An Arrival Scheduling Model for Incorporating Collaborative Decision-Making Concepts into Time-Based Flow Management

Yeming Hao¹, David J. Lovell¹,³
Michael O. Ball²,³
¹ Department of Civil and Environmental Engineering
² R.H. Smith School of Business
³ Institute for Systems Research
University of Maryland
College Park, MD, USA
{yhao, lovell, mball}@umd.edu

Sergio Torres, Gaurav M. Nagle
Leidos, Inc.
Gaithersburg, MD, USA
{sergio.torres, gaurav.nagle}@leidos.com

Abstract—This paper proposes a flight scheduling scheme – 2-opt-swap, which assigns controlled times of arrival (CTAs) for flights reaching the Freeze Horizon and allows certain slot swapping between different flights with the goal of reducing total controlled arrival delay cost over all carriers. The allowable swaps are predicated on models of carrier preferences following a Collaborative Decision-Making paradigm. Monte Carlo simulations were designed to prove the benefits of this new CTA scheduling scheme, compared to a baseline model of first-come-first-served discipline, which is currently used in Time-Based Flow Management.