Predicting Go-around Occurrence with Input-Output Hidden Markov Model

Lu Dai, Yulin Liu, Mark Hansen
Department of Civil and Environmental Engineering
University of California, Berkeley
Berkeley, California, United States
dailu@berkeley.edu, liuyulin101@berkeley.edu, mhansen@ce.berkeley.edu

Abstract— In this work, we propose a probabilistic graphical model – Input-Output Hidden Markov Model (IO-HMM) – to make sequential predictions of go-around probabilities for a flight approaching its destination airport. We compare the performance of the IO-HMM against four popular machine learning models trained at every nautical mile to the landing runway threshold on a collection of metrics. Our experiment with approximately 100,000 flights in the JFK airport suggests that the IO-HMM in general outperforms other models due to its capability of capturing the inherent temporal structure of the entire flight sequence.