curves were constructed
for the two scenarios. The estimated parameters of the capacity
function from (1) were used to calculate the new capacity. The
parameters of the best fit models are in Table V.
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TABLE V. CAPACITY ESTIMATION EQUATION PARAMETERS
Capacity Mean Capacity Variance
e Po ? T o Po
VMC, 1 26.164 1.720 | -0.201 | 0.000 | 5.994 -1.267
VMC, 2 21.696 0.302 | 0.114 | 0.112 | 6.333 -1.892
MVMC, 1 | 28.151 0.822 | -0.560 | -0.021 | 6.028 -1.554
MVMC, 2 | 25.949 -1.318 | -0.126 | -0.054 | 5.740 -1.784

The following sections describe how the capacity effect and
the variance of capacity effect were determined.

1) Simulation of TMA Capacity Effect
To isolate the effect on capacity of TMA, capacity was
calculated as a function of the parameters in Table V
depending on the MC and runway configuration. Capacity in
each period was assumed to be normally distributed with mean

= a0+HBoA (D)o W (D+10Do(t) @

and variance 6~ + po, where p, = 0. Capacities for each quarter
hour period in the study period were then drawn from this
distribution. Next, as in (1), the operational count was
calculated as the minimum of the capacity and the operational
demand. The unserved operations in any period were added to
the operational demand of the next period.

The simulated cumulative operational count curve
represents the operational count that would have been achieved
if TMA was in use during the entire study period, but only the
capacity effect of TMA was realized. The cumulative count of
operations with the TMA capacity effect is shown below in
Fig. 3, along with the cumulative count without TMA and the
cumulative demand.
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Figure 3. Cumulative Demand and Count: TMA Capacity Effect Only

Scenario

The delay calculated for the TMA capacity effect only
scenario was 147.7 flight-hours which is a delay savings of
78.1 flight-hours over the scenario when TMA is never in use.

2) Simulation of TMA Variance of Capacity Effect

To simulate the variance of capacity effect, the capacity
effect along with the variance of capacity effect was calculated.
The same method was used as for the TMA capacity effect
only scenario. Capacity was assumed to be normally
distributed with mean pc and variance o+ po, Where pg is the
associated value for each MC and runway configuration from
Table V. The cumulative operational count for the TMA
capacity and capacity variance scenario can be seen in Fig. 4.
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Figure 4. Cumulative Demand and Count: TMA Capacity Variance Effect

The delay for the TMA capacity and capacity variance
effect was 121.0 flight-hours, which is a savings of 26.7 flight-
hours as compared with the TMA capacity effect only scenario
and an overall delay savings of 104.9 flight-hours.

Using the same method for the entire month of January
2006, if TMA had been in use 100% of the time, TMA would
have saved 750 flight-hours of delay for arrivals compared to
the “without TMA” scenario. Of these 750 flight-hours, 500
flight-hours of savings were due to capacity effect, and 250
flight-hours of savings were due to variance effect. This
finding generalizes to a savings in delay of 9,000 flight-hours
per year and about 10 seconds per flight.

VI. CONCLUSIONS

This study found that the use of TMA for releasing internal
departures appears to have decreased capacity variance and in
some cases increased capacity mean. Using the model results,
it was found that increased use of TMA could lead to decreased
delay of about 10 seconds per flight.

Additionally, we have furthered the use of censored
regression applied to ASPM data as an evaluation method for
ATM tools. In particular, we have shown how this method can
be used to investigate the effect of new tools on the variance of
capacity as well as its mean. In our particular case, we find that
TMA use, even though it was restricted to releasing internal
departures, had a measurable impact on arrival capacity
variance at ORD.

Further study is necessary to assess the impact of TMA
when it is used for time based metering. Time based metering
went into effect in June 2007 at ZAU, and could decrease the
variance in capacity by allowing controllers to effectively
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manage capacity especially during high traffic periods.
Understanding the impact of TMA on capacity and capacity
variance due to time based metering, and comparing these
findings with those in this study, would provide insight into the
benefits of TMA when it is employed for its full range of uses
rather than used only for more limited, adapted purposed.
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Abstract—An air traffic control concept under the name
of Subliminal Control has been introduced. In this approach,
an automated system, commanding minor speed adjustments
imperceptible by the Air Traffic Controller, tries to keep the
Air Traffic Controller’s risk perception low, emulating a “lucky
traffic”. In this paper, we investigate the limits of this air
traffic control approach. We test a proposed subliminal controller
against several encounter geometries for level flights. A stochastic
environment using wind forecast uncertainties is used for this
purpose. The results demonstrate the cases where subliminal
control can potentially reduce the workload of the ATC.

I. INTRODUCTION

The current Air Traffic Management (ATM) system is to a
large extent based on a rigidly structured airspace and a mostly
human-operated system architecture [1], [2]. For the separation
assurance between aircraft, Air Traffic Controllers (ATC) have
to make decisions under a highly uncertain and complex
environment. To do so, they have to estimate the future
positions of aircraft and intervene whenever they perceive a
high risk of loss of separation. It is obvious that the projected
traffic increase [3], [4] demands an increase in the number of
aircraft per sector. This will result in more stress on the ATC.
To alleviate some of this workload, several potential solutions
have been proposed, including conflict detection and resolution
algorithms (for a thorough overview and classification of the
literature, the reader is referred to [5]).

An alternative solution was proposed in [6] under the
name Subliminal Control. The premise is that minor speed
adjustments, commanded by an automated system running in
parallel with the ATC, can convert a potentially conflicting
situation into a “lucky traffic” for the ATC, in the sense,
that the trajectories turn out to ensure safe separation at an
early stage, reducing the ATC’s monitoring workload. These
speed adjustments have to be as small as possible in order
to remain imperceptible by the ATC. In this approach the
human is still kept in the loop, and automation is introduced
in a user-friendly way. Criick and Lygeros in [7] presented a
mathematical framework for subliminal control, while in [8],
a hybrid dynamical game is proposed in which the control has
to minimize a cost representing the risk perceived by air-traffic
controllers despite the uncertainty of trajectory prediction.
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In this paper, we investigate the limits of subliminal control
method for Air Traffic Control. Subliminal control is tested
against several conflict encounters under stochastic environ-
ment, due to the presence of wind forecast uncertainty.

The paper is organized as follows: Section Il briefly in-
troduces the subliminal control concept, Section 11 describes
the modeling of the risk perception of the ATC, Section IV
discusses the flight simulation model, Section V presents the
simulations results of this study and Section VI states the
conclusions of this work.

Il. SUBLIMINAL CONTROL

The main idea of subliminal control is to turn ATC’s
uncertainty about traffic evolution into an advantage. It has
been shown that small adjustments of speeds commanded
early enough can prevent a large percentage of conflicts [9].
Here we consider speed resets small enough to be within
the uncertainty margin of the ATC (and hence, in principle,
imperceptible). Results from the experiments of the European
project ERASMUS [10] indicate that speed variations up to
12% may go unnoticed by the ATC.

For the subliminal control concept, instead of detecting
conflicts and then resolving them, the problem considered is:

1) Predict the risk the ATC will perceive in the near future,

when faced with a given traffic situation.

2) Reduce (if necessary) the risk perception by applying

unnoticeable speed changes.

The function we use to compute the risk perception is
described in Section Ill. Given this function, we assume that
the automated system can predict the traffic with sufficient
accuracy for a time horizon significantly longer than the ATC’s
“prediction horizon”, i.e. the time ahead the ATC can foresee
a dangerous situation. Then the task of the system will be to
minimize the risk perception along all possible set of aircraft
trajectories.

It should be emphasized here, that in our subliminal control
setting, the system consists of two separate models: the model
of the ATC, representing the risk perception at each time
step and the aircraft/environment model, which is used for an
accurate trajectory prediction. Thus, the model of the ATC’s
risk perception is used for the computation of the cost and the
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aircraft/environment model for computing the control com-
mands. Furthermore, the ATC’s model introduces additional
constraints for the maximum (in number and magnitude) speed
change commands.

The system operates in a dynamic environment. Aircraft
may enter or leave the sector of interest, deviate from their
expected trajectory, etc. Due to the high uncertainties involved,
it would be unrealistic to compute an optimal control valid
for a very long time. Instead, we employ a receding horizon
control approach, solving at each time step a finite horizon
optimal control problem and re-compute a new optimal control
law at each time step (or possibly whenever an event takes
place, e.g. a probability of high risk perception is high).

I11. RISK PERCEPTION OF THE ATC

The risk perception model we use is along the lines of
the one proposed in [8]. The risk function for a given traffic
situation is defined as:

VATC,n:Xl XXQX"'XXn—>[O,7]7

where X; denotes the state of aircraft « and n is the total
number of aircraft in the traffic situation. The range of values
[0,7] has been set in reference to the experimental setting in
[11].

In the general situation of n aircraft, if a pair of them gen-
erates a high risk, then the whole situation will be perceived
as a high risk situation. Of course, as the number of aircraft
increases, the situation becomes more complex, influencing the
risk perception of the ATC. Thus, we set for the risk function:

Varen (X1, ..., Xpn) = A(n) hax. Varc 2(Xi, X),

where A(n) is a complexity coefficient associated with a
n-aircraft situation. Since there is very few relevant data
available to validate this approach, we do not pursue this
aspect any further and concentrate on pairwise risk perception
Varc,2(Xi, Xj).

The risk function for 2 aircraft is defined for the planar case
as follows [8]:

b

maX{Sep(Xl,Xg) —+ CTgO(Xl,X2)7dA}’

where Sep(X;, X») is the minimum separation between the
aircraft that the ATC expects to happen in the worst case inside
his prediction horizon. Ty, is the time at which this minimum
separation occurs, A is the minimum prescribed separation
(for the situation to remain conflict free) and b, ¢, d are design
parameters.

Since ATC do not have a very good perception of the speeds
of the aircraft, we assume they extrapolate trajectories using
constant estimated speeds V;, V, and an uncertainty margin .
The model that we use to represent their trajectory prediction
process is

i‘l(t) S (1+[—OZ,OKDV1
(Sirc) {9'02(t) e (1+[-a,a)V @)

with initial conditions z1(0), 22(0) (the current aircraft posi-
tions).

Varc,2(X1, Xo) =
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IV. AIRCRAFT/FLIGHT ENVIRONMENT MODEL

We use the model developed in [12] to perform the sim-
ulations. This model allows one to capture multiple flights
taking place at the same time. Each flight has an associated
flight plan, aircraft dynamics and a Flight Management System
(FMS). The evolution of flights is affected by the wind speed.
The wind speed is modeled as a sum of a nominal and a
stochastic part. The stochastic component is assumed to be
correlated in time and space, i.e.the wind experienced by each
aircraft at a given time is correlated to the wind experienced
by all other aircraft at the same time and the wind experienced
by all aircraft at earlier times [13]. The authors have shown in
[14] that ignoring this correlation structure can result in high
conflict probability estimation errors, when simulating more
than one aircraft. Therefore, the evolutions of different flights
are coupled to one another through the wind model.

The model is stochastic (because of the wind uncertainty)
and hybrid, since it comprises both continuous and discrete
dynamics; the former arise from the aircraft’s physical motion,
while the latter from the flight plans and the FMS.

A. Aircraft dynamics

The aircraft is modeled using a Point Mass Model (PMM),
based on the Base of Aircraft Data (BADA) database [15].
The continuous dynamics for the aircraft motion are exten-
sively described in [12]. Apart from the continuous dynamics,
discrete dynamics also arise in our model, mainly because of
the FMS and the flight plan.

The flight plan consists of a sequence of way-points
{0(i)}M,, in three dimensions, O(i) € R3. The sequence of
the way-points defines a sequence of straight lines joining each
way-point to the next. In our experiments, Requested Time of
Arrival (RTA) for each way point is not implemented. As a
result, the aircraft only corrects cross track deviations from
the reference path, while along track errors are ignored. This
assumption reflects what is known as a 3D FMS, which is is
currently the standard for most commercial aircraft.

The FMS can be thought of as a controller, which, by
measuring the state and using it together with the flight plan,
determines the values for the inputs. The control is to some
extent continuous, but some parameters and set points of the
controllers depend on the discrete dynamics of the FMS [12].

B. Sochastic environment

The stochasticity of our model arises because of uncertainty
about the wind velocity. The wind velocity is modeled as a
sum of two terms: a deterministic (nominal) component, repre-
senting the meteorological predictions available to ATC and a
stochastic component, representing inaccuracy and uncertainty
in these predictions. Since the meteorological predictions are
known and available to the ATC before a flight takes place,
the flight plans are adjusted taking them into consideration.
Thus, the way the nominal wind affects aircraft trajectories is
deterministic and known a priori. For simplicity reasons, we
set the deterministic part of the wind to zero.
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Fig. 1. Conflict scenario

The stochastic wind component is modeled as a random
field w : R x R3 — R3, where w(t, P) represents the wind at
point P € R3 and at time ¢ € R. We assume that w(¢, P) is
a Gaussian random variable with zero mean. Recall that the
wind experienced by each aircraft at a given time is correlated
to the wind experienced by all other aircraft at the same time
and the wind experienced by all aircraft at earlier times [13].
As discussed in [14], [16], this correlation structure cannot
be ignored for accuracy reasons when simulating more than
one aircraft. A detailed procedure for extracting wind samples
with given spatio-temporal correlation can be found in [12].

V. SIMULATION RESULTS

Since subliminal control involves only speed alterations for
the conflicting aircraft, it is reasonable to restrict ourselves in
level flight scenarios. We consider two aircraft flying level at
the same altitude, in straight lines, at constant airspeeds (see
Fig. 1) without applying subliminal control. In the absence of
a wind field, the minimum distance the two aircraft approach
each other is denoted 6, and the time this event occurs
teonflict (time to minimum separation).

We construct flight plans to code this encounter geometry
that intersect at 0(0,0). Pi(t) = (z1(¢),0) and Py(t) =
(z2(t), z2(t) tan 8) denote the positions of the aircraft at time
t. For the simulation purposes, we use the nominal speed for
an Airbus 321 cruising at 33000ft, which is 454knots [15].

We use four different values for the minimum separa-
tion dpyipn: Onm (where a mid-air collision would happen),
5nm, 10nm and 15nm. Three different crossing angles 6 =
(45°,90°,135°) and 25 different values for nominal time to
minimum separation t-onflicc = (1,2,...,25 minutes) are
considered. Even though nominally the aircraft would follow
exactly their flight plans, uncertainty in aircraft motion forces
them to a different minimum separation at a different time.

Concerning the risk perception model, we use o = 0.1,
b=49,¢=0,d=14and A = 5nm. All distances are
expresses in nautical miles. For prediction horizon, we assume
that the ATC can predict up to 8 minutes ahead. We then say
we have a high risk situation if Varc 2(X1, X2) = 7, a medium
risk situation if 3.5 < Varc2(X1,X2) < 7, and a low risk
situation otherwise.
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To investigate the limits of the subliminal control, in all
simulations, we apply the maximum speed change not per-
ceived by the ATC (i.e. -12% or +6%) as early as possible
(i.e. in the beginning of the simulation). Thus, we will try
to determine how soon before an incident a speed change
command has to be sent to the FMS of the aircraft. The aircraft
FMS is assumed to immediately accept and implement the
command. Since our system is stochastic, we perform Monte
Carlo simulations to estimate the risk perceived by the ATC
and the conflict probability of the aircraft by performing 1000
simulations and computing the fraction of them that enters
conflict. By the term conflict we define a situation where two
aircraft violate required minimum separation standards, in our
case 5nm.

A. Smulations for oy, = Onm

Simulation results are shown in Figures 2-5. Figure 2 shows
the probability of conflict for the three different crossing
angles as a function of the time to minimum separation
teonflict- Solid lines correspond to 6 = 45°, dotted lines to
6 = 90° and dashed lines to # = 135°. The simulations where
no speed changes are sent to the aircraft are plotted with blue
color, while red color corresponds to speed change sent to
only one aircraft and the simulations with speed clearances
sent to both aircraft are plotted in green. One can observe
that subliminal control is a good technique to solve potential
conflicts up to 15 minutes before the time they would appear,
sending speed clearances to both aircraft.

Figures 3-5 show the levels of the perceived risk of the ATC
for the three crossing angles. Solid lines correspond to a high
risk perception by the ATC (i.e. cases when the ATC would
issue a conflict resolution command), dotted lines correspond
to a medium risk perception (i.e. cases when the ATC would
monitor the situation closely, waiting to see if it evolves into a
high risk or a low risk situation) and dashed lines correspond to
low risk situations (i.e. cases when the ATC would not expect
the situation to evolve into an unsafe one). We observe that
even though no conflict actually occurs, the risk perception
of the ATC is low only in the case of § = 45° and if the
the subliminal controller issues speed clearance commands to
both aircraft 25 minutes ahead of the expected time of the
conflict. In all other cases, ATC’s risk perception cannot be
kept low applying subliminal control.

B. Smulations for dyyin = 5nm

Figures 6-9 illustrate the results for the simulations. This
time, the conflict resolution can be easily handled by the sub-
liminal controller, as changing the speed of only one aircraft
is enough to resolve any conflict, even if the speed command
is issued as late as only a minute before the conflict. The
algorithm though is unable to keep the ATC confident that the
traffic will not evolve into a conflict, unless the speed change
command is issued (to both aircraft) no later than 23 minutes
before the expected time of minimum separation. Thus, no
flexibility for optimization between different possible solutions
of the subliminal controller is left, since the controller has to
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command the largest speed changes that are allowed to both
aircraft.

C. Smulations for éypip = 10nm

This case is quite different from the previous ones, since the
nominal minimum distance between the aircraft is adequate
to almost ensure that no conflict will occur except for the
case when aircraft are very far away and the remaining
uncertainty is big (Figure 10). As expected, subliminal control
guarantees in this case, too, no conflict between the aircraft.
Figures 11-13 show that if a speed adjustment is sent to both
aircraft at least 17 minutes before the expected occurrence
of the minimum separation, the ATC will not perceive the
situation as potentially dangerous. It is still required for both
aircraft to adjust their speeds accordingly to avoid a medium
risk situation, that would keep the ATC busy monitoring the
situation, but on the other hand, an early enough decision
can leave a small window for optimization depending on each
aircraft’s priorities (i.e. small speed adjustment vs. late speed
adjustment).

D. Smulations for ;= 15nm

As in the previous case, conflict avoidance is ensured in all
cases, even when no speed control is applied to the aircraft (see
Figure 14). This is not the case for the risk perception of the
ATC though (see Figures 15-17), since a high risk perception
is only avoided when the expected time to minimum separation
is 5 minutes or less, which reduces the ATC uncertainty
window. The risk perception can be kept low however, even
by applying only one speed change, provided that it is applied
around 17 minutes ahead of the expected time of the minimum
separation. If both aircraft adjust their speeds, the commands
can be issued just 8 minutes before the expected time of the
minimum separation, leaving a big margin for an optimization
depending on the aircraft’s priorities.

VI. CONCLUSIONS

We have investigated the potential of the use of subliminal
control to alleviate ATC’s workload and monitoring of some
potentially dangerous encounters. The results clearly indicate
that, depending on the geometry, subliminal control can reduce
the workload of the ATCs monitoring situations. Those can
instead be solved early enough with minor speed adjustments,
keeping the risk perception low. In all cases, care needs
to be taken to ensure maneuvers remain subliminal. The
accuracy of the trajectory prediction tools is also important,
since more accurate tools would allow the application of
subliminal control over longer horizons. As envisioned by
the ERASMUS concept [10], a potential solution for this
could be air-based trajectory prediction tool, that avoids radar
measurement errors, and down-links the information to the
ATC.
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Distribution of Longitudinal Speed Prediction Error
of ADS-C System

Masato Fujita
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Abstract— The number of aircraft flying in oceanic airspaces is
growing. To accommodate the traffic growth, the reduction of
separation minimum for Automatic Dependent Surveillance —
Contract (ADS-C) aircraft is required. However, the reduction of
the separation minimum increases the collision risk of aircraft
and the safety assessment prior to the reduction is expected. The
probability distribution model of the longitudinal speed
prediction error is a key parameter of the collision risk formula
for the longitudinal separation minimum under ADS-C. In this
paper, the empirical distribution of the longitudinal speed
prediction error of aircraft in North Pacific routes is provided.
Using Peak over Threshold (POT) technique, we found the
distribution model which is appropriate for the risk estimation.

Keywords-component; Automatic Dependent Surveillance —
Contract (ADS-C), Longitudinal Speed Prediction Error, Peak Over
Threshold, Collision Risk

1. INTRODUCTION

NOPAC (NOrth PACific) route system (Fig.1) is the most
congested oceanic ATS route system in Fukuoka FIR. The
number of aircraft flying NOPAC route system is growing. To
accommodate the traffic growth, the reduction of separation
minima is expected. #The 50NM longitudinal separation
minimum for ADS-C (Automatic Dependent Surveillance -
Contract) aircraft has been implemented sequentially
beginning from R220 and R580. In near future, the 30NM

longitudinal separation minimum will be implemented.
el
FIR boundary ", DT
e v
A

"J./z

Figure 1. NOPAC route system
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An aircraft under ADS-C circumstance transmits their
position periodically. In Fukuoka FIR, the reporting interval is
1600 seconds in usual and 320 seconds in the case of strategic
lateral offset. Under radar surveillance, position information is
available in the order of seconds. Since the position
information is rarely available under ADS-C circumstance, the
prediction of trajectory is indispensable for surveillance.

For the quantitative estimation of mid-air collision risk of
aircraft, the expected number of fatal accidents is often
utilized as a risk indicator. It is called a collision risk. When
the estimated collision risk does not exceed the target level of
safety which is determined prior to the safety assessment, the
situation is considered to be safe. When the separation minima
are reduced, the collision risk increases. Hence, the safety
assessment is required to confirm that the airspaces remain
safe even under the reduced separation minima. (See [1].)

An aircraft pair collides if and only if they overlap in
longitudinal, lateral and vertical dimension. Hence, the
longitudinal overlap probability which is the probability that a
pair of aircraft overlap in the longitudinal dimension should be
estimated in the safety assessment of reduced longitudinal
separation minimum. It is calculated using the probability
distribution of aircraft position error due to aircraft navigation
capability and the probability distribution of speed prediction
error which causes from the position prediction performance
of on-board systems and the interpolation performance of
ground systems. (See [2] and [3].)

This paper gives the empirical distribution of longitudinal
speed prediction error and the curve fitted to the empirical
distribution applying POT (Peak over Threshold) technique in
Extreme Value Theory. (See [4].)

II.

Under ADS-C circumstance, ground stations transmit a
message which tells the required type of downlink messages
and the frequency of downlinks. It is called a contract message.
An ADS-C aircraft downlink the required messages
automatically as it is indicated in the contract messages.
Downlink is executed periodically (periodic report), when the

CONCEPT OF ADS -C
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event (lateral deviation, vertical rate change, waypoint change,
altitude range change) occurs (event report), or a one-time-
only report required by ATC (demand report). Downlink ADS
messages are classified into basic messages and the other
optional messages. A basic message contains stamped time,
current position etc. Optional messages, for instance, provide
the ground speed and direction at the reporting time, the
location of the next waypoint and its estimated time of arrival
and the predicted position at some future time instance. A
ground ATC system, which is called ODP (Oceanic Data
Processing system) in Japan, interpolates (and extrapolates) to
predict the aircraft position from the optional messages till it
receives next report.

In Japanese system, predicted route group messages,
intermediate projected intended group messages and fixed
projected intent group messages are utilized for the prediction
of aircraft position at the ground system. The first message
provides the location of the next waypoint over which the
aircraft is passing and the estimated time of arrival. The third
gives the predicted position at some future instance. Japanese
system requires ADS aircraft to send the predicted position 37
minutes later. When an aircraft intends to change its speed or
direction within 37 minutes, intermediate project intended
group messages are coupled to inform when and where the
speed and direction are changed.

III.  DERIVATION OF EMPRICAL MODEL

A.  Identification of ADS-C messages of aircraft on NOPAC

An ADS message includes a position report and the
predicted position of aircraft. However, it does not contain the
route name on which the aircraft intended to fly. To identify
which route each aircraft flies on, FDPS (Flight Data
Processing System) data set was utilized.

All flights in Fukuoka FIR are saved in FDPS data with their
call signs, aircraft types, the departure and destination airports,
the original flight plans, the waypoints over which the aircraft
flew, the time instance when aircraft flew over the waypoints
etc. All flights of NOPAC routes are identified by FDPS data
set.

The ADS-C and ATS Facilities Notification (AFN) data set
during September 1% 2005 to August 31% 2006 in the format of
[5], [6] and [7] were provided by Kobe Aeronautical Satellite
Center (the data on November 18" 2005 and from January 17"
2006 to February 9" 2006 could not be collected). The FDPS
data set in the same period was provided by ATM Center.

The AFN procedure enables an ATS facility to become
aware of an aircraft’s data link capability and provides an
exchange of address information. AFN messages are
transmitted when an aircraft enters into a region where a data
link service is provided by a service provider and when an
aircraft is placed under the control of an adjacent ATS facility.
All ADS-C messages transmitted in one flight are wedged by

AFN messages and ADS-C disconnect messages in
chronological order. Since the AFN message contains the
aircraft registration number, for every ADS-C message, the
registration number of aircraft which transmits the ADS-C
message is identified.

In many cases, the registration number of aircraft which
was utilized in a flight is included in FDPS data. The
corresponding ADS-C messages were identified using the
registration number as the search key. However, in the case
where no registration number of an ADS aircraft flying
NOPAC is saved in FDPS data, we found the corresponding
ADS messages manually with the help of self-developed GUI.

(Fig. 2)

Figure 2. Display of GUI
(Black dots means the periodic reports and
colored dots means the event-driven position reports)

B.  Definition of Longitudinal Speed Prediction Errors

Q;___‘_- ................................ > * Position  at  t,
Predicted path predicted from the
Position reported by first report
the first report
Position Prediction Error

(Vector)

Position reported by
the second report

| | >
T I i
time

t, t

Position Prediction Error

Speed Prediction Error = T
27ty

Figure 3. Definition of Speed Prediction Error

Consider successive two ADS-C messages transmitted by a
single aircraft. Let t; be the time instance when the first
message was transmitted and let t, be the time instance when
the second message was transmitted. The position prediction
error is defined as the difference of the reported position at t,
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from the predicted position at t, estimated from the ADS-C
message transmitted at t;. The speed prediction error is the
position prediction error divided by (t,-t;). The longitudinal
speed prediction error is the projection of the speed prediction
error onto the route direction. (Fig. 3)

C. Definition of Longitudinal Speed Prediction Errors

1)  Assumption used for the prediction

We briefly state the assumption which is utilized in the
calculation of the predicted position.

In the observation period, the basic messages, the predicted
route group messages and the fixed projected intent group
messages were utilized for the position prediction in ODP.
ODP assumes that an aircraft is headed to the point indicated
in the predicted route group messages or the fixed projected
intent group messages, whose estimated time of arrival is
earlier, and in the next step, the aircraft headed to the other
point indicated in the messages. We assume the same
assumption in this paper.

The earth is assumed to be a sphere and an aircraft is
assumed to fly on the great circle in this paper. This is also
assumed in ODP.

2)  Calculation of the estimated position

We introduce the mathematical algorithm to calculate the
predicted position T at M hours later given the reported
position P and the predicted position Q at N hours later.
Remark that the mathematical algorithm described below is
not identical to the one used in ODP.

Let O be the center of the sphere. The aircraft flies with a
constant speed on the cross section of the sphere by the plane
OPQ. An aircraft which flies dg(P,Q) by distance in N hours
flies M ds(P,Q)/N by distance in M hours. Here dg(P,Q)
denotes the distance between points P and Q on the sphere
given by

ds(P,Q)=2Rsin"'(d, 4, (P,0)/2R) (1)
The notation R is the radius of the sphere and d;_4;n(P,Q) is the
Euclid distance in the 3-dimensional space.
Let @ be the angle made by half lines OP and OT. By the
definition of T, we get the following equation.

Rp=dy(P.T)=20d,(P.0) @

Let H be the foot of perpendicular of the point O on the line

PQ. Let S be the crossing point of the line PQ with the line OT.

(Fig. 4) Let 0 be the angle made by half lines OP and OQ, then
it is given by
0 =2sin"'(d,_y,, (P,0)/2R) 3)
Even if the pint is on the segment PH, HQ or right of Q in Fig.
4, the following equation holds true.
d34im(P,S)= Rsin(6/2)+ Rcos(6/2)tan(¢-6/2)

dim

“)
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Figure 4. Geometrical Description I

Let P(XP, yp, ZP)? Q(XQs yQ> ZQ)a S(XS9 ys, ZS) and T(XTs Y1, ZT)
be the coordinates. Then, the following equations are
obviously satisfied.

(x5, Y5,25) = )
d, . (P,S dy_yim (P, S
(xP +M(XQ _xp)yyp +M(yg _yP)7
dy_4in(P,0) dy_4in(P,0)
d, . (P,S
» + 37d1m( ) (ZQ _Zp))
d37dim(PaQ)
(xT’yTﬂzT) 6
—( Rxg Ry, Rz (6)
V2 yi+z2 2 eyiezt eyl

By (2) - (6), we get the coordinate of the point T.
3) Calculation of the longitudinal position errors

Let A be the reported position at some time instance and let
B be the predicted position at the same time estimated in the
methodology described in the previous subsection. Using the
coordinates of waypoints, we find the equation of the plane W
containing the center O and the route. The author used
Gaussian Elimination to find the equation. Let

ax+by+cz=0 @)

be the equation.

Fig. 5. Geometrical Description II
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We introduce how to find the coordinate of ‘the foot C of
perpendicular from A on the route.” Let H be the foot of
perpendicular on the plane W. The coordinate of the point H is

given by
(xH’yH7ZH):
ax, +by, +cz, ax, +by, +cz, ®)
(x,—a 2 2 7 2V -b 2 2 2
a +b +c a+b +c
ax,+by, +cz,
RPN )
Hence the coordinate of the point C is given by
(XcsVerze) =
Rxy Ryy Rz, ©)

N AN N
We can find the coordinate of ‘the foot D of perpendicular
from B on the route’ in the same way. We define the
longitudinal speed prediction error by
AP,=ds(C,D) (10)
if the point C and D line up in the traveling direction of the
aircraft, otherwise, it is defined by

AP,=—ds(C,D) (11)

D. Results

We study the longitudinal speed prediction error in the case
where aircraft fly ‘straight and at a constant speed.” When the
event report is transmitted, the aircraft assumes to change its
speed, heading or its vertical speed. Hence we only consider
the successive ADS reports such that both of them are
assumed to be periodic reports. (The basic group report
following the contract message is assumed to be a demand
report, when the contract message for a demand message is
transmitted.)

Fig. 6 shows the time interval of successive periodic reports
of aircraft flying in the NOPAC route system. Since the
reporting time interval indicated in the contract message is 320
sec and 1600 sec, there are peaks at 6 min and 27 min.

30000

Total No. of pairs : 93476
Max : 4956 sec
Min : 0 sec

25000

20000

15000

No. of pairs

10000 |

5000 |

ﬂ‘ HHDD

012345678 91011121314 151617 18 1920 21 22 23 24 25 26 27 28 29

ELEmm e e mem 0L

interval of periodic reports (min)

Figure 6. Distribution of intervals of periodic reports
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Figure 7. Trajectory of an aircraft with large longitudinal speed prediction
error

In the rest of this paper, we only consider the periodic report
pairs whose time interval is greater than 26 min and less than
or equal to 27 min (right peak of Fig. 6). A few ADS-C reports
in this data set are not coupled with fixed intent group. In the
case where the estimated time of arrival at the next waypoint
described in the predicted route group message is close to the
stamped time of the basic message, the longitudinal prediction
error is sometimes large in magnitude.

Fig. 7 shows the trajectory of an aircraft flying on R220 in
the NOPAC route system. The dots show the position reported
via ADS-C. The longitudinal speed prediction error of reports
which were transmitted at 17:40 and 18:06 was -668 (knots). It
turned out that the basic group transmitted at 17:40 is not
coupled with ‘fixed projected intent group’ and estimated time
of arrival given in ‘predicted route group’ is 10 sec later from
the stamped time. The ‘predicted route group’ reports that the
next waypoint is in the east of the reported position in spite of
the westbound aircraft. It seems that the aircraft flies by the
waypoint; however, the on-board system does not update the
next waypoint. Hence the ground system possibly considers
that the aircraft is flying in the opposite direction. If a fixed
projected intend group is coupled in this case, a system might
misunderstand the aircraft heading in a short period. However,
the system makes an appropriate prediction based on the fixed
projected intent group after a few seconds.

0.034% of basic reports are not coupled with ‘fixed
projected intent group’ and 0.017% of basic reports are
coupled with neither ‘fixed projected intent group’ nor
‘predicted route group’.

Fig. 8 shows the empirical distribution of the longitudinal
speed prediction errors of periodic report pairs which are
coupled with both fixed projected intent group and predicted
route group and whose reporting time interval is greater than
26 min and less than or equal to 27 min. There are no
incredibly large longitudinal speed prediction errors any more.
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Figure 8. Empirical distribution of longitudinal speed prediction errors
(Data omitted, NOPAC)

IV. DISTRIBUTION MODEL

On first sight, the empirical distribution given in Fig. 8
follows a normal distribution. Fig 9 shows the QQ-plot
(quantile-quantile plot) for normal distribution. If the
empirical distribution follows a normal distribution, the dots in
Fig. 9 are on the red straight line. When ‘sample quantiles’ is
larger than -20 and smaller than 20, the dots seem to be on the
straight line, however, it is not the case for the data set outside
of [-20, 20].

The average and standard deviation of restriction of the
empirical distribution on [-20,20] are -0.1142 and 7.757,
respectively. The histogram in Fig. 10 shows the empirical
distribution and the graph of the probability density function
of the normal distribution with average = -0.1142 and standard
deviation = 7.757. Fig.10 shows that this normal distribution
fits the empirical distribution well.

Sample Quantiles
-60 -40 -20 0 20 40 60

-4 -2 0 2 4

Theoretical Quantiles

Figure 9. QQ-Plot of Fig.8 for normal distribution
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Figure 10. QQ-Plot of Fig.8 for normal distribution

The author applied POT technique to the data set. Extreme
value theory claims that the conditional probability
Pr{Y<y|Y>u} of distributions satisfying some technical
assumptions approximately follows a generalized Pareto
distribution when u is large enough. (More precisely, for any
distribution which is in the domain of attraction,
Pr{Y<y|Y>u} weakly converge to the generalized Pareto
distributions as u —o0.) The cumulative distribution function
of a generalized Pareto distribution is given by

H(y)zl—(u:gﬂ i &io>0- (1)

When the shape parameter £<0, the generalized Pareto
distributions are Beta distributions. (0<y<-c/€) In &=0, they
are exponential distributions and they are Pareto distribution
in the case where £>0. (See [4] and other related papers for
more detail.)

The author analyzed the both-side tails of Fig. 8 using POT
technique. The R-package extRemes [8] is utilized for the
analysis. (R is a free statistical software for data analysis.) For
the right tail, we set the threshold u = 20 considering the
stability of estimated shape parameter & and scale parameter G.
The number of excesses of thresholds is 687 (2.85% of the
whole data set). By maximum likelihood method, we found &
= 0.0426 and 95% confidence interval is [-0.03419, 0.13204].
o = 7.63 and its standard error is 0.4342. Fig. 11 and Fig. 12
show the QQ-plot and the density plot of this model,
respectively. Since almost all dots are on the diagonal line in
the QQ-plot diagram, the generalized Pareto distribution fits
the right tail of the empirical distribution well. The fact
£=0.0426 suggests that the right tail is slightly thicker than an
exponential distribution.
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Figure 11. QQ-Plot of generalized Pareto distribution for the right tail of Fig.
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Figure 12. Density plot of generalized Pareto distribution for the right tail of
Fig. 8

The same analysis was conducted for the left tail. We set the
threshold u = 34. The number of excesses of thresholds is 47
(0.195%). &= -0.4484 with 95% confidence interval [-0.61369,
-0.08794]. 0=12.22 and its standard error is 2.374. Fig. 13 and
Fig. 14 show the QQ-plot and the density plot of this model,
respectively. Because of small amount of data set, the
estimated parameter has large standard deviation and some
dots are apart from the diagonal line in QQ-plot diagram.
Hence we cannot apply POT technique to determine the shape
of left tail. One way to find the shape of right tail is to assume
that both left and right tails follow the exactly same

distribution.
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Figure 13. QQ-Plot of generalized Pareto distribution for the left tail of Fig.
8
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Figure 14. Density plot of generalized Pareto distribution for the left tail of
Fig. 8

Under the assumption that both left and right tails follow the
same distribution, we applied POT technique to find the shape
of the tail. In this case, we have only to analyze the tail of the
absolute value of empirical data. We set the threshold u = 20.
The number of excesses of thresholds is 1161 (5.26%). &=
0.0386 with 95% confidence interval [-0.01962, 0.10373]. ¢ =
7.093 and its standard error is 0.3048. Fig. 15 and Fig. 16
show the QQ-plot and the density plot of this model,
respectively. The generalized Pareto distribution fits the tail of
the empirical distribution well judging from QQ-plot diagram.
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Figure 15. QQ-Plot of generalized Pareto distribution for the both tails of
Fig. 8
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Figure 16. Density plot of generalized Pareto distribution for the both tails
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of Fig. 8

Let ®(x) be the standard normal cumulative distribution
function, namely,

exp(—u’/2)
D(x)=| ——du-
f © 2z
Then the cumulative distribution function F(x) of
longitudinal speed prediction errors, X in knots, is given by
F(x)=

(13)

-1/0.0386
5:26/2 x(l+0.0386 *7’“(;9?0] x<-20
FoC01142) - —20-(-0.1142)
263 9474, 1757 1757 ~20<x<20
100100 4, 20-(0.1T82) 7 | =20-(-0.1142),
7.757 7.757
-1/0.0386
1326021, 52672 1y (416 0386520 X220
100 100 7.093
(14)
The simplified form is given by
F(x)=
2.63x107 x(1-5.44x107 x (x +20)) **7  x<-20

2.63x107* +0.9569x(®(%)—5.18x10’3) -20<x<20
0.9737+2.63x107 x 11+ 5445107 x (2~ 20) ) ***") x220

(15)

The analysis of both-side tails suggests that the tail of the
empirical distribution of longitudinal speed prediction errors
follows a Pareto distribution which has slightly thicker tails
than exponential distributions. It is hard to calculate the
longitudinal overlap probability if the tail follows a Pareto
distribution. Even if the tail of empirical distribution is thicker
than the exponential distribution, the shape parameter & is so
small that we may assume that the tail follows an exponential
distribution in many cases.

We can assume that |longitudinal speed prediction
erTor|20,-20 follows an exponential distribution whose
probability density function is exp(-x/A)/A. Here |longitudinal
speed prediction error|;.) denotes the restriction of the
absolute value of longitudinal speed prediction error on [20,0).
The maximum likelihood estimator of A is the average of the
empirical data set of [longitudinal speed prediction errot|;g,.)-
20. It is 7.439. Hence we get the following probability density
function of a model of longitudinal speed prediction errors.

exp(—(x+0.1142)% /(2*7.757%))

5.26] V27 *7.757
222y | x|< 20
f)= ( 100 @(20—§—705.;142))_@(—20—(—0.1142))
263102 x XPCUX[=200/7:439) s 5y
7.439
(16)
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V. CONCLUSION

This paper first reviews the basic concept of ADS-C and
summarizes the methodology to find the longitudinal speed
prediction errors of ADS-C.

A few ADS-C reports, which are not coupled with the fixed
intent group and the estimated time of arrival at the next
waypoint is close to the stamped time, have large longitudinal
prediction errors in magnitude. (Max. 668 knots)

Fig. 8 shows the empirical distribution of the longitudinal
speed prediction errors of periodic report pairs which are
coupled with both fixed projected intent group and predicted
route group and whose reporting time interval is greater than
26 min and less than or equal to 27 min. By QQ-plot, it turns
out that this distribution on [-20, 20] follows the normal
distribution whose average is -0.1142 and whose standard
deviation is 7.757. POT (Peak over Threshold) technique of
Extreme Value Theory was applied to find the shape of the tail
of Fig. 8. The tails (outside -20 and 20) follow the generalized
Pareto distribution whose shape parameter &= 0.0386 and the
scale parameter ¢ = 7.093. Equation (15) gives the explicit
description of the cumulative distribution function.

The density function of the distribution in (16) is also given
under the assumption that the tails follow an exponential
distribution.
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Abstract—Self-spacing is a solution for the runway capacity
reduction that is intertwined with the use of continuous descent
approaches in the current air traffic management system to
reduce aircraft noise. In case of self-spacing the separation task is
transferred from the air traffic controller to the pilot. The Three-
Degree Decelerating Approach (TDDA) can be executed in a
distance- or time-based self-spacing environment while yielding a
noise reduction. A fast-time simulation tool has been developed to
simulate arrival streams of different aircraft types executing the
TDDA in both self-spacing scenarios under actual wind
conditions. The tool was used to quantify the performance
differences between distance- and time-based self-spacing in
terms of capacity, noise reduction, and loss of separation. In the
time-based scenario no effects of preceding aircraft on trailing
aircraft could be identified. However, an increase in separation
with a negative effect on the airport capacity in order to assure
safe separation was required. In the distance-based self-spacing
scenario a slow-down effect was observed that led to a decrease in
the noise reduction towards the end of the arrival stream. This
was solved by altering the initial separation between aircraft in
the arrival stream. In the distance-based self-spacing scenario no
negative effect on the runway capacity or safety has been
identified.

Index Terms -- Continuous Descent Approach, capacity, self-
spacing

L.

To accommodate the forecasted further growth of aviation
without increasing the noise impact measures must be taken
[1-3]. Promising procedures are Continuous Descent
Approaches (CDAs) but are infeasible in the current air traffic
management system because of the negative effect on the
runway capacity. During the approach Air Traffic Control
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(ATC) issues speed, altitude, and heading instructions to keep
aircraft safely separated. During a CDA ATC can no longer
give instructions; otherwise the aircraft are not able to follow
their optimum descent path. Moreover it is unknown what the
descent paths of the aircraft will be. The aircraft performance,
pilot control strategy, and wind condition significantly affect
the descent path. [3][4] Therefore Air Traffic Control (ATC)
introduces 