Analyzing the Effect of Traffic Scenario Properties on Conflict Count Models

8th International Conference on Research in Air Transportation
June 29, 2018

Emmanuel Sunil, Ólafur Pórðarson, Joost Ellerbroek and Jacco Hoekstra
Outline

Introduction

Baseline Analytical Model

Fast-Time Simulation Experiments

Results and Numerically Adjusted Models

Conclusions
1. Introduction
ATM in Fast-Time Simulations
Four Airspace Concepts of Increasing Structure Compared Using Fast-Time Simulations
Pros and Cons of Simulations

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be very realistic</td>
<td>Time consuming</td>
</tr>
<tr>
<td>Analyze different conditions</td>
<td>Results can be qualitative</td>
</tr>
<tr>
<td>High-level system dynamics</td>
<td>Difficult to generalize results</td>
</tr>
</tbody>
</table>
Conflict Count Models

Number of combinations of 2 aircraft

Inst. Conflict Count = \(X \)

Conflict probability between any 2 aircraft
Intrinsic Airspace Safety

Intrinsic safety is the safety that is provided **exclusively** by the *constraints* imposed on traffic motion by an *airspace design*.
Conflict Count Models

Inst. Conflict Count = \text{Number of combinations of 2 aircraft} \times \text{Conflict probability between any 2 aircraft}
What is a Traffic Scenario?

A traffic scenario describes the distributions of aircraft:

1. Speed
2. Heading
3. Altitude
4. Density/Spatial
Traffic Scenario Assumptions

1. **Speed** is equal for all aircraft
2. **Heading** distribution is uniform
3. **Altitude** distribution is uniform
4. **Density/spatial** distribution is uniform

How accurate are these models for more realistic traffic scenarios?
Research Goals

1. Study the effect of traffic scenario assumptions on the **accuracy** of analytical conflict count models for more realistic traffic scenarios
 - Unstructured airspace used as a case study

2. Derive and test ‘**model adjustments**’ to generalize the models for all traffic scenarios
2. **Baseline Analytical Model**
Intrusions vs. Conflicts

Intrusion

\[2S_h \]

Conflict
Conflict Count Model for Unstructured Airspace

\[
\text{Inst. Conflict Count} = \text{Number of combinations of 2 aircraft} \times \text{Conflict probability between any 2 aircraft}
\]
Number of Combinations of 2 A/C

\[C = \frac{N(N - 1)}{2} \]

\[p \]
Average Conflict Probability

\[p = \frac{B_c}{B_{total}} \]
Average Conflict Probability

\[p = \frac{B_{c,h} + B_{c,v}}{B_{total}} = \frac{4 S_h S_v \mathbf{E} (V_{r,h}) t_l + \pi S_h^2 \mathbf{E} (V_{r,v}) t_l}{B_{total}} \]

\[\mathbf{E} (V_{r,h}) = \frac{4V}{\pi} \]

\[\mathbf{E} (V_{r,v}) = V \sin(\gamma) \left(1 - \varepsilon^2 \right) \]
Traffic Scenario Assumptions

Assumes uniform **altitude** and **density/spatial** distributions of traffic

\[p = \frac{B_c}{B_{\text{total}}} \]
Traffic Scenario Assumptions

Assumes equal ground speed and uniform heading distribution of traffic

\[p = \frac{4 S_h S_v \mathbb{E}(V_{r,h}) t_l + \pi S_h^2 \mathbb{E}(V_{r,v}) t_l}{B_{total}} \]

\[\mathbb{E}(V_{r,h}) = \frac{4V}{\pi} \]

\[\mathbb{E}(V_{r,v}) = V \sin(\gamma) (1 - \varepsilon^2) \]
Traffic Scenario Assumptions

1. **Speed** is equal for all aircraft
2. **Heading** distribution is uniform
3. **Altitude** distribution is uniform
4. **Density/spatial** distribution is uniform

For **Unstructured Airspace**, all 4 assumptions affect the **average conflict probability** between any two aircraft.
3. Fast-Time Simulation Experiments
BlueSky Open ATM Simulator

https://github.com/ProfHoekstra/bluesky
4 Assumptions – 4 Experiments

1. Ground-Speed Experiment
2. Heading Experiment
3. Altitude Experiment
4. Spatial Experiment

Traffic Scenarios
- 5 Densities (5-100 a/c per 10,000 NM²)
- 5 Repetitions
Ground Speed Experiment

Equal Speed

Baseline analytical model

Uniform Distribution

Different mix of aircraft types

Normal Distribution

Bimodal Distribution
Heading Experiment

Uniform

Normal

Bimodal

Ranged-Uniform
Altitude Experiment

Baseline analytical model

One preferred destination

Two preferred destinations

Traffic in upper airspace for fuel efficiency
Spatial Experiment

Uniform

Hot Spot 1

Hot Spot 2
4. Results and Numerically Adjusted Models
Model Accuracy Measurement

Analytical Model for Ideal Traffic Scenario

No. Inst Conflicts = Model \cdot k

\(k = 1 \quad 100\% \text{ accuracy} \)

\(k < 1 \quad \text{Overestimation} \)

\(k > 1 \quad \text{Underestimation} \)

\(k = 1.024 \ (97.6\%) \)
Ground Speed Experiment

No substantial effect of ground speed distribution on safety for Unstructured Airspace
Ground Speed Adjustment

\[V_{r,h \, \text{baseline}} = 2 \, V \, \sin\left(\frac{|\Delta\psi|}{2}\right) \]

\[\mathbb{E}(V_{r,h})_{\text{baseline}} = \int_{0}^{\alpha} V_{r,h} \, P(|\Delta\psi|) \, d\Delta\psi \]

\[\rightarrow \frac{4V}{\pi} \]
Ground Speed Adjustment

\[V_{r,h \, \text{adjusted}} = \left(V_1^2 + V_2^2 - 2V_1V_2 \cos(\Delta \psi) \right)^{1/2} \]

\[\mathbf{E} (V_{r,h})_{\text{adjusted}} = \int \int \int_{V_1, V_2, \Delta \psi} V_{r,h} (V_1, V_2, \Delta \psi) P(|\Delta \psi|) P(V_1) P(V_2) \, d\Delta \psi \, dV_1 \, dV_2 \]

<table>
<thead>
<tr>
<th></th>
<th>Baseline (Equal)</th>
<th>Uniform</th>
<th>Normal</th>
<th>Bimodal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>509</td>
<td>512</td>
<td>507</td>
<td>509</td>
</tr>
</tbody>
</table>
Ground Speed Experiment

![Graph showing the number of instantaneous conflicts for different ground speeds](image)

<table>
<thead>
<tr>
<th></th>
<th>Baseline Equal</th>
<th>Uniform</th>
<th>Normal</th>
<th>Bimodal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>1.024 (97.6%)</td>
<td>1.026</td>
<td>1.026</td>
<td>1.020</td>
</tr>
<tr>
<td>Adjusted</td>
<td>1.024 (97.6%)</td>
<td>1.022</td>
<td>1.029</td>
<td>1.019</td>
</tr>
</tbody>
</table>
Heading distribution can cause the analytical model to over-estimate conflict counts.
Heading Adjustment

\[V_{r,h \ baseline} = 2 \ V \ \sin \left(\frac{|\Delta \psi|}{2} \right) \]

\[\mathbf{E} (V_{r,h})_{baseline} = \int_{0}^{\alpha} V_{r,h} \ P (|\Delta \psi|) \ d\Delta \psi \]

\[P (|\Delta \psi|)_{uniform} = \frac{1}{\pi} \left(1 - \frac{\Delta \psi}{2\pi} \right) \]

\[\frac{4V}{\pi} \]
Heading Adjustment

V_{r,h \text{ adjusted}} = \left(V_1^2 + V_2^2 - 2V_1V_2 \cos(\Delta \psi) \right)^{1/2}

E(V_{r,h \text{ adjusted}}) = \int \int \int_{V_1, V_2, \Delta \psi} V_{r,h} (V_1, V_2, \Delta \psi) P(|\Delta \psi|) P(V_1) P(V_2) \, d\Delta \psi \, dV_1 \, dV_2

<table>
<thead>
<tr>
<th>Baseline (Uniform)</th>
<th>Bimodal</th>
<th>Normal</th>
<th>Ranged-Uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>509</td>
<td>485</td>
<td>395</td>
<td>370</td>
</tr>
</tbody>
</table>
Heading Experiment

The graph shows the number of instantaneous conflicts for different scenarios:
- Baseline / Uniform
- Bimodal
- Normal
- Ranged Uniform

The table below provides the number of instantaneous conflicts for analytical and adjusted methods:

<table>
<thead>
<tr>
<th></th>
<th>Baseline Uniform</th>
<th>Bimodal</th>
<th>Normal</th>
<th>Ranged Uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>1.024 (97.6%)</td>
<td>1.004 (99.5%)</td>
<td>0.812 (76.8%)</td>
<td>0.768 (69.9%)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>1.024 (97.6%)</td>
<td>1.041 (96.0%)</td>
<td>0.982 (98.1%)</td>
<td>0.974 (97.3%)</td>
</tr>
</tbody>
</table>
Altitude distribution can cause the analytical model to significantly **under-estimate** conflict counts.
Altitude Adjustment

\[p = \frac{4 S_h S_v \mathbf{E} (V_{r,h}) t_l + \pi S_h^2 \mathbf{E} (V_{r,v}) t_l}{B_{total}} \]

\[p = \frac{4 S_h S_v \mathbf{E} (V_{r,h}) t_l + \pi S_h^2 \mathbf{E} (V_{r,v}) t_l}{A_{total}} \cdot p_v \]

Altitude spread of all A/C

\[p_v = \int_{Z_{min}}^{Z_{max}} \int_{h-S_v}^{h} P_z(h) \ P_z(u) \ du \ dh \quad \longrightarrow \quad p_v, \ uniform = \frac{1}{H} \]

A/C \(j \) in vertical range of A/C \(i \)
Altitude Experiment

![Graph showing the number of instantaneous conflicts for different altitude distributions.]

<table>
<thead>
<tr>
<th></th>
<th>Baseline Uniform</th>
<th>Normal</th>
<th>Bimodal</th>
<th>Ranged Uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>1.024 (97.6%)</td>
<td>1.569 (63.7%)</td>
<td>1.416 (70.6%)</td>
<td>1.576 (63.4%)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>1.024 (97.6%)</td>
<td>1.102 (90.6%)</td>
<td>0.994 (99.4%)</td>
<td>0.957 (95.5%)</td>
</tr>
</tbody>
</table>
Spatial Experiment

Spatial distribution can cause the analytical model to significantly **under-estimate** conflict counts.

Table:

<table>
<thead>
<tr>
<th></th>
<th>Baseline / Uniform</th>
<th>Hot-Spot 1</th>
<th>Hot-Spot 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>1.024 (97.6%)</td>
<td>1.724 (59.7%)</td>
<td>2.077 (48.1%)</td>
</tr>
</tbody>
</table>
Spatial Adjustment

\[C_{total} = C_{area_1} + C_{area_2} + C_{area_{1,2}} \]
Spatial Experiment

![Graph showing the number of instantaneous conflicts for Baseline/Uniform, Hotspot 1, and Hotspot 2. The graph includes error bars for each data point.]

<table>
<thead>
<tr>
<th></th>
<th>Baseline Uniform</th>
<th>Hot-Spot 1</th>
<th>Hot-Spot 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>1.024 (97.6%)</td>
<td>1.724 (57.9%)</td>
<td>2.077 (48.1%)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>1.024 (97.6%)</td>
<td>0.906 (89.6%)</td>
<td>1.017 (98.2%)</td>
</tr>
</tbody>
</table>
5.

Conclusions
Conclusions

• Analytical model very accurate for ideal traffic scenario
• Conflict probability was incorrectly predicted by analytical model for non-uniform heading, altitude and spatial distributions.
• Spatial distribution of traffic led to the largest negative impact on the accuracy of the analytical model
• Ground-speed distribution did not affect analytical model accuracy
• Numerical model adjustments increased model accuracy for non-ideal conditions
Conclusions

• Adjusted conflict count models:
 – Understand the relationships between the factors affecting airspace safety
 – Tool for practical airspace design applications

• Future work will extend model adjustments for layered and other airspace designs
Thank You For Your Attention!

[e.sunil@tudelft.nl]
[https://www.researchgate.net/profile/Emmanuel_Sunil]