Predicting a Dramatic Contraction in the 10-Year Passenger Demand

Daniel Y. Suh
Megan S. Ryerson
University of Pennsylvania

6/29/2018
8th International Conference on Research in Air Transportation
Outline

• Introduction
• How we are planning for airports currently
• What are we doing wrong?
• Alternative approaches
• Predicting demand uncertainty
• Discussion of Results
• Implications
• Application
Airport Master Plans

- Guide future airport growth and development
- Airfield facilities (runways, taxiways)
- Terminal facilities (gates, concourses, pedestrian walkways)
- Landside facilities (access roads, parking, rental car facilities)
Airport Master Plans

Source: ATL Airport Master Plan (2015)
Airport Master Plans

Source: ATL Airport Master Plan (2015)
Demand Uncertainty and Airport Expansions (St. Louis Airport)

STL Airport (Source: ACRP Report 76)
Systematic Optimism in 10-year Forecasts (top 64 airports, 1995-2005)
Alternative Airport Planning Frameworks

- Theoretical frameworks
- No empirical evidence of efficacy
- High costs of implementation
- Missing areas of inquiry in the technical evaluation and improvement in airport planning techniques

• Dynamic Strategic Planning (De Neufville, 2000)
• Flexible Strategic Planning (Burghouwt, 2007)
• Adaptive Policy-Making (Kwakkel, 2010)
• Adaptive Airport Strategic Planning (Kwakkel et al., 2010)
Systematic Optimism in 10-year Forecasts (top 64 airports, 1995-2005)
Case 1: Infrastructure investments maybe justified (eventually…)

Miami Int’l Airport (MIA) San Francisco Int’l Airport (SFO)
Case 2:
Maybe not a good idea...

St. Louis Lambert Int’l Airport (STL)

Pittsburgh Int’l Airport (PIT)
Demand Uncertainty and Airport Expansions (St. Louis Airport)

Master plan Runway completed

$1.3 Billion

Rarely Used

Source: ACRP Report 76
Research Question: What are the operational and socioeconomic characteristics of an airport on the verge of experiencing a severe contraction in passenger volumes?
Methodology

Logistic Regression

\[\theta \]

A severe contraction in passenger volumes in the next 10 years (1)

Stable passenger demand (0)

\[X_1 \quad X_2 \quad X_n \]
Methodology

Operational and Socioeconomic variables

Static and Dynamic variables

A severe contraction in passenger volumes in the next 10 years (1)

Stable passenger demand (0)
Methodology

Operational and Socioeconomic variables

Static and Dynamic variables

Logistic Regression

A severe contraction in passenger volumes in the next 10 years (1)

Stable passenger demand (0)

Data-driven definition
Data-Driven Definition of a Severe Contraction

• Data: Annual enplanements data (FAA) from 1995 to 2015

• Study airports: 64 major airports in the top 50 metropolitan statistical areas (MSA)

• Outcome: 10-year % change in passenger volumes

\[P_b = \frac{E_{b+10} - E_b}{E_b} \times 100 \]

• 11 base years (1995 – 2005) for 64 airports (N = 704)
Distribution of 10-year % change in passenger volumes

Normal distribution (almost)

Multiple peaks
Distribution of 10-year % change in passenger volumes

Gaussian Mixture Model
- Assumes the data points came from a mixture of normal distributions
- Posterior probabilities of each data point belonging to each of the distributions (4)
- Assign each point to a distribution with the highest posterior probability

N = 704
Distribution of 10-year % change in passenger volumes

Gaussian Mixture Model
- Assumes the data points came from a mixture of normal distributions
- Posterior probabilities of each data point belonging to each of the distributions
 \((4)\)
- Assign each point to a distribution with the highest posterior probability

\[
N = 704
\]
Binary Outcome Variable

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Growth Cluster (n=9)</th>
<th>Cyclical Cluster (n=559)</th>
<th>Contraction Cluster (n=136)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>167.20</td>
<td>22.40</td>
<td>-28.61</td>
</tr>
<tr>
<td>Median</td>
<td>138.70</td>
<td>18.09</td>
<td>-22.00</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>87.51</td>
<td>23.08</td>
<td>18.26</td>
</tr>
<tr>
<td>Max</td>
<td>395.70</td>
<td>99.15</td>
<td>-11.23</td>
</tr>
<tr>
<td>Min</td>
<td>110.00</td>
<td>-10.74</td>
<td>-80.79</td>
</tr>
</tbody>
</table>
Methodology

Operational and Socioeconomic variables

Static and Dynamic variables

Logistic Regression

A severe contraction in passenger volumes in the next 10 years (1)

Stable passenger demand (0)
Predictors

• Static (point-in-time) socioeconomic and operational variables in base year values
 • Population of Philadelphia MSA in base year 2000
• Corresponding dynamic (change-over-time) variables in 5-year average annual % change values up to base year
 • Average annual % change in population of Philadelphia MSA from 1995 to 2000
Predictors

<table>
<thead>
<tr>
<th>Variables in base year numbers</th>
<th>Unit</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passengers</td>
<td>Persons (millions)</td>
<td>8.42</td>
<td>7.95</td>
<td>FAA</td>
</tr>
<tr>
<td>Airport competition</td>
<td>Unitless</td>
<td>3.74</td>
<td>5.57</td>
<td>FAA</td>
</tr>
<tr>
<td>Connecting passenger share</td>
<td>Proportion</td>
<td>0.47</td>
<td>0.11</td>
<td>BTS DB1B</td>
</tr>
<tr>
<td>Avg. number of seats per aircraft</td>
<td>Seats</td>
<td>118.40</td>
<td>26.87</td>
<td>BTS T-100</td>
</tr>
<tr>
<td>Avg. ticket price</td>
<td>Dollars</td>
<td>227.70</td>
<td>53.01</td>
<td>BTS DB1B</td>
</tr>
<tr>
<td>HHI</td>
<td>Unitless</td>
<td>0.35</td>
<td>0.20</td>
<td>BTS T-100</td>
</tr>
<tr>
<td>Population</td>
<td>Persons (millions)</td>
<td>3.56</td>
<td>3.44</td>
<td>Census</td>
</tr>
<tr>
<td>Per capita income</td>
<td>Dollars (thousands)</td>
<td>45.87</td>
<td>7.91</td>
<td>BEA</td>
</tr>
<tr>
<td>Service sector employment</td>
<td>Persons (millions)</td>
<td>0.92</td>
<td>0.91</td>
<td>Census</td>
</tr>
</tbody>
</table>

- **9 Static Predictors**
- **9 Dynamic Predictors**
Predictors

<table>
<thead>
<tr>
<th>Variables in base year numbers</th>
<th>Unit</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passengers</td>
<td>Persons (millions)</td>
<td>8.42</td>
<td>7.95</td>
<td>FAA</td>
</tr>
<tr>
<td>Airport competition</td>
<td>Unitless</td>
<td>3.74</td>
<td>5.57</td>
<td>FAA</td>
</tr>
<tr>
<td>Connecting passenger share</td>
<td>Proportion</td>
<td>0.47</td>
<td>0.11</td>
<td>BTS DB1B</td>
</tr>
<tr>
<td>Avg. number of seats per aircraft</td>
<td>Seats</td>
<td>118.40</td>
<td>26.87</td>
<td>BTS T-100</td>
</tr>
<tr>
<td>Avg. ticket price</td>
<td>Dollars</td>
<td>227.70</td>
<td>53.01</td>
<td>BTS DB1B</td>
</tr>
<tr>
<td>HHI</td>
<td>Unitless</td>
<td>0.35</td>
<td>0.20</td>
<td>BTS T-100</td>
</tr>
<tr>
<td>Population</td>
<td>Persons (millions)</td>
<td>3.56</td>
<td>3.44</td>
<td>Census</td>
</tr>
<tr>
<td>Per capita income</td>
<td>Dollars (thousands)</td>
<td>45.87</td>
<td>7.91</td>
<td>BEA</td>
</tr>
<tr>
<td>Service sector employment</td>
<td>Persons (millions)</td>
<td>0.92</td>
<td>0.91</td>
<td>Census</td>
</tr>
</tbody>
</table>

\[\sum \text{Enplanements for neighboring airport (< 100mi)} \]

Distance to neighboring airport
Predictors

Herfindahl-Hirschman Index (HHI)

Measure of competition among firms (airlines)
In an industry (airport)

\[HHI_\alpha = \sum_i m_{ai}^2 \]

where \(m_{ai} \) is a proportion of seats provided by airline \(\alpha \).

Lower HHI = greater competition
Higher HHI = lower competition, dominance of market share among few firms (airlines)
Modeling Framework

Training Data (n = 556) → Binary Logistic Regression → Test Data (n = 139) → Model → Prediction
Modeling Framework

- Training Data (n = 556)
- Binary Logistic Regression
- Test Data (n = 139)
- Model
- Prediction
ROC Curve

Best cutoff = 43.9%
84% True Positive Rate
23% False Positive Rate
Final Model Output

| | Odds ratio | $P > |z|$ |
|--------------------------------------|------------|--------|
| (Intercept) | 0.1200 | 0.000*** |
| Airport competition % change (5AAC) | 0.6121 | 0.000*** |
| Connecting passenger share | 1.5547 | 0.000*** |
| Connecting passenger share % change (5AAC) | 0.9652 | 0.005** |
| Avg. number of seats per aircraft | 0.7087 | 0.000*** |
| Avg. ticket price | 0.6123 | 0.000*** |
| HHI | 2.2339 | 0.004** |
| HHI % change (5AAC) | 1.3456 | 0.003** |
| Population % change (5AAC) | 0.2010 | 0.000*** |
| Per capita income | 1.5385 | 0.001** |
| Service sector employment | 0.4056 | 0.001** |

$n = 556$

AIC = 422.66

* $p < 0.1$ ** $p < 0.01$ *** $p < 0.001$
Predictors of a severe contraction in demand in the next 10 years

More likely

- Connecting passenger share (1.6)
- HHI (2.2)
- HHI 5AAC (1.3)
- Per capita income (1.5)

Airports with high transfer activities with higher market concentration of airlines

(Hub airports dominated by few airlines)

Less likely

- Population 5AAC (0.2)
- Service sector employment (0.4)
- Airport competition 5AAC (0.6)
- Connecting passenger share 5AAC (0.9)
- Avg. number of seats per aircraft (0.7)
- Avg. ticket price (0.6)
Predictors of a severe contraction in demand in the next 10 years

More likely
- Connecting passenger share (1.6)
- HHI (2.2)
- HHI 5AAC (1.3)
- Per capita income (1.5)

Airports in MSAs with growing population and growing regional airport demand as well as strong service sector employment (Growing market)

Less likely
- Population 5AAC (0.2)
- Service sector employment (0.4)
- Airport competition 5AAC (0.6)
- Connecting passenger share 5AAC (0.9)
- Avg. number of seats per aircraft (0.7)
- Avg. ticket price (0.6)
Predictors of a severe contraction in demand in the next 10 years

More likely
- Connecting passenger share (1.6)
- HHI (2.2)
- HHI 5AAC (1.3)
- Per capita income (1.5)

Less likely
- Population 5AAC (0.2)
- Service sector employment (0.4)
- Airport competition 5AAC (0.6)
- Connecting passenger share 5AAC (0.9)
- Avg. number of seats per aircraft (0.7)
- Avg. ticket price (0.6)

Airports in MSAs with growing population and growing regional airport demand as well as strong service sector employment

(Growing market)

Airports with growing share of connecting passengers, larger aircraft, and higher ticket prices

(Diverse mix of traffic)
Demand Uncertainty and Airport Expansions
(St. Louis Airport)

$1.3 Billion

Rarely Used

Source: ACRP Report 76
STL in 1997

MSA
- Below average population growth in the past 5 years
- Below average service sector employment in 1997

Airport
- Smaller aircraft than average
- Passengers making more O-D trips and less connecting trips over the years
- A hub airline becoming more dominant at STL (high rate of growth in HHI)
STL in 1997

- Below average population growth in the past 5 years
- Below average service sector employment in 1997

MSA

- Smaller aircraft than average
- Passengers making more O-D trips and less connecting trips over the years
- A hub airline becoming more dominant at STL (high rate of growth in HHI)

Airport

Predicted probability 85%

Threshold established using a holdout sample: 44%
Demand Uncertainty and Stability

DIVERSIFIED DEMAND & SUPPLY
(connecting, international, more airline competition)

REGIONAL GROWTH
(population, service sector employment)
Implications & Applications

• Diversified demand and supply of air service
• Regional health of cities and metropolitan areas
• Supports existing literature linking air travel demand and socioeconomic characteristics
• Additional insight during planning and decision-making process
• Framework for improving forecast accuracy
 • Propensity score matching (reference class forecasting)
Reference Class Forecasting

Past Errors

Forecast
Reference Class Forecasting

Improved Accuracy
Airport’s Own Past

N = 64

![Forecast Error Chart](chart.png)
Airport’s Own Past

N = 64
Airport’s Own Past

- No statistically significant reduction in forecast errors
- Forecast errors increased by 56%

<table>
<thead>
<tr>
<th>Wilcoxon test</th>
<th>p-value = 0.5584</th>
<th>Accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in MAPE</td>
<td>+56%</td>
<td></td>
</tr>
</tbody>
</table>

Wilcoxon test: p-value = 0.5584

Accept Change in MAPE +56%

- No statistically significant reduction in forecast errors
- Forecast errors increased by 56%
Peer Airports

N = 64
Peer Airports

N = 64
Peer Airports

<table>
<thead>
<tr>
<th>Wilcoxon test</th>
<th>p-value = 0.0000</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in MAPE</td>
<td>-25%</td>
<td></td>
</tr>
</tbody>
</table>

- Statistically significant reduction in forecast errors
- Forecast errors decreased by 25%

N = 64

Wilcoxon test p-value = 0.0000

<table>
<thead>
<tr>
<th>Underestimation</th>
<th>Overestimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.82</td>
</tr>
<tr>
<td>0.28</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Future Research

• Predictive accuracy improvement
 • New feature generation
 • Interaction effect
 • Sampling

• Analysis of false positives and false negatives
 • What airports do I keep missing?
 • Any patterns?

• Non-stationary trends?
Questions?

Daniel Y. Suh
dysuh03@gmail.com